[1]陈公正,武 广,李英雷.2022.大兴安岭南段前进场岩体锆石U-Pb年龄、地球化学及其地质意义.大地构造与成矿学,46(2):356-379.doi:10.16539/j.ddgzyckx.2022.02.011
 CHEN Gongzheng,WU Guang,LI Yinglei.2022.Zircon U-Pb Age and Geochemistry of the Qianjinchang Intrusion in the Southern Great Xing’an Range and its Geological Implications.Geotectonica et Metallogenia,46(2):356-379.doi:10.16539/j.ddgzyckx.2022.02.011
点击复制

大兴安岭南段前进场岩体锆石U-Pb年龄、地球化学及其地质意义
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2022年46卷02期
页码:
356-379
栏目:
岩石大地构造与地球化学
出版日期:
2022-04-25

文章信息/Info

Title:
Zircon U-Pb Age and Geochemistry of the Qianjinchang Intrusion in the Southern Great Xing’an Range and its Geological Implications
文章编号:
1001-1552(2022)02-0356-024
作者:
陈公正1 武 广1* 李英雷1、2 李铁刚1 刘瑞麟1、2 李睿华1、2 杨 飞1、2
1. 中国地质科学院 矿产资源研究所, 自然资源部成矿作用与资源评价重点实验室, 北京 100037; 2. 北京大学 造山带与地壳演化教育部重点实验室, 北京 100871
Author(s):
CHEN Gongzheng1 WU Guang1* LI Yinglei1、2 LI Tiegang1 LIU Ruilin 1、2 LI Ruihua1、2 YANG Fei1、2
1. MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China; 2. MOE Key Laboratory of Orogen and Crust Evolution, Peking University, Beijing 100871, China
关键词:
锆石U-Pb年龄 岩石地球化学 矿物地球化学 黑云母二长花岗岩 前进场岩体 大兴安岭南段
Keywords:
zircon U-Pb dating petrogeochemistry mineral geochemistry biotite monzogranite Qianjinchang intrusion the southern Great Xing’an Range
分类号:
P595; P597
DOI:
10.16539/j.ddgzyckx.2022.02.011
文献标志码:
A
摘要:
前进场岩体位于大兴安岭南段, 主要岩石类型为黑云母二长花岗岩, 是道伦达坝铜钨锡银矿床的赋矿围岩之一。本文对前进场岩体开展了岩石地球化学、LA-ICP-MS锆石U-Pb定年、锆石Lu-Hf同位素及矿物地球化学研究。锆石U-Pb定年结果表明前进场岩体形成于278~279 Ma, 为早二叠世岩浆活动产物。岩石地球化学特征显示其SiO2含量为66.18%~68.71%, 具有较高的全碱含量(Na2O+K2O=7.14%~8.05%)和A/CNK值(1.10~1.21), 富集轻稀土元素、亏损重稀土元素, 稀土元素配分曲线呈右倾式, 具中等Eu负异常(δEu=0.40~0.56); 岩石富集大离子亲石元素(Rb、Th和K等)和轻稀土元素(La和Ce等), 强烈亏损高场强元素(Nb、Ta、Zr、Hf、P和Ti等)和Sr。样品的锆石εHf(t)值在2.5~9.7之间, Hf同位素单阶段模式年龄(tDM1)在552~747 Ma之间, 两阶段模式年龄(tDM2)在696~1023 Ma之间, 表明其源区主要为起源于亏损地幔的新元古代新生地壳物质。电子探针分析结果显示岩体中的云母为富铁黑云母, 斜长石为更长石, 表明岩浆分异程度较低。磷灰石具有富F(2.73%~5.09%, 平均为3.75%)、贫Cl(0.02%~0.07%, 平均为0.05%)特征, 稀土元素总量较低, 其配分曲线呈海鸥式, 轻重稀土元素分馏不明显, 具有明显的Eu负异常和弱的Ce正异常, 表明岩浆氧逸度较低。前进场岩体形成于贺根山洋闭合后的后碰撞环境, 是黑云斜长角闪岩部分熔融形成的过铝质花岗岩, 不是道伦达坝矿床的成矿岩体。
Abstract:
The Qianjinchang intrusion, located in the southern Great Xing’an Range and mainly composed of biotite monzogranite, is the main host rock of the Daolundaba Cu-W-Sn-Ag deposit. In this paper, we report the geochemistry, zircon U-Pb age, Lu-Hf isotopes, and mineral geochemistry of the Qianjinchang intrusion. U-Pb dating of zircon from the biotite monzogranite yielded crystallization ages of 278 Ma and 279 Ma. The geochemical characteristics