[1]王大钊,冷成彪,秦朝建.2022.铀的地球化学性质与成矿作用.大地构造与成矿学,46(2):282-302.doi:10.16539/j.ddgzyckx.2022.02.007
 WANG Dazhao,LENG Chengbiao,QIN Chaojian.2022.Geochemical Characteristics and Mineralization of Uranium.Geotectonica et Metallogenia,46(2):282-302.doi:10.16539/j.ddgzyckx.2022.02.007
点击复制

铀的地球化学性质与成矿作用
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2022年46卷02期
页码:
282-302
栏目:
构造地质与成矿学
出版日期:
2022-04-25

文章信息/Info

Title:
Geochemical Characteristics and Mineralization of Uranium
文章编号:
1001-1552(2022)02-0282-021
作者:
王大钊1 冷成彪1、2* 秦朝建2 段丰浩1 周万蓬3 许德如4
1. 东华理工大学, 核资源与环境国家重点实验室, 江西 南昌 330013; 2. 中国科学院 地球化学研究所, 矿床地球化学国家重点实验室, 贵州 贵阳 550081; 3. 东华理工大学 江西省数字国土重点实验室, 江西 南昌 330013; 4. 东华理工大学 地球科学学院, 江西 南昌 330013
Author(s):
WANG Dazhao1 LENG Chengbiao1、2* QIN Chaojian2 DUAN Fenghao1 ZHOU Wanpeng3 XU Deru4
1. State Key Laboratory of Nuclear Resource and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China; 2. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China; 3. Key Laboratory of Digital Land and Resources of Jiangxi Province, East China University of Technology, Nanchang 330013, Jiangxi, China; 4. School of Earth Sciences, East China University of Technology, Nanchang 330013, Jiangxi, China
关键词:
铀成矿 地球化学性质 存在形式 迁移过程 沉淀机制
Keywords:
uranium mineralization geochemical characteristics existing forms migration processes deposition mechanisms
分类号:
P611
DOI:
10.16539/j.ddgzyckx.2022.02.007
文献标志码:
A
摘要:
铀成矿主要受控于物质来源、迁移过程和沉淀机制。本文系统总结了铀的地球化学性质、迁移形式和沉淀机制等方面的研究进展, 以期提高对铀成矿机理的认识, 促进找矿勘查与污染治理等领域的发展。铀的电子层结构决定了其具有亲氧性、变价性及类质同象等地球化学行为。不同地质体中铀含量差异大, 酸性岩、碱性岩及富有机质、磷酸盐的沉积岩中铀含量高。铀在岩浆体系中主要以U(Ⅳ)和U(Ⅴ)价出现, 其在熔体与热液间的分配系数低, 难以大量进入岩浆热液。铀在流体体系中以U(Ⅳ)和U(Ⅵ)的形式存在, 其中U(Ⅳ)常以UCl40的形式在高温还原性富Cl酸性卤水中进行迁移; U(Ⅵ)则与羟基、碳酸根、硫酸根、磷酸根、氯离子、氟离子等形成铀酰络合物, 增强了其在流体中的迁移能力, 但碳酸铀酰是否存在于还原性深源流体以及氟化铀酰是否能在流体中大量存在尚存争议。铀在表生环境以U(Ⅵ)存在, 可与有机酸形成络合物进行迁移。微生物的酸解、表面络合及分泌的铁载体等可将岩石中的铀活化分离。氧化还原反应是导致铀沉淀的最重要机制之一, H2、CH4、CO、H2S、石墨、Fe(Ⅱ)和油气等都是有效的还原剂; 温度和pH值的变化对不同热液流体中铀沉淀的影响不同; 铁氧化物、黏土矿物和黑色岩的吸附作用是表生环境中铀富集成矿的关键, 其强弱受pH值影响。铀成矿是各种机制相互关联、相互作用的结果, 研究具体成矿实例或成矿过程时需要全面分析才能得出较为准确的结论。
Abstract:
Uranium mineralization is controlled by material sources, migration and deposition mechanisms. In this paper, we summarized the research of geochemical characteristics, migrating forms and deposition mechanisms of uranium, which may shed lights on ore-forming mechanisms, mineral exploration, and pollution control. The electronic configuation of uranium determines its oxytropism, multivalent state, and ability of isomorphic replacement. The uranium contents in different geological bodies are different, and among them, acidic rocks, alkaline rocks and organic rich sedimentary rocks and phosphate contain higher uranium. Uranium mainly appears as U(Ⅳ) and U(Ⅴ) in magmatic systems, and its partition coefficient between melt and hydrothermal fluid is very low, so it cannot enter the magmatic hydrothermal fluid in large quantities, and consequently, U is difficult to accumulate and mineralize. Uranium exists as U(Ⅳ) and U(Ⅵ) in hydrothermal fluids. U(Ⅳ) can migrate in reducing brine in the form of UCl40, while U(Ⅵ) can form uranyl complexes with hydroxyl, carbonate, sulfate, phosphate, chloridion and fluorinion. Formation of uranyl complexes enhances the ability of uranium migration in the fluids. However, whether uranyl carbonate exists in the reducing deep-source fluid and whether uranyl fluoride can exist in a large amount in the fluid is still controversial. Uranium exists in the surface environment as U(Ⅵ), which can combine with organic acids to form complexes and can migrate as such. Acidolysis, surface complexation and siderophore secreta of microorganisms can reactivate and migrate uranium in rocks. Redox reaction is one of the most important mechanisms leading to uranium precipitation. H2, CH4, CO, H2S, graphite, Fe(Ⅱ) and oil and gas are all effective reducing agents for uranium. The influences of temperature and pH changes on uranium precipitation vary in different hydrothermal fluids. Adsorption by ferric oxides, clay minerals and black shales is of great significance in the process of surface mineralization, and its strength is affected by the pH of the environment. Uranium mineralization is the result of multi-factor coupling, and a comprehensive analysis is required in discussion of ore-forming processes.

