[1]杨东光,聂逢君,夏 菲.2022.钱家店凹陷辉绿岩的时代、成因及对砂岩型铀成矿的制约.大地构造与成矿学,46(2):334-355.doi:10.16539/j.ddgzyckx.2022.02.010
 YANG Dongguang,NIE Fengjun,XIA Fei.2022.Age and Petrogenesis of Early Cenozoic Dolerites in the Qianjiadian Sag, Southwest Songliao Basin, NE China: Implications for the Genesis of Sandstone-hosted Uranium Deposits.Geotectonica et Metallogenia,46(2):334-355.doi:10.16539/j.ddgzyckx.2022.02.010
点击复制

钱家店凹陷辉绿岩的时代、成因及对砂岩型铀成矿的制约
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2022年46卷02期
页码:
334-355
栏目:
岩石大地构造与地球化学
出版日期:
2022-04-25

文章信息/Info

Title:
Age and Petrogenesis of Early Cenozoic Dolerites in the Qianjiadian Sag, Southwest Songliao Basin, NE China: Implications for the Genesis of Sandstone-hosted Uranium Deposits
文章编号:
1001-1552(2022)02-0334-022
作者:
杨东光1 聂逢君1、2* 夏 菲1、2 巫建华1、2 严兆彬1、2 陈梦雅2 刘晓博2 王海涛3 王常东3
1. 东华理工大学 核资源与环境国家重点实验室, 江西 南昌 330013; 2. 东华理工大学 地球科学学院, 江西 南昌 330013; 3. 核工业243地质大队, 内蒙古 赤峰 024006
Author(s):
YANG Dongguang1 NIE Fengjun1、2* XIA Fei1、2 WU Jianhua1、2 YAN Zhaobin1、2 CHEN Mengya2 LIU Xiaobo2 WANG Haitao3 WANG Changdong3
1. State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China; 2. College of Earth Science, East China University of Technology, Nanchang 330013, Jiangxi, China; 3. NO.243 Geological Party, CNNC, Chifeng 024006, Inner Mongolia, China
关键词:
钱家店铀矿床 松辽盆地 辉绿岩 年代学 构造反转 铀矿化
Keywords:
Qianjiadian uranium deposit Songliao Basin diabase geochronology tectonic inversion uranium mineralization
分类号:
P597; P595; P612
DOI:
10.16539/j.ddgzyckx.2022.02.010
文献标志码:
A
摘要:
松辽盆地西南缘近年来铀找矿获得重要突破, 预示着盆地蕴藏丰富的铀资源。而铀的成矿机理有待查明, 尤其是矿床中广泛发育的辉绿岩, 是否对成矿有改造作用, 辉绿岩、反转构造及铀元素聚集之间的关系目前尚不十分清楚, 制约了进一步找矿的思路。本文以钱家店凹陷钻孔辉绿岩为研究对象, 通过对斜锆石和锆石U-Pb年代学、全岩岩石地球化学的研究, 探讨辉绿岩对区域反转构造的制约, 并结合铀矿物EPMA定年研究, 探讨构造反转作用对U的聚集行为的影响。辉绿岩具有低SiO2(44.90%~51.20%), 高Fe2O3T(9.10%~15.50%)含量, MgO含量变化大(1.89%~12.58%), 可以分为碱性系列和拉斑系列两组。稀土元素和微量元素显示OIB特征, 结合岩石具有高Nb/U值(33.0~51.4), 表明它们均为软流圈成因。辉绿岩斜锆石、锆石U-Pb定年及前人Ar-Ar定年表明, 碱性系列岩石形成于51~47 Ma, 早于拉斑系列岩石(42~40 Ma)。碱性系列岩石具有较高的HREE含量和Ta/Yb、Sr/Yb值, 表明其与拉斑系列为不同深度部分熔融的结果, 暗示始新世期间岩石圈发生减薄。铀矿物EPMA化学定年结合前人矿石全岩U-Pb等时线年龄结果表明, 钱家店砂岩型铀矿成矿时代集中在67~53 Ma、43~37 Ma和17~0.7 Ma。结合前人低温热年代学研究, 表明盆地内铀成矿作用具有多期、多阶段特点。以往多强调正反转构造背景下的表生流体成矿作用, 如嫩江末期及中新世以来的构造抬升形成构造斜坡, 造成表生含铀含氧流体渗入氧化作用成矿。钱家店凹陷辉绿岩、断裂与铀矿床密切的空间关系, 以及热流体与目的层砂岩相互作用所形成的热液蚀变矿物与铀矿物共生的特点, 指示始新世存在负反转背景下热液改造型铀成矿作用。
Abstract:
The breakthrough of sandstone-type uranium deposit exploration in the last few years demonstrated that the southern Songliao basin may host abundant uranium resources. However, the genetic mechanism of ore deposit, especially (1) the possible impacts of the widely distributed dolerite on the orebodies, and (2) the relationship among the dolerite, tectonic inversion and accumulation of uranium remains poorly constrained, which influences the prospecting efficacy. In this study, baddeleyite and zircon U-Pb dating, geochronology of uranium minerals (the EMPA chemical dating method), whole-rock geochemistry, and mineral chemical compositions were conducted for the dolerites from the Qianjiadian area. The dolerites display low SiO2 of 44.90% to 51.20%, high Fe2O3T contents of 9.10% to 15.50%, and variable MgO contents (1.89% to 12.58%), and can be subdivided into alkali and tholeiitic dolerites. They are characterized by OIB type rare earth and trace element signatures with Nb/U ratios varying from 33.0 to 51.4, suggesting a common asthenospheric origin that underwent subduction-related enrichment prior to melting. Baddeleyite and zircon U-Pb and previous Ar-Ar dating results show that the alkali dolerites formed earlier (51 - 47 Ma) than the tholeiitic dolerites (42 - 40 Ma). Compared to the tholeiitic dolerites, the alkali dolerites have higher HREE contents and Ta/Yb and Sr/Yb ratios, which may reflect different depth of partial melting. Besides, EMPA chemical dating results and available U-Pb ages of the whole rocks suggest three stages of uranium mineralization, i.e., 67 - 53 Ma, 43 - 37 Ma, and 17 - 0.7 Ma, respectively. Combined with previous research, the uranium mineralization of the basin shows the characteristics of multi-period and multi-phase. Previously, more attention had been paid to the mineralization of supergene fluid under the positive reverse tectonics, such as the tectonic slope formed by tectonic uplift since the end of the Nenjiang period and Miocene, respectively, which resulted in the infiltration and oxidation of supergene uranium-bearing and oxygen-rich fluid. The intimate spatial relationship between the dolerites and uranium ore deposits, and the symbiotic relationship between minerals hydrothermal origin and uranium minerals, reveal the existence of hydrothermal modification type uranium mineralization under negative inversion structure system during Eocene.

参考文献/References:

蔡建芳, 严兆彬, 张亮亮, 封志兵, 黄笑, 聂逢君, 夏菲. 2018. 内蒙古通辽地区上白垩统姚家组灰色砂体成因及其与铀成矿关系. 东华理工大学学报(自然科学版), 41(4): 328-335.
陈晓林, 方锡珩, 郭庆银, 夏毓亮, 庞雅庆, 孙晔. 2008. 对松辽盆地钱家店凹陷铀成矿作用的重新认识. 地质学报, 82(4): 553-561.
池际尚. 1988. 中国东部新生代玄武岩及上地幔研究(附金伯利岩). 北京: 中国地质大学出版社: 1-277.
郭国林, 潘家永, 刘成东, 郭福生. 2005. 电子探针化学测年技术及其在地学中的应用. 东华理工学院学报, 28(1): 39-42.
焦养泉, 吴立群, 彭云彪, 荣辉, 季东民, 苗爱生, 里宏亮. 2015. 中国北方古亚洲构造域中沉积型铀矿形成发育的沉积-构造背景综合分析. 地学前缘, 22(1): 189-205.
焦养泉, 吴立群, 荣辉. 2018. 砂岩型铀矿的双重还原介质模型及其联合控矿机理: 兼论大营和钱家店铀矿床. 地球科学, 43(2): 459-474.
焦养泉, 吴立群, 杨生科. 2006. 铀储层沉积学: 砂岩型铀矿勘查与开发的基础.北京: 地质出版社.
李宏涛, 吴世祥, 蔡春芳, 罗晓容. 2008. 油气相关砂岩型铀矿的形成过程: 以钱家店铀矿床为例. 地球化学, 37(6): 523-532.
李建国, 金若时, 张博, 苗培森, 杨凯, 里宏亮, 魏佳林, 奥琮, 曹民强, 张红亮, 朱强. 2018. 松辽盆地西南部上白垩统姚家组原生黏土矿物组合特征及其找铀意义. 地球学报, 39(3): 295-305.
刘武生, 赵兴齐, 康世虎, 史清平, 张梓楠. 2018. 二连盆地反转构造与砂岩型铀矿成矿作用. 铀矿地质, 34(2): 81-89.
罗毅, 何中波, 马汉峰, 孙祥. 2012. 松辽盆地钱家店砂岩型铀矿成矿地质特征. 矿床地质, 31(2): 391-400.
罗毅, 马汉峰, 夏毓亮, 张泽贵. 2007. 松辽盆地钱家店铀矿床成矿作用特征及成矿模式. 铀矿地质, 23(4): 193-200.
聂逢君, 严兆彬, 夏菲, 李满根, 卢亚运, 蔡建芳, 郭福能, 宁君. 2017. 内蒙古开鲁盆地砂岩型铀矿热流体作用. 地质通报, 36(10): 1850-1866.
荣辉, 焦养泉, 吴立群, 季东民, 里宏亮, 朱强, 曹民强, 汪小妹, 李青春, 谢惠丽. 2016. 松辽盆地南部钱家店铀矿床后生蚀变作用及其对铀成矿的约束. 地球科学, 41(1): 153-166.
王飞飞, 刘池洋, 邱欣卫, 郭佩, 张少华, 程相虎. 2017. 世界砂岩型铀矿探明资源的分布及特征. 地质学报, 91(9): 2021-2046.
夏毓亮, 林锦荣, 李子颖, 李胜祥, 刘汉彬, 王志明, 范光, 郑纪伟, 李真济, 张明瑜. 2003. 松辽盆地钱家店凹陷砂岩型铀矿预测评价和铀成矿规律研究. 中国核科技报告, (3): 105-117.
夏毓亮, 郑纪伟, 李子颖, 李林强, 田时丰. 2010. 松辽盆地钱家店铀矿床成矿特征和成矿模式. 矿床地质, 29(S1): 154-155.
颜新林. 2018. 松辽盆地钱家店地区上白垩统辉绿岩特征及铀成矿作用. 东北石油大学学报, 42(1): 40-49.
张成勇, 聂逢君, 侯树仁, 王俊林, 邓薇, 张良. 2015. 巴音戈壁盆地构造演化及其对砂岩型铀矿成矿的控制作用. 铀矿地质, 31(3): 384-388, 412.
张明瑜, 郑纪伟, 田时丰, 夏毓亮, 刘汉彬. 2005. 开鲁坳陷钱家店铀矿床铀的赋存状态及铀矿形成时代研究. 铀矿地质, 21(4): 213-218.
张万亮, 苏学斌, 张渤. 2017. 可地浸砂岩型铀资源开采利用系数的探讨——以钱家店铀矿床为例. 铀矿冶, 36(1): 19-22.
张文兰, 王汝成, 华仁民, 陈小明. 2003. 副矿物的电子探针化学定年方法原理及应用. 地质论评, 49(3): 253-260.
张振强, 桑吉盛, 金成洙. 2006. 松辽盆地东南隆起区反转构造对砂岩型铀矿成矿的作用. 铀矿地质, 22(3): 151-156.
赵忠华, 白景萍, 赖天功. 2018. 松辽盆地北部反转构造与砂岩型铀矿成矿作用. 铀矿地质, 34(5): 274-279.
Bonnetti C, Liu X D, Yan Z B, Cuney M, Michels R, Malartre F, Mercadier J, Cai J F. 2017. Coupled uranium mineralisation and bacterial sulphate reduction for the genesis of the Baxingtu sandstone-hosted U deposit, SW Songliao Basin, NE China. Ore Geology Reviews, 82: 108-129.
Boynton W V. 1984. Geochemistry of the rare earth elements: Meteorite studies, in rare earth element geochemistry. Developments in Geochemistry, 2: 63-114.
Chen H, Xia Q K, Deloule E, Ingrin J. 2017. Typical oxygen isotope profile of altered oceanic crust recorded in continental intraplate basalts. Journal of Earth Science, 28(4): 578-587.
Cheng Y H, Li Y, Wang S Y, Li Y F, Ao C, Li J G, Sun L X, Li H L, Zhang T F. 2018a. Late Cretaceous tectono- magmatic event in Songliao Basin, NE China: New insights from mafic dyke geochronology and geochemistry analysis. Geological Journal, 53: 2991-3008.
Cheng Y H, Wang S Y, Jin R S, Li J G, Ao C, Teng X M. 2019. Global Miocene tectonics and regional sandstone- style uranium mineralization. Ore Geology Review, 106: 238-250.
Cheng Y H, Wang S Y, Li Y, Ao C, Li Y F, Li J G, Li H L, Zhang T F. 2018b. Late Cretaceous-Cenozoic thermo?chro-nology in the southern Songliao Basin, NE China: New insights from apatite and zircon fission track analysis. Journal of Asian Earth Sciences, 160: 95-106.
Cheng Y H, Wang S Y, Zhang T F, Teng X M, Ao C, Jin R S, Li H L. 2020. Regional sandstone-type uranium mineralization rooted in Oligo-Miocene tectonic inversion in the Songliao Basin, NE China. Gondwana Research, 88: 88-105.
DePaolo D J, Daley E E. 2000. Neodymium isotopes in basalts of the southwest basin and range and lithosp?heric thinning during continental extension. Chemical Geology, 169: 157-185.
Feng Z Q, Jia C Z, Xie X N, Zhang S, Feng Z H, Timothy A C. 2010. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao basin, Northeast China. Basin Research, 22: 79-95.
Finch W I, Davis J F. 1985. Sandstone-type uranium deposits: An introduction, in geological environments of sandstone-type uranium deposits. Vienna, IAEA TECDOC-38: 11-20.
Herzberg C. 2011. Identification of source lithology in the Hawaiian and Canary islands: Implications for origins. Journal of Petrology, 52: 113-146.
Hofmann A W, Jochum K P, Seufert M, White W M. 1986. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth and Planetary Science Letters, 79: 33-45.
Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62.
Huang J L, Zhao D P. 2006. High-resolution mantle tomography of China and surrounding regions. Journal of Geophysical Research, 111, B09305.
Huston D L, Mernagh T P, Hagemann S G, Doublier M P, Fiorentini M, Champion D C, Jaques A L, Czarnota K, Cayley R, Skirrow R, Bastrakov E, Champion D C. 2016. Tectono-metallogenic systems — The place of mineral systems within tectonic evolution, with an emphasis on Australian examples. Ore Geology Reviews, 76: 168- 210.
Irvine T H, Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8: 523-548.
Jin R S, Miao P S, Sima X Z, Li J G, Zhao H L, Zhao F Q, Feng X X, Chen Y, Chen L L, Zhao L J, Zhu Q. 2016. Structure styles of Mesozoic-Cenozoic U-bearing rock series in Northern China. Acta Geologica Sinica (English Edition), 90: 2104-2116.
Jin R S, Teng X M, Li X G, Si Q H, Wang W. 2020. Genesis of sandstone-type uranium deposits along the northern margin of the Ordos Basin, China. Geoscience Frontiers, 11: 215-227.
Johnson K T M, Dick H J B, Shimizu N. 1990. Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites. Journal of Geophy?sical Research, 95: 2661- 2678.
Kushiro I. 2001. Partial melting experiments on peridotite and origin of mid-ocean ridge basalt. Annual Review of Earth & Planetary Sciences, 29: 71-107.
Langmuir C H, Klein E M, Plank T. 1992. Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges // Morgan J P, Blackman D K, Sinton J M. Mantle Flow and Melt Generation at Mid-Ocean Ridges. Geophysical Monograph Series, American Geophysical Union, Washington D C, 71: 81-180.
Langmuir D. 1978. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochimica et Cosmochimica Acta, 42: 547- 569.
Le Roux V, Lee C T, Turner S. 2010. Zn/Fe systematics inmafic and ultramafic systems: Implications for detecting major element heterogeneities in the Earth’s mantle. Geochimica et Cosmochimica Acta, 74: 2779-2796.
Li S G, Yang W, Ke S, Meng X N, Tian H C, Xu L J. 2017. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. National Science Review, 4: 111-120.
Maruyama S, Seno T. 1986. Orogeny and relative plate motions: Example of the Japanese Islands. Tectonophysics, 127: 305-29.
Pearce J A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1-4): 14-48.
Rallakis D, Michels R, Brouand M, Parize O, Catheli?neau M. 2019. The role of organic matter on uranium precipitation in Zoovch Ovoo, Mongolia. Minerals, 9: 310.
Rong H, Jiao Y Q, Wu L Q, Wan D, Cui Z J, Guo X J, Jia J M. 2019. Origin of the carbonaceous debris and its implication for mineralization within the Qianjiadian uranium deposit, southern Songliao Basin. Ore Geology Reviews, 107: 336-352.
Rudnick R L, Gao S. 2003. Composition of the conti?nental crust // Holland H D, Turekian K K. Treatise on Geochemistry, 3: 1-64.
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42: 313-345.
Takahashi E, Kushiro I. 1983. Melting of a dry peridotite at high pressures and basalt magma genesis. American Mineralogist, 68: 859-879.
Thompson R N, Riches A J V, Antoshechkina P M, Pearson D G, Nowell G M, Ottley C J, Dickin A P, Hards V L, Nguno A K, Paavola V N. 2007. Origin of CFB magmatism: Multi-tiered intracrustal picrite-rhyolite magmatic plumbing at Spitzkoppe, western Namibia, during Early Cretaceous Etendeka magmatism. Journal of Petrology, 48: 1119-1154.
Wang P J, Mattern F, Didenko A, Zhu D F, Singer B, Sun X M. 2016. Tectonics and cycle system of the Cretaceous Songliao Basin: An inverted active continental margin basin. Earth-Science Reviews, 159: 82-102.
Wang P J, Xie X A, Mattern F, Ren Y G, Zhu D F, Sun X M. 2007. The Cretaceous Songliao Basin: volcanogenic succession, sedimentary sequence and tectonic evolution, NE China. Acta Petroleum Sinica (English Edition), 81(6): 1002-1011.
Wei W, Zhao D P, Xu J D, Wei F X, Liu G M. 2015. P and S wave tomography and anisotropy in Northwest Pacific and East Asia: Constraints on stagnant slab and intraplate volcanism. Journal of Geophysical Research: Solid Earth, 120: 1642-1666.