of the biotite monzogranite show high contents of SiO2 (66.18% - 68.71%) and Na2O+K2O (7.14% - 8.05%), with high values of A/CNK (1.10 - 1.21). The biotite monzogranites show right-inclined chondrite-normalized REE patterns, rich in LREE and LILE (such as Ba, Rb, and K) and deplete in HREE and HFSE (Nb, Ta, Zr, Hf, P, and Ti), with medium negative Eu anomalies (0.4 - 0.56). The Qianjinchang intrusion has high εHf(t) values (2.5 - 9.7), young single-stage and two-stage model ages (552 - 747 Ma; 696 - 1023 Ma), suggesting that the Qianjinchang intrusion originated from partial melting of juvenile crust material that originally derived from depleted mantle. The mica and plagioclase in the Qianjinchang intrusion are haughtonite and andesine, respectively, implying a slight magma differentiation. Apatite from the Qianjinchang intrusion is enrich in F (2.73% - 5.09%, averaging 3.74%) and poor in Cl (0.02% - 0.09%, averaging 0.05%), with low REE contents, negative Eu anomalies, and positive Ce anomalies, implying a low fO2 for the magma of the Qianjinchang intrusion. The apatite has seagull forms rare earth element distribution patterns. Our results show that the Qianjinchang intrusion consisting of peraluminous granite that formed by partial melting of a source dominated by biotite-bearing plagioclase amphibolite, under a post-collisional environment after the closure of the Hegenshan Ocean, which is a branch ocean of the Paleo-Asian Ocean. The Qianjinchnag intrusion is not the ore-forming rock body of the Daolundaba deposit.

参考文献/References:

陈春良. 2015. 内蒙古赤峰市白音诺尔铅锌矿成矿规律及找矿方向研究. 北京: 中国地质大学(北京)硕士学位论文: 1-129.
陈公正, 武广, 李铁刚, 刘瑞麟, 武利文, 章培春, 张彤, 陈毓川. 2018a. 内蒙古道伦达坝铜钨锡矿床LA-ICP-MS锆石和锡石U-Pb年龄及其地质意义. 矿床地质, 37(2): 225-245.
陈公正, 武广, 武文恒, 张彤, 李铁刚, 刘瑞麟, 武利文, 章培春, 江彪, 王志利. 2018b. 大兴安岭南段道伦达坝铜多金属矿床流体包裹体研究和同位素特征. 地学前缘, 25(5): 202-221.
董金元. 2014. 内蒙古西乌旗达青牧场蛇绿混杂岩特征及地质意义. 北京: 中国地质大学(北京)硕士学位论文: 1-56.
核工业航遥测试中心. 2016. 内蒙古扎拉格阿木-道伦达坝一带航空瞬变电磁法测量成果报告: 1-172.
洪大卫, 黄怀曾, 肖宜君, 徐海明, 靳满元. 1994. 内蒙古中部二叠纪碱性花岗岩及其地球动力学意义. 地质学报, 68(3): 219-230.
侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492.
黄波, 付冬, 李树才, 葛梦春, 周文孝. 2016. 内蒙古贺根山蛇绿岩形成时代及构造启示. 岩石学报, 32(1): 158-176.
贾孝新, 童英, 游国庆, 郭磊. 2017. 内蒙古中部白音乌拉北A型花岗岩矿物学、年代学、地球化学及构造意义. 矿物岩石, 37(4): 14-26.
江思宏, 聂凤军, 白大明, 刘翼飞, 刘妍. 2011. 内蒙古白音诺尔铅锌矿床印支期成矿的年代学证据. 矿床地质, 30(5): 787-798.
李睿华. 2019. 大兴安岭南段锡林浩特地区锡铜多金属矿床的成矿作用. 北京: 北京大学博士学位论文: 1-238.
李岩, 许立权, 李廷栋, 肖庆辉, 郭灵俊, 程杨, 范玉须, 庞进力, 袁伟明, 罗鹏跃. 2020. 大兴安岭南段道伦达坝黑云母花岗岩成岩时代、锆石微量元素、Lu-Hf同位素特征及地质意义. 地球科学, 45(7): 2585-2597.
刘建峰, 迟效国, 张兴洲, 马志红, 赵芝, 王铁夫, 胡兆初, 赵秀羽. 2009. 内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义. 地质学报, 83(3): 365-376.
刘瑞麟, 武广, 李铁刚, 陈公正, 武利文, 章培春, 张彤, 江彪, 刘文元. 2018. 大兴安岭南段维拉斯托锡多金属矿床LA-ICP-MS锡石和锆石U-Pb年龄及其地质意义. 地学前缘, 25(5): 183-201.
刘翼飞. 2009. 内蒙古克什克腾旗拜仁达坝银多金属矿床成因研究. 北京: 中国地质科学院硕士学位论文: 1-98.
刘永江, 冯志强, 蒋立伟, 金巍, 李伟民, 关庆彬, 温泉波, 梁琛岳. 2019. 中国东北地区蛇绿岩. 岩石学报, 35(10): 3017-3047.
内蒙古自治区地质矿产局. 1991. 内蒙古自治区区域地质志. 北京: 地质出版社: 1-532.
欧阳荷根. 2013. 大兴安岭南段拜仁达坝-维拉斯托银多金属矿床成矿作用及动力学背景. 北京: 中国地质大学(北京)博士学位论文: 1-181.
邵济安, 田伟, 唐克东, 周新华. 2018. 初论微陆块在中亚造山带演化中的作用: 以锡林浩特微陆块为例. 地学前缘, 25(4): 1-10.
王春女, 王全明, 于晓飞, 韩振哲. 2016. 大兴安岭南段锡矿成矿特征及找矿前景. 地质与勘探, 52(2): 220- 227.
吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238.
吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的研究与识别. 中国科学: 地球科学, 47(7): 745-765.
徐备, 赵盼, 鲍庆中, 周永恒, 王炎阳, 罗志文. 2014. 兴蒙造山带前中生代构造单元划分初探. 岩石学报, 30(7): 1841-1857.
徐佳佳, 赖勇, 崔栋, 常勇, 蒋林, 舒启海, 李文博. 2009. 内蒙古道伦达坝铜多金属矿床成矿流体特征及其演化. 岩石学报, 25(11): 2957-2972.
徐佳佳, 赖勇, 崔栋, 鲁彬. 2012. 内蒙古前进场岩体岩石学与锆石U-Pb年代学研究. 北京大学学报(自然科学版), 48(4): 608-619.
徐志刚, 陈毓川, 王登红, 陈郑辉. 2008. 中国成矿区带划分方案. 北京: 地质出版社: 1-103.
翟德高, 刘家军, 李俊明, 张梅, 李泊洋, 付旭, 蒋胡灿, 马立军, 漆亮. 2016. 内蒙古维拉斯托斑岩型锡矿床成岩、成矿时代及其地质意义. 矿床地质, 35(5): 1011-1022.
张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么? 岩石矿物学杂志, 31(4): 621-626.
张旗, 王元龙, 金惟俊, 贾秀勤, 李承东. 2008. 造山前、造山和后造山花岗岩的识别. 地质通报, 27(1): 1-18.
张雪冰. 2017. 大兴安岭南段西坡铅锌多金属矿床成矿系列与找矿方向. 长春: 吉林大学博士学位论文: 1-169.
张玉清, 许立权, 康小龙, 宝音乌力吉. 2009. 内蒙古东乌珠穆沁旗京格斯台碱性花岗岩年龄及意义. 中国地质, 36(5): 988-995.
赵一鸣, 张德全. 1997. 大兴安岭及其邻区铜多金属矿床成矿规律与远景评价. 北京: 地震出版社: 1-318.
周振华, 吕林素, 杨永军, 李涛. 2010. 内蒙古黄岗锡铁矿区早白垩世A型花岗岩成因: 锆石U-Pb年代学和岩石地球化学制约. 岩石学报, 26(12): 3521-3537.
周振华, 欧阳荷根, 武新丽, 刘军, 车合伟. 2014. 内蒙古道伦达坝铜钨多金属矿黑云母花岗岩年代学、地球化学特征及其地质意义. 岩石学报, 30(1): 79-94.