参考文献/References:

蔡春芳, 李宏涛, 李开开, 姜磊. 2008. 油气厌氧氧化与铀还原的耦合关系: 以东胜和钱家店铀矿床为例. 石油实验地质, 30(5): 518-521.
胡瑞忠, 金景福. 1990. 上升热液浸取成矿过程中铀的迁移沉淀机制探讨: 以希望铀矿床为例. 地质论评, 36(4): 317-325.
胡瑞忠, 骆金诚, 陈佑纬, 潘力川. 2019. 华南铀矿床研究若干进展. 岩石学报, 35(9): 2625-2636.
胡志戍, 李晔, 蔡明海, 邵主助, 张含, 刘嘉兴, 韦绍成. 2019. 相山铀矿田围岩蚀变及成矿流体特征. 矿产勘查, (8): 1852-1862.
华仁民. 2005. 南岭中生代陆壳重熔型花岗岩类成岩——成矿的时间差及其地质意义. 地质论评, 51(6): 633- 639.
金宝, 蔡军, 陈义学. 2013. 放射性核素铀在针铁矿中的占位研究. 物理学报, 62(8), 087101.
李延河, 段超, 赵悦, 裴浩翔, 任顺利. 2016. 氧化还原障在热液铀矿成矿中的作用. 地质学报, 90(2): 201-218.
李子颖. 2010. 南岭贵东岩浆岩与铀成矿作用. 北京: 地质出版社: 1-293.
李子颖, 黄志章, 李秀珍, 张金带, 林子瑜, 张玉燕. 2014. 相山火成岩与铀成矿作用. 北京: 地质出版社: 1-324.
凌洪飞. 2011. 论花岗岩型铀矿床热液来源: 来自氧逸度条件的制约. 地质论评, 57(2): 193-206.
戚华文, 胡瑞忠. 2000. 华南花岗岩岩浆期后热液与铀成矿热液的初步对比. 矿物学报, 20(4): 401-405.
邵飞, 陈晓明, 徐恒力, 黄辉明, 唐相生, 邹茂卿, 何晓梅, 李梅. 2008. 江西省相山铀矿田成矿模式探讨. 地质力学学报, 14(1): 65-73.
石少华, 胡瑞忠, 温汉捷, 孙如良, 王加昇, 陈恒. 2010. 桂北沙子江铀矿床成矿年代学研究: 沥青铀矿U-Pb同位素年龄及其地质意义. 地质学报, 84(8): 1175- 1182.
宋昊, 施泽明, 倪师军, 张成江, 黄小东, 徐进勇. 2014. 铀在地表水中的主要迁移形式及其沉淀条件的模拟计算: 以四川沱江流域绵远河为例. 环境化学, 33(1): 100-107.
苏守田, 蒋桂玉, 肖葳. 1982. 一二二〇铀矿田成矿温度及沥青铀矿的沉淀环境与机理. 放射性地质, (4): 300-307.
孙庆津, 张维海, 张维萍, 赵建社, 苗建宇, 孙卫, 刘池洋. 2007. 有机质在铀成矿过程中作用的实验模拟研究. 中国地质, 34(3): 463-469.
田建吉, 胡瑞忠, 苏文超, 张国全, 商朋强, 齐有强. 2010. 661铀矿床流体包裹体特征及成矿流体来源探讨. 矿物岩石地球化学通报, 29(1): 17-23.
王鲲, 邓江洪, 郝锡荦. 2020. 铀的地球化学性质与成矿: 以华南铀成矿省为例. 岩石学报, 36(1): 35-43.
邬斌, 王汝成, 刘晓东, 郭国林, 宋振涛. 2018. 辽宁赛马碱性岩体异性石化学成分特征及其蚀变组合对碱性岩浆-热液演化的指示意义. 岩石学报, 34(6): 1741- 1757.
吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47(7): 745-765.
伍皓, 夏彧, 周恳恳, 张建军. 2020. 高分异花岗岩浆可能是华南花岗岩型铀矿床主要铀源——来自诸广山南体花岗岩锆石铀含量的证据. 岩石学报, 36(2): 589-600.
向伟东, 陈肇博, 陈祖伊, 尹金双. 2000. 试论有机质与后生砂岩型铀矿成矿作用: 以吐哈盆地十红滩地区为例. 铀矿地质, 16(2): 65-73.
徐春霞, 钟开龙. 2010. 无机及分析化学. 北京: 科学出版社: 1-449.
严冰, 严寒, 魏文风, 曹阳, 李健. 2014. 江西相山沙洲铀矿床He、Ar同位素特征及其地质意义. 地质论评, 60(3): 624-634.
杨水源, 蒋少涌, 赵葵东, 姜耀辉, 凌洪飞, 陈培荣. 2013. 江西相山铀矿田如意亭剖面火山岩的年代学格架及其地质意义. 岩石学报, 29(12): 4362-4372.
姚莲英, 仉宝聚. 2014. 相山热液铀矿床实验地球化学. 北京: 中国原子能出版社: 1-109.
余达淦, 吴仁贵, 陈培荣. 2005. 铀资源地质学. 哈尔滨: 哈尔滨工业大学出版社: 1-450.
张万良, 余西垂. 2011. 相山铀矿田成矿综合模式研究. 大地构造与成矿学, 35(2): 249-258.
张展适. 2011. 下庄矿田岩浆作用及其与铀成矿的关系. 北京: 中国原子能出版社: 1-144.
赵凤民. 2017. 重新认识还原作用在铀成矿中的贡献. 铀矿地质, 33(4): 193-214.
朱金初, 饶冰, 熊小林, 李福春, 张佩华. 2002. 富锂氟含稀有矿化花岗质岩石的对比和成因思考. 地球化学, 31(2): 141-152.
Abhilash M K D, Kumar V, Pandey B D, Tamrakar P K. 2010. Column bioleaching of a low-grade silicate ore of uranium. Mineral Processing and Extractive Metallurgy Review, 31(4): 224-235.
Abhilash S S, Mehta K D, Kumar V, Pandey B D, Pandey V M. 2009. Dissolution of uranium from silicate-apatite ore by Acidithiobacillus ferrooxidans. Hydrometallurgy, 95(1-2): 70-75.
Arnold T, Zorn T, Bernhard G, Nitsche H. 1998. Sorption of uranium (Ⅵ) onto phyllite. Chemical Geology, 151(1-4): 129-141.
Avasarala S, Torres C, Ali A S, Thomson B M, Spilde M N, Peterson E J, Artyushkova K, Dobrica E, Lezama- Pacheco J S, Cerrato J M. 2019. Effect of bicarbonate and oxidizing conditions on U(Ⅳ) and U(Ⅵ) reactivity in mineralized deposits of New Mexico. Chemical Geology, 524: 345-355.
Bargar J R, Reitmeyer R, Davis J A. 1999. Spectroscopic confirmation of uranium (Ⅵ) — Carbonato adsorption complexes on hematite. Environmental Science and Technology, 33(14): 2481-2484.
Bastrakov E N, Jaireth S, Mernagh T P. 2010. Solubility of uranium in hydrothermal fluids at 25-300 ℃: Implications for the formation of uranium deposits. Canberra: Geoscience Australia Record: 1-91.
Beazley M J, Martinez R J, Webb S M, Sobecky P A, Taillefert M. 2011. The effect of pH and natural microbial phosphatase activity on the speciation of uranium in subsurface soils. Geochimica et Cosmochimica Acta, 75(19): 5648-5663.
Bernier-Latmani R, Veeramani H, Vecchia E D, Junier P, Lezama-Pacheco J S, Suvorova E I, Sharp G O, Wigginton N S, Bargar J R. 2010. Non-uraninite products of microbial U (Ⅵ) reduction. Environmental Science and Technology, 44(24): 9456-9462.
Brantley S L. 2003. Reaction kinetics of primary rock- forming minerals under ambient conditions // Holland H D and Turekian K K. Treatise on Geochemistry, 5-9: 73-117.
Bureau of Meteorology. 2010. Climate data from regional (Leinster Aