[1]马 鑫,但 卫,王 强.2022.中帕米尔塔什库尔干早白垩世二云母花岗岩与中-基性包体的岩石成因及其地质意义.大地构造与成矿学,46(2):380-397.doi:10.16539/j.ddgzyckx.2022.02.012
 MA Xin,DAN Wei,WANG Qiang.2022.Petrogenesis of the Taxkorgan Early Cretaceous Two-mica Granites and Medium-mafic Magmatic Enclaves in the Central Pamir and Their Geological Significance.Geotectonica et Metallogenia,46(2):380-397.doi:10.16539/j.ddgzyckx.2022.02.012
点击复制

中帕米尔塔什库尔干早白垩世二云母花岗岩与中-基性包体的岩石成因及其地质意义
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2022年46卷02期
页码:
380-397
栏目:
岩石大地构造与地球化学
出版日期:
2022-04-25

文章信息/Info

Title:
Petrogenesis of the Taxkorgan Early Cretaceous Two-mica Granites and Medium-mafic Magmatic Enclaves in the Central Pamir and Their Geological Significance
文章编号:
1001-1552(2022)02-0380-018
作者:
马 鑫1、2 但 卫1、3 王 强1、3 杨亚楠1、3 唐国荣1、2 唐功建1、3*
1. 中国科学院 广州地球化学研究所, 同位素地球化学国家重点实验室, 广东 广州 510640; 2. 中国科学院大学, 北京 100049; 3. 中国科学院深地科学卓越创新中心, 广东 广州 510640
Author(s):
MA Xin1、2 DAN Wei1、3 WANG Qiang1、3 YANG Yanan1、3 TANG Guorong1、2 TANG Gongjian1、3*
1. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, Guangdong, China
关键词:
二云母花岗岩 大陆边缘弧 岩浆爆发 塔什库尔干 帕米尔
Keywords:
two-mica granite continental margin arc magmatic flare-up Taxkorgan Pamir
分类号:
P595; P597
DOI:
10.16539/j.ddgzyckx.2022.02.012
文献标志码:
A
摘要:
中-南帕米尔在早白垩世发生了岩浆爆发事件, 出露的花岗质岩基规模巨大并且分布广泛。这些白垩纪花岗质岩石为钙碱性系列, 具有弧岩浆岩的微量元素特征, 可能形成于Shyok洋和/或新特提斯洋的北向俯冲环境, 但其岩石成因与动力过程仍然不清楚。本文对中帕米尔塔什库尔干地区的二云母花岗岩与中-基性包体开展了二次离子质谱(SIMS)锆石U-Pb年代学、岩相学、全岩主微量元素和Sr-Nd同位素地球化学研究。塔什库尔干二云母花岗岩与中-基性包体形成时代分别为112.8±2.7 Ma和116.1±4.2 Ma, 与早白垩世岩浆爆发期同期。二云母花岗岩具有高的SiO2(71.79%~72.91%)、 K2O(4.60%~6.03%)和低的MgO(0.30%~0.53%)含量, 总体显示弱过铝质特征(A/CNK=1.04~1.11)。岩石富集轻稀土元素和大离子亲石元素, 亏损Nb、Ta、Ti, 具有弧岩浆岩微量元素特征, 以及富集的Sr-Nd同位素组成((87Sr/86Sr)i=0.707916~ 0.721691, εNd(t)= -10.4 ~ -10.1)。岩相学与地球化学特征表明其为S型花岗岩, 源区主要为变杂砂岩, 通过水致白云母部分熔融形成。中-基性包体的主量元素含量变化较大(SiO2=44.91%~56.61%, MgO=4.75%~9.80%); 轻重稀土分异明显, 无Eu异常; 微量元素组成显示不同程度的亏损Nb和Ta; 具有较为富集并且变化较大的Sr-Nd同位素特征((87Sr/86Sr)i=0.703927~ 0.707694; εNd(t)= -5.9 ~ -0.7)。通过分析认为Shyok洋和/或新特提斯洋的俯冲沉积物发生部分熔融, 熔体与上覆的新生岩石圈地幔发生交代反应, 交代的辉石岩经历部分熔融形成具洋岛玄武岩微量元素特征的基性岩浆, 岩浆上升形成基性包体。基性岩浆在侵位过程中同化混染了大陆下地壳, 形成闪长质包体。推测中-南帕米尔地区早白垩世岩浆爆发可能与地幔楔熔体的底侵作用所导致的地壳广泛熔融有关。
Abstract:
A magma flare-up occurred in the Central and South Pamir during the Early Cretaceous as evidenced by the widely distributed granitic batholiths. These Cretaceous granitoid rocks are calc-alkaline series with arc-like trace element signatures. They may be formed in the northward subduction environment of the Shyok Ocean and/or the Neo-Tethys, but their petrogenesis and dynamical processes are still unclear. In this paper, we present the secondary ion mass spectrometry (SIMS) zircon U-Pb geochronological, petrographical, whole rock major and trace elements, Sr-Nd