周志广, 谷永昌, 柳长峰, 於炀森, 张冰, 田志君, 何付兵, 王必任. 2010. 内蒙古东乌珠穆沁旗满都胡宝拉格地区早-中二叠世华夏植物群的发现及地质意义. 地质通报, 29(1): 21-25.
朱笑青, 王中刚, 黄艳, 王甘露. 2004. 磷灰石的稀土组成及其示踪意义. 稀土, 25(5): 41-45.
Amelin Y, Lee D C, Halliday A N. 2000. Early-middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta, 64(24): 4205-4225.
Batchelor R A, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48(1-4): 43-55.
Belousova E A, Griffin W L, O’Reilly S Y, Fisher N I. 2002. Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type. Journal of Geochemical Exploration, 76(1): 45-69.
Boynton W V. 1984. Cosmochemistry of the rare earth elements: Meteorite studies // Henderson P. Rare Earth Element Geochemistry. Amsterdam: Elsevier: 63-114.
Breiter K. 2012. Nearly contemporaneous evolution of the A- and S-type fractionated granites in the Kru?néhory/ Erzgebirge Mts., Central Europe. Lithos, 151: 105-121.
Brown G C, Thorpe R S, Webb P C. 1984. The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources. Journal of the Geological Society, 141(3): 413-426.
Chappell B W, White A J R. 1974. Two contrasting granite types. Pacific Geology, 8: 173-174.
Chen B, Jahn B M, Tian W. 2009. Evolution of the Solonker suture zone: Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Sr-Nd isotope compositions of subduction- and collision-related magmas and forearc sediments. Journal of Asian Earth Sciences, 34: 245- 257.
Chen B, Ma X H, Wang Z Q. 2014. Origin of the fluorine- rich highly differentiated granites from the Qianlishan composite plutons (South China) and implications for polymetallic mineralization. Journal of Asian Earth Sciences, 93: 301-314.
Cheng Y B, Mao J W. 2010. Age and geochemistry of granites in Gejiu area, Yunnan Province, SW China: Constraints on their petrogenesis and tectonic setting. Lithos, 120(3-4): 258-276.
Cheng Y B, Mao J W, Chang Z S. 2013. The origin of the world-class tin-polymetallic deposits in the Gejiu district, SW China: Constraints from metal zoning characteristics and 40Ar-39Ar geochronology. Ore Geology Reviews, 53: 50-62.
Drake M J. 1975. The oxidation state of europium as an indicator of oxygen fugacity. Geochimica et Cosmochi?mica Acta, 39(1): 55-64.
Fogliata A S, Báez M A, Hagemann S G, Santos J O, Sardi F. 2012. Post-orogenic, Carboniferous granite-hosted Sn-W mineralization in the Sierras Pampeanas Orogen, northwestern Argentina. Ore Geology Reviews, 45(SI): 16-32.
Frost B R, Barnes C G, Collins W L, Arculus R J, Ellis D J, Frost C D. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11): 2033-2048.
Guo C L, Chen Y C, Zeng Z L, Lou F S. 2012. Petrogenesis of the Xihuashan granites in southeastern China: Constraints from geochemistry and in-situ analyses of zircon U-Pb-Hf-O isotopes. Lithos, 148(1): 209-227.
Huang L C, Jiang S Y. 2014. Highly fractionated S-type granites from the giant Dahutang tungsten deposit in Jiangnan Orogen, Southeast China: Geochronology, petrogenesis and their relationship with W-mineralization. Lithos, 202-203: 207-226.
Liao Y Z, Zhao B, Zhang D H, Zhang T, Liu X C. 2019. Metallogenic efficiencies of ore-forming elements in the Shizhuyuan ore-field, Hunan Province, SE China: Implications for ore-generating potential and mineral prospecting. Geochemistry Exploration Environment Analysis, 19(3): 216-231.
Liegeois J P, Navez J, Hertogen J, Black R. 1998. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos, 45(1-4): 1-28.
Liu Y F, Jiang S H, Bagas L. 2016. The genesis of metal zonation in the Weilasituo and Bairendaba Ag-Zn-Pb- Cu-(Sn-W) deposits in the shallow part of a porphyry Sn-W-Rb system, Inner Mongolia, China. Ore Geology Reviews, 75: 150-173.
Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q, Wang D B. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571.
Ludwig K R. 2003. User's Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel, vol. 4. Berkeley: Berkeley Geochronology Center Special Publication, 1-71.
Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101: 635-643.
Mao Z H, Liu J J, Mao J W, Deng J, Zhang F, Meng X Y, Xiong B K, Xiang X K, Luo X H. 2014. Geochronology and geochemistry of granitoids related to the giant Dahutang tungsten deposit, middle Yangtze River region, China: Implications for petrogenesis, geodynamic setting, and mineralization. Gondwana Research, 28(2): 816-836.
Mathez E A, Webster J D. 2005. Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid. Geochimica et Cosmochimica Acta, 69(5): 1275-1286.
Miles A J, Graham C M, Hawkesworth C J, Gillespie M R, Hinton R W, Bromiley G D. 2014. Apatite: A new redox proxy for silicic magmas? Geochimica et Cosmochimica Acta, 132: 101-119.
Miller C F. 1985. Are strongly peraluminous magmas derived from pelitic sedimentary sources? Journal of Geology, 93(6): 673-689.
Neiva A M R. 2002. Portuguese granites associated with Sn-W and Au mineralizations. Bulletin of the Geological Society of Finland, 74(1): 79-101.
Pan L C, Hu R Z, Wang X S, Bi X W, Zhu J J, Li C S. 2016. Apatite trace element and halogen compositions as petrogenetic metallogenic indicators: Examples from four granite plutons in the Sanjiang region, SW China. Lithos, 254-255: 118-130.
Pan Y M, Fleet M E. 2002. Compositions of the apatite- group minerals: Substitution mechanisms and controlling factors. Reviews in Mineralogy and Geochemistry, 48(1): 13-49.
Pati?o Douce A E. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geological Society, London, Special Publications, 168(1): 55-75.
Pearce J A, Wyman D A. 1996. A user’s guide to basalt discrimination diagrams // Wyman D A. Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration. Geological Association of Canada Short Course Notes, 12: 79-113.
Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81.
Piccoli P, Candela P. 1994. Apatite in felsic rocks: A model for the estimation of initial halogen concentrations in the Bishop Tuff (Long Valley) and Tuolumne intrusive suite (Sierra Nevada batholith) magmas. American Journal of Science, 294(1): 92-135.
Roegge J S, Logsdon M J, Young H S, Barr H B, Borcsik M, Holland H D. 1974. Halogens in apatites from the Providencia area, Mexico. Economic Geology, 69(2): 229-240.
Santosh K S, Satyendra S. 2001. Geochemistry and tungsten metallogeny of the Balda granite, Rajasthan, India. Gondwana Research, 4(3): 487-495.
Sha L K, Chappell B W. 1999. Apatite chemical composition, determined by electron microprobe and laser ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochimica et Cosmochimica Acta, 63(22): 3861-3881.
Shannon R D. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, 32(5): 751-767.
Song S G, Wang M J, Wang C, Niu Y L. 2015. Magmatism during continental collision, subduction, exhumation and mountain collapse in collisional orogenic belts and continental net growth: A perspective. Science China: Earth Sciences, 58(8): 1284-1304.
Streckeisen A L, Le Maitre R W. 1979. A Chemical approximation to the modal QAPF classification of the igneous rocks. Neues Jahrbuch fur Mineralogie, Abhandlungen, 136: 169-206.
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes // Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42: 313-345.
Sylvester P J. 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1): 29-44.
Tacker R C, Stormer J C. 1989. A thermodynamic model for apatite solid solutions, applicable to high-temperature geologic problems. American Mineralogist, 74(7): 877- 888.
Teixeira R J S, Neiva A M R, Gomes M E P, Corfu F, Cuesta A, Croudace I. 2012. The role of fractional crystallization in the genesis of early syn-D3, tin-mineralized Variscan two-mica granites from the Carrazeda de Ansi?es area, northern Portugal. Lithos, 153: 177-191.
Tischendorf G, Gottesmann B, F?rster H J, Trumbull R B. 1997. On Li-bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine, 61(408): 809-834.
Tsuboi M. 2005. The use of apatite as a record of initial 87Sr/86Sr ratios and indicator of magma processes in the Inagawa pluton, Ryoke belt, Japan. Chemical Geology, 221(3-4): 157-169.
Wang T Y, Li G J, Wang Q F, Santosh M, Zhang Q Z, Deng J. 2019. Petrogenesis and metallogenic implications of late Cretaceous I- and S-type granites in Dachang- Kunlunguan ore belt, southwestern South China Block. Ore Geology Reviews, 113: 1-15.
Watson E B. 1980. Apatite and phosphorus in mantle source regions: An experimental study of apatite/melt equilibria at pressures to 25 kbar. Earth and Planetary Science Letters, 51(2): 322-335.
Webster J D, Tappen C M, Mandeville C W. 2009. Partitioning behavior of chlorine and fluorine in the system apatite- melt-fluid.Ⅱ: Felsic silicate systems at 200 Mpa. Geochimica et Cosmochimica Acta, 73(3): 559-581.
Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95: 407-419.
Xiao W J, Windley B F, Hao J, Zhai M G. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics, 22(6): 1-20.
Xiao W J, Zhang L C, Qin K Z, Sun S, Li J L. 2004. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China): Implications for the continental growth of central Asia. American Journal of Science, 304(4): 370-395.
Yang J H, Peng J T, Hu R Z, Bi X W, Zhao J H, Fu Y Z, Shen N P. 2013. Garnet geochemistry of tungsten-mineralized Xihuashan granites in South China. Lithos, 177: 79-90.
Yang J H, Peng J T, Zhao J H, Fu Y Z, Yang C, Hong Y L. 2012. Petrogenesis of the Xihuashan granite in southern Jiangxi Province, South China: Constraints from zircon U-Pb geochronology, geochemistry and Nd isotopes. Acta Geologica Sinica (English Edition), 86(1): 131-152.
Yang J H, Wu F Y, Shao J A, Wilde S A, Xie L W, Liu X M. 2006. Constrains on the timing of uplift of the Yanshan fold and thrust belt, North China. Earth and Planetary Science Letters, 246(3-4): 336-352.
Yokart B, Barr S M, Williams J A E, Macdonald A S. 2003. Late-stage alteration and tin-tungsten mineralization in the Khuntan batholith, northern Thailand. Journal of Asian Earth Sciences, 21(9): 999-1018.
Zeng L P, Zhao X F, Li X C, Hu H, McFarlane C. 2016. In situ elemental and isotopic analysis of fluorapatite from the Taocun magnetite-apatite deposit, eastern China: Constraints on fluid metasomatism. American Mineralogist, 101(11): 2468-2483.
Zhai D G, Liu J J, Zhang A L, Sun Y Q. 2017. U-Pb, Re-Os and 40Ar/39Ar geochronology of porphyry Sn ± Cu ± Mo and polymetallic (Ag-Pb-Zn-Cu) vein mineralization at Bianjiadayuan, Inner Mongolia, NE China: Implications for discrete mineralization events. Economic Geology, 112(8): 2041-2059.
Zhang X H, Yuan L L, Xue F H, Yan X, Mao Q. 2015. Early Permian A-type granites from central Inner Mongolia, North China: Magmatic tracer of post-collisional tectonics and oceanic crustal recycling. Gondwana Research, 28(1): 311-327.
Zhao X F, Zhou M F, Gao J F, Li X C, Li J W. 2015. In situ Sr isotope analysis of apatite by LA-MC-ICP-MS: Constraints on the evolution of ore fluids of the Yinachang Fe-Cu-REE deposit, Southwest China. Mineralium Deposita, 50(7): 871-884.

相似文献/References:

[1]魏道芳,鲍征宇,付建明.湖南铜山岭花岗岩体的地球化学特征及锆石SHRIMP定年.大地构造与成矿学,2007.31(4):482.
 WEI Daofang,BAO Zhengyu and FU Jianming.GEOCHEMICAL CHARACTERISTICS AND ZIRCON SHRIMP UPB DATING OF THE TONGSHANLING GRANITE IN HUNAN PROVINCE,SOUTH CHINA.Geotectonica et Metallogenia,2007.46(2):482.
[2]焦建刚,汤中立,闫海卿.甘肃高台-临泽地区109-2隐伏岩体岩石地球化学特征.大地构造与成矿学,2007.31(2):218.
 JIAO Jiangang,TANG Zhongli,YAN Haiqing and LIU Ruiping.LITHOGEOCHEMICAL CHARACTERISTICS OF 109-2 HIDDEN ULTRAMAFIC INTRUSIONS AT GAOTAILINZE, GANSU PROVINCE.Geotectonica et Metallogenia,2007.46(2):218.