Wilde A, Otto A, Jory J, MacRae C, Pownceby M, Wilson N, Torpy A. 2013. Geology and mineralogy of Uranium deposits from Mount Isa, Australia: Implications for Albitite uranium deposit models. Minerals, 3: 258-283.
Wu F Y, Sun D Y, Ge W C, Zhang Y B, Grant M L, Wilde S A, Jahn B M. 2011. Geochronology of the Phanero?zoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41: 1-30.
Xu Y G, Li H Y, Hong L B, Ma L, Ma Q, Sun M D. 2018. Generation of Cenozoic intraplate basalts in the big mantle wedge under eastern Asia. Science China: Earth Sciences, 61: 869-886.
Xu Y G, Ma J L, Frey F A, Feigenson M D, Liu J F. 2005. Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chemical Geology, 224: 247-271.
Xu Y G, Zhang H H, Qiu H N, Ge W C, Wu F Y. 2012. Oceanic crust components in continental basalts from Shuangliao, Northeast China: Derived from the mantle transition zone. Chemical Geology, 328: 168-184.
Yang D G, Wu J H, Nie F J, Bonnetti C, Xia F, Yan Z B, Cai J F, Wang C D, Wang H T. 2020. Petrogenetic constraints of Early Cenozoic mafic rocks in southwest Songliao Basin, NE China: Implications for the genesis of sandstone- hosted Qianjiadian uranium deposits. Minerals, 10(11), 1014.
Yoder H S, Tilley C E. 1962. Origin of basalt magmas: An experimental study of natural and synthetic rock system. Journal of Petrology, 3: 346-532.
Zhang Z C, Mahoney J J, Mao J W, Wang F S. 2006. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China. Journal of Petrology, 47: 1997-2019.
Zhao J H, Zhou M F. 2006. Neoproterozoic mafic intrusions in the Panzhihua district, SW China: Impli?ca?tions for interaction between subducted slab and mantle wedge. Geochimica et Cosmochimica Acta, 70, A740.
Zhao L, Cai C F, Jin R S, Li J G, Li H L, Wei J L, Guo F, Zhang B. 2018. Mineralogical and geochemical evidence for biogenic and petroleum-related uranium mineralization in the Qianjiadian deposit, NE China. Ore Geology Reviews, 101: 273-292.

相似文献/References:

[1]汤 超,魏佳林,陈路路.松辽盆地长垣南端四方台组碎屑岩地球化学特征及其对物源与构造背景的制约.大地构造与成矿学,2021.45(5):892.doi:10.16539/j.ddgzyckx.2021.05.005
 TANG Chao,WEI Jialin,CHEN Lulu.Geochemical Characteristics of Clastic Rocks and Their Constrains on Source and Tectonic Background of the Sifangtai Formation at the Southern End of the Changyuan, Songliao Basin.Geotectonica et Metallogenia,2021.46(2):892.doi:10.16539/j.ddgzyckx.2021.05.005

备注/Memo

备注/Memo:
收稿日期: 2020-11-04; 改回日期: 2021-05-08
项目资助: 国家自然科学基金项目(U2067202、41772068、41562006、41862010)和国家重点基础研究发展规划项目(2015CB453002)联合资助。
第一作者简介: 杨东光(1988-), 男, 讲师, 从事岩石地球化学方向研究。E-mail: yangdg@ecit.edu.cn
通信作者: 聂逢君(1962-), 男, 教授, 从事铀矿地质与沉积地质学方向研究。E-mail: niefj@ecit.edu.cn
更新日期/Last Update: 2022-04-10