isotopic geochemical data of the Taxkorgan two-mica granites and medium-mafic magmatic enclaves of the Central Pamir. The Taxkorgan two-mica granites and medium-mafic magmatic enclaves were formed at 112.8±2.7 Ma and 116.1±4.2 Ma, respectively, which coincided with the Early Cretaceous magmatic flare-up. The Taxkorgan two-mica granites have high SiO2 (71.79% - 72.99%), K2O (4.60% - 6.03%) and low MgO (0.30% - 0.53%) content. They generally have weak peraluminous characteristics (A/CNK = 1.04 - 1.11). The two-mica granites are enriched in light rare earth elements and large ion lithophile elements, but depleted in Nb, Ta and Ti. They are characterized by arc-like trace element characteristics and enrichment in Sr-Nd isotopes ((87Sr/86Sr)i = 0.707916 - 0.721691, εNd(t) = -10.4 - -10.1). The petrographic and geochemical characteristics indicate that the Taxkorgan two-mica granites are S-type granites, and the magma source is mainly composed of metagreywacke, which was produced by fluid-fluxed muscovite melting. The major elements in the medium-mafic magmatic enclaves are variable (SiO2 = 44.91% - 56.61%; MgO = 4.75% - 9.80%). The light and heavy rare earth element fractionation is obvious, and there is no Eu anomaly. In the trace element diagrams, the medium-mafic magmatic enclaves have different degrees of Nb and Ta depletions. The Sr-Nd isotopic characteristics of these rocks are relatively enriched and varied greatly ((87Sr/86Sr)i = 0.703927 - 0.707694; εNd(t) = -5.9 - -0.7). We suggest that the subducted sediments of the Shyok Ocean and/or the Neo-Tethys Ocean were partially melted, and the melt underwent a metasomatic reaction with the overlying juvenile lithospheric mantle. The metasomatic pyroxenes underwent partial melting to form a mafic magma with the trace element characteristics of ocean island basalt, and the magma rose to form the mafic magmatic enclaves. The mafic magma assimilated the continental lower crust during the emplacement process and eventually formed the dioritic enclaves. The early Cretaceous magmatic flare-up in the Central-South Pamir area may be related to the extensive melting of the crust caused by the underplating of the mantle wedge melt.

参考文献/References:

李杭, 柯强, 李昊, 洪涛, 赵同寿, 徐兴旺. 2020. 喀喇昆仑地体甜水海地区102 Ma辉长岩的发现及其对区域中生代构造演化的约束. 岩石学报, 36(4): 1041-1058.
王晓先, 张进江, 闫淑玉, 刘江, 王佳敏, 郭磊. 2015. 北喜马拉雅恰芒巴二云母花岗岩的年龄及形成机制. 地质科学, 50(3): 708-727.
Aminov J, Ding L, Mamadjonov Y, Dupont N G, Aminov J, Zhang L Y, Yoqubov S, Aminov J, Abdulov S. 2017. Pamir Plateau formation and crustal thickening before the India-Asia collision inferred from dating and petrology of the 110-92 Ma Southern Pamir volcanic sequence. Gondwana Research, 51: 310-326.
Angiolini L, Zanchi A, Zanchetta S, Nicora A, Vezzoli G. 2013. The Cimmerian geopuzzle: New data from South Pamir. Terra Nova, 25(5): 352-360.
Annen C, Blundy J D, Sparks R S J. 2006. The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology, 47(3): 505-539.
Barry T L, Saunders A D, Kempton P D, Windley B F, Pringle M S, Dorjnamjaa D, Saandar S. 2003. Petrogenesis of Cenozoic basalts from Mongolia: Evidence for the role of asthenospheric versus metasomatized lithospheric mantle sources. Journal of Petrology, 44: 55-91.
Bouilhol P, Jagoutz O, Hanchar J M, Dudas F O. 2013. Dating the India-Eurasia collision through arc magmatic records. Earth and Planetary Science Letters, 366: 163- 175.
Chapman J B, Ducea M N, Kapp P, Gehrels G E, DeCelles P G. 2017. Spatial and temporal radiogenic isotopic trends of magmatism in Cordilleran orogens. Gondwana Research, 48: 189-204.
Chapman J B, Robinson A C, Carrapa B, Villarreal D, Worthington J, DeCelles P G, Kapp P, Gadoev M, Oimah-madov I, Gehrels G. 2018a. Cretaceous shortening and exhumation history of the South Pamir terrane. Lithosphere, 10(4): 494-511.
Chapman J B, Scoggin S H, Kapp P, Carrapa B, Ducea M N, Worthington J, Oimahmadov I, Gadoev M. 2018b. Mesozoic to Cenozoic magmatic history of the Pamir. Earth and Planetary Science Letters, 482: 181-192.
Chappell B W, Stephens W E. 1988. Origin of infra crustal (I-type) granite magmas. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 79(2): 71-86.
Chappell B W, White A J R. 1992. I- and S-type granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2): 1-26.
Chappell B W, White A J R. 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48(4): 489-499.
Chen M, Sun M, Buslov M M, Cai K D, Zhao G C, Kulikova A V, Rubanova E S. 2016. Crustal melting and magma mixing in a continental arc setting: Evidence from the Yaloman intrusive complex in the Gorny Altai terrane, Central Asian Orogenic Belt. Lithos, 252: 76-91.
Clemens J, Holloway J R, White A. 1986. Origin of an A-type granite: Experimental constraints. American Mineralogist, 71(3-4): 317-324.
Collins W J, Beams S D, White A J R, Chappell B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200.
Conrad W K, Nicholls I A, Wall V J. 1988. Water-Saturated and undersaturated melting of metaluminous and peraluminous crustal compositions at 10 kb: Evidence for the origin of silicic magmas in the Taupo volcanic zone, New Zealand, and other occurrences. Journal of Petrology, 29(4): 765-803.
DeCelles P G, Ducea M N, Kapp P, Zandt G. 2009. Cyclicity in Cordilleran orogenic systems. Nature Geoscience, 2(4): 251-257.
Dewey J F, Shackleton R M, Chang C F, Sun Y Y. 1988. The tectonic evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society of London (A), 327: 379-413.
Douce A E P. 1996. Effects of pressure and H2O content on the compositions of primary crustal melts. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1-2): 11-21.
Douce A E P. 1998. Experimental constraints on Himalayan anatexis. Journal of Petrology, 39(4): 689-710.
Ducea M. 2001. The California Arc: Thick granitic batholiths, eclogitic residues, lithospheric-scale thrusting, and magmatic flare-ups. GSA Today, 11(11): 4-10.
Ducea M N, Barton M D. 2007. Igniting flare-up events in Cordilleran arcs. Geology, 35(11): 1047-1050.
Ducea M N, Saleeby J B, Bergantz G. 2015. The architecture, chemistry, and evolution of continental magmatic arcs. Annual Review of Earth and Planetary Sciences, 43(1): 299-331.
Farmer G L, Depaolo D J. 1983. Origin of Mesozoic and Tertiary granite in the western United States and impli-cations for Pre-Mesozoic crustal structure: 1. Nd and Sr isotopic studies in the geocline of the Northern Great Basin. Joutnal of Geophysical Research, 88(B4): 3379- 3401.
Frost B R, Barnes C G, Collins W J, Arculus R J, Ellis D J, Frost C D. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42: 2033-2048.
Gaetani M, Garzanti E, Jadoul F, Nicora A, Tintori A, Pasini M, Khan K S A. 1990. The north Karakorum side of the Central Asia geopuzzle. Geological Society of America Bulletin, 102: 54-62.
Gao L E, Zeng L S. 2014. Fluxed melting of metapelite and the formation of Miocene high-CaO two-mica granites in the Malashan gneiss dome, southern Tibet. Geochimica et Cosmochimica Acta, 130: 136-155.
Gao L E, Zeng L S, Asimow P D. 2017. Contrasting geoche-mical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites. Geology, 45: 39-42.
Gao L E, Zeng L S, Hou K J, Guo C L, Tang S H, Xie K J, Hu G Y, Wang L. 2013. Episodic crustal anatexis and the formation of Paiku composite leucogranitic pluton in the Malashan Gneiss Dome, Southern Tibet. Chinese Science Bulletin, 58(28): 3546-3563.
Ghani A A, Searle M, Robb L, Chung S L. 2013. Transitional I-S type characteristic in the Main Range Granite, Peninsular Malaysia. Journal of Asian Earth Sciences, 76: 225-240.
Gómez-Tuena A, Cavazos-Tovar J G, Parolari M, Straub S M, Espinasa-Pere?a R. 2018. Geochronological and geoche-mical evidence of continental crust ‘relamination’ in the origin of intermediate arc magmas. Lithos, 322: 52-66.
Herzberg C. 2006. Petrology, thermal structure of the Hawaiian plume from Mauna Kea volcano. Nature, 444: 605-609.
Herzberg C. 2011. Identification of source lithology in the Hawaiian, Canary Islands: Implications for origins. Journal of Petrology, 52: 113-146.
Hirschmann M M, Kogiso T, Baker M B, Stolper E M. 2003. Alkalic magmas generated by partial melting of garnet pyroxenite. Geology, 31: 481-484.
Hou Z Q, Yang Z M, Lu Y J, Kemp A, Zheng Y C, Li Q Y, Tang J X, Yang Z S, Duan L F. 2015. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones. Geology, 43: 247-250.
Inger S, Harris N. 1993. Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya. Journal of Petrology, 34: 345-368.
Jain A K, Singh S, Manickavasagam R M. 2002. Himalayan collision tectonics. Gondwana Research, 6(4): 950-951.
Ji W Q, Wu F Y, Chung S L, Li J X, Liu C Z. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262: 229-245.
Jiang Y H, Liu Z, Jia R Y, Liao S Y, Zhao P, Zhou Q. 2013. Origin of Early Cretaceous high-K calc-alkaline granitoids, western Tibet: Implications for the evolution of the Tethys in NW China. International Geology Review, 56(1): 88- 103.
Kay R W, Kay S M. 1991. Creation and destruction of lower continental crust. Geologische Rundschau, 80(2): 259- 278.
Keshav S, Gudfinnsson G H, Sen G, Fei Y. 2004. High-pressure melting experiments on garnet clinopyroxenite and the alkalic to tholeiitic transition in ocean-island basalts. Earth and Planetary Science Letters, 223: 365-379.
Knesel K M, Davidson J P. 2002. Insights into collisional magmatism from isotopic fingerprints of melting reactions. Science, 296: 2206-2208.
Lambart S, Laporte D, Schiano P. 2013. Markers of the pyroxenite contribution in the major-element compo?sitions of oceanic basalts: Review of the experimental constraints. Lithos, 160-161: 14-36.
Li J Y, Niu Y L, Hu Y, Chen S, Zhang Y, Duan M, Sun P. 2016. Origin of the late Early Cretaceous granodiorite and associated dioritic dikes in the Hongqilafu pluton, northwestern Tibetan Plateau: A case for crust-mantle interaction. Lithos, 260: 300-314.