[3].外事简讯.大地构造与成矿学,1993.17(4):314.
[4]梁金城,邓继新,陈懋弘.桂西南早三叠世中酸性火山岩及其构造环境.大地构造与成矿学,2001.25(2):141.
 LIANG Jincheng,DENG Jixin,CHEN Maohong.THE EARLY TRIASSIC INTERMEDIATE-ACID VOLCANICS AND ITS TECTONIC ENVIRONMENT IN SOUTHWESTERN GUANGXI.Geotectonica et Metallogenia,2001.46(2):141.
[5]曾令君.河南卢氏八宝山花岗斑岩LA-ICP-MS锆石U-Pb年龄和Hf同位素组成特征.大地构造与成矿学,2013.37(1):065.
 ZENG Lingjun,XING Yucai.LA-ICP-MS Zircon U-Pb Age and Hf Isotope Composition of the Babaoshan Granite Porphyries in Lushi County, Henan Province.Geotectonica et Metallogenia,2013.46(2):065.
[6]杨宗永,何 斌.华南侏罗纪构造体制转换: 碎屑锆石 U-Pb年代学证据.大地构造与成矿学,2013.37(4):580.
 YANG Zongyong and HE Bin,Transform of Jurassic Tectonic Configuration of South China Block: Evidence from U-Pb Ages of Detrital Zircons.Geotectonica et Metallogenia,2013.46(2):580.
[7]王 冠,孙丰月,李碧乐.东昆仑夏日哈木矿区早泥盆世正长花岗岩锆石U-Pb年代学、地球化学及其动力学意义.大地构造与成矿学,2013.37(4):685.
 WANG Guan,SUN Fengyue,LI Bile.Zircon U-Pb Geochronology and Geochemistry of the Early Devonian Syenogranite in the Xiarihamu Ore District from East Kunlun, with Implications for the Geodynamic Setting.Geotectonica et Metallogenia,2013.46(2):685.
[8]吴云辉,熊小林,赵太平.新疆东戈壁斑岩型Mo矿辉钼矿Re-Os年龄和 成矿岩体锆石U-Pb年龄及其地质意义.大地构造与成矿学,2013.37(4):743.
 WU Yunhui,XIONG Xiaolin,ZHAO Taiping.Zircon U-Pb Age of the Ore-bearing Granite and Molybdenite Re-Os Isotopic Age of the Donggebi Mo Deposit, Xinjiang and their Geological Significance.Geotectonica et Metallogenia,2013.46(2):743.
[9]王崴平,陈毓川,王登红.赣南兴国县良村花岗岩锆石LA-ICP-MS U-Pb 年代学、岩石地球化学与成岩机制研究.大地构造与成矿学,2014.38(2):347.
 WANG Weiping,CHEN Yuchuan,WANG Denghong and CHEN Zhenyu.Zircon LA-ICP-MS U-Pb Dating and Petrogeochemistry of the Liangcun Granites and Their Petrogenesis, South Jiangxi.Geotectonica et Metallogenia,2014.46(2):347.
[10]刘 兵,温泉波,刘永江.大兴安岭中段上二叠统?下三叠统接触关系研究 ——来自碎屑锆石年代学的证据.大地构造与成矿学,2014.38(2):408.
 LIU Bing,WEN Quanbo,LIU Yongjiang.Contact Relationship Between the Upper Permian and Lower Triassic Strata in the Central Great Xing’an Ranges and its Tectonic Implication: Constraints from the Detrital Zircon U-Pb Ages.Geotectonica et Metallogenia,2014.46(2):408.

备注/Memo

备注/Memo:
收稿日期: 2020-12-04; 改回日期: 2021-01-25
项目资助: 国家重点研发计划项目(2017YFC0601303)、战略性矿产重点远景区矿产地质调查二级项目(DD20221684)、国家自然科学基金项目(41772086)和河北地质大学青年科技基金项目(QN202218)联合资助。
第一作者简介: 陈公正(1993-), 男, 博士研究生, 矿物学、岩石学、矿床学专业。E-mail: 86793604@qq.com
通信作者: 武广(1965-), 男, 研究员, 从事矿床学和地球化学研究。E-mail: wuguang65@163.com
更新日期/Last Update: 2022-04-10