Li X H, Li Z X, Wingate M T D, Chung S L, Liu Y, Lin G C, Li W X. 2006. Geochemistry of the 755 Ma Mundine Well dyke swarm, northwestern Australia: Part of a Neoproterozoic mantle superplume beneath Rodinia? Precambrian Research, 146(1-2): 1-15.
Li X H, Liu D, Sun M, Li W X, Liang X R, Liu Y. 2004. Precise Sm-Nd and U-Pb isotopic dating of the supergiant Shizhuyuan polymetallic deposit and its host granite, SE China. Geological Magazine, 141(2): 225-231.
Li X H, Liu Y, Li Q L, Guo C H, Chamberlain K R. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochemistry, Geophysics, Geosystems, 10(4), Q04010.
Li X H, Qi C S, Liu Y, Liang X R, Tu X L, Xie L W, Yang Y H. 2005. Petrogenesis of the Neoproterozoic bimodal volcanic rocks along the western margin of the Yangtze Block: New constraints from Hf isotopes and Fe/Mn ratios. Chinese Science Bulletin, 50: 2481-2486.
Li X H, Tang G Q, Gong B, Yang Y H, Hou K J, Hu Z, Li Q, Liu Y, Li W. 2013. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes. Chinese Science Bulletin, 58(36): 4647-4654.
Liu X Q, Zhang C L, Hao X S, Zou H B, Zhao H X, Ye X T. 2020. Early Cretaceous granitoids in the Southern Pamir: Implications for the Meso-Tethys evolution of the Pamir Plateau. Lithos, 362-363, 105492.
Ludwig K. 2003. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 4: 1-74.
Ma L, Wang Q, Wyman D A, Jiang Z Q, Yang J H, Li Q L, Gou G N, Guo H F. 2013. Late Cretaceous crustal growth in the Gangdese area, southern Tibet: Petrological and Sr-Nd-Hf-O isotopic evidence from Zhengga diorite- gabbro. Chemical Geology, 349: 54-70.
Malz N, Pf?nder J A, Ratschbacher L, Hacker B R. 2012. Cretaceous-Cenozoic magmatism in the Pamir and a comparison with Tibet. Journal of Nepal Geological Society, 45: 119-120.
Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635-643.
Mazhari S A, Kl?tzli U, Safari M. 2019. Petrological investigation of Late Cretaceous magmatism in Kaboodan area, NE Iran: Evidence for an active continental arc at Sabzevar zone. Lithos, 348-349, 105183.
Meen J K. 1987. Formation of shoshonites from calcalkaline basalt magmas: Geochemical and experimental constraints from the type locality. Contributions to Mineralogy and Petrology, 97: 333-351.
Middlemost E A K. 1994. Naming materials in the magma/ igneous rock system. Earth-Science Reviews, 37(3-4): 215-244.
Morrison G W. 1980. Characteristics and tectonic setting of the shoshonite rock association. Lithos, 13: 97-108.
Pashkov B, Shvol’man V. 1979. Rift margins of Tethys in the Pamirs. Geotectonics, 13(6): 447-456.
Pati?o D A E, Harris N. 1998. Experimental constraints on Himalayan anatexis. Journal of Petrology, 39(4): 689- 710.
Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81.
Pertermann M, Hirschmann M M. 2003. Anhydrous partial melting experiments on MORB-like eclogite: Phase relations, phase compositions and mineral-melt partitioning of major elements at 2-3 GPa. Journal of Petrology, 44: 2173-2201.
Ravikant V, Wu F Y, Ji W Q. 2009. Zircon U-Pb and Hf isotopic constraints on petrogenesis of the Cretaceous- Tertiary granites in eastern Karakoram and Ladakh, India. Lithos, 110(1-4): 153-166.
Robinson A C. 2015. Mesozoic tectonics of the Gondwanan terranes of the Pamir plateau. Journal of Asian Earth Sciences, 102: 170-179.
Rudnick R L, Gao S. 2003. Composition of the continental crust // Holland H D, Turekian K K. Treatise on Geochemistry, 3: 1-64.
Salters V J M, Stracke A. 2004. Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, 5(5), Q05004.
Schwab M, Ratschbacher L, Siebel W, Williams M M, Minaev V, Lutkov V, Chen F, Stanek K, Nelson B, Frisch W. 2004. Assembly of the Pamirs: Age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet. Tectonics, 23(4), TC4002.
Sepidbar F, Mirnejad H, Ma C, Moghadam H S. 2018. Identification of Eocene-Oligocene magmatic pulses associated with flare-up in east Iran: Timing and sources. Gondwana Research, 57: 141-156.
Shvol’man V A. 1978. Relicts of the Mesotethys in the Pamirs. Himalayan Geology, 8: 369-378.
Sláma J, Ko?ler J, Condon D J, Crowley J L, Gerdes A, Hanchar J M, Horstwood M S A, Morris G A, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M N, Whitehouse M J. 2008. Ple?ovice zircon — A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249: 1-35.
Sobolev A V, Hofmann A W, Kuzmin D V, Yaxley G M, Arndt N T, Chung S L, Danyushevsky L V, Elliott T, Frey F A, Garcia M O. 2007. The amount of recycled crust in sources of mantle-derived melts. Science, 316: 412-417.
Stepanov A S, Hermann J. 2013. Fractionation of Nb and Ta by biotite and phengite: Implications for the “missing Nb paradox”. Geology, 41: 303-306.
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313-345.
Sylvester P J. 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1): 29-44.
Taylor J R, Hugh P. 1988. Oxygen, hydrogen, and strontium isotope constraints on the origin of granites. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 79(2-3): 317-338.
Wang R Q, Qiu J S, Yu S B, Zhao J L. 2017. Crust-mantle interaction during Early Jurassic subduction of Neo-Tethyan oceanic slab: Evidence from the Dongga gabbro-granite complex in the southern Lhasa subterrane, Tibet. Lithos, 292: 262-277.
Watson E B, Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295-304.
Wei Y Q, Zhao Z D, Niu Y L, Zhu D C, Liu D, Wang Q, Hou Z Q, Mo X X, Wei J C. 2017. Geochronology and geochemistry of the Early Jurassic Yeba Formation volcanic rocks in southern Tibet: Initiation of back-arc rifting and crustal accretion in the southern Lhasa Terrane. Lithos, 278: 477-490.
Weinberg R F, Hasalová P. 2015. Water-fluxed melting of the continental crust: A review. Lithos, 212: 158-188.
Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407- 419.
White A J R. 1979. Sources of granite magmas. Geological Society of America, 11(7): 539.
Workman R K, Hart S R. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231: 53-72.
Xu H J, Ma C Q, Song Y R, Zhang J F, Ye K. 2012. Early Cretaceous intermediate-mafic dykes in the Dabie orogen, eastern China: Petrogenesis and implications for crust- mantle interaction. Lithos, 154: 83-99.
Zanchi A, Poli S, Fumagalli P, Gaetani M. 2000. Mantle exhumation along the Tirich Mir Fault Zone, NW Pakistan: Pre-mid-Cretaceous accretion of the Karakoram terrane to the Asian margin. Geological Society, 170(1): 237-252.
Zhang Z M, Ding H X, Palin R M, Dong X, Tian Z L, Chen Y F. 2020. The lower crust of the Gangdese magmatic arc, southern Tibet, implication for the growth of continental crust. Gondwana Research, 77: 136-146.
Zindler A, Staudigel H, Batiza R. 1984. Isotope and trace element geochemistry of young Pacific seamounts: Implications for the scale of upper mantle heterogeneity. Earth and Planetary Science Letters, 70: 175-195.

备注/Memo

备注/Memo:
收稿日期: 2021-02-08; 改回日期: 2021-03-22
项目资助: 新疆维吾尔自治区重大科技专项(202101679)和国家自然科学基金项目(41722205、41673033)联合资助。
第一作者简介: 马鑫(1994-), 男, 硕士研究生, 岩石地球化学专业。E-mail: 549768803@qq.com
通信作者: 唐功建(1979-), 男, 研究员, 从事岩石学与地球化学研究工作。E-mail: tanggj@gig.ac.cn
更新日期/Last Update: 2022-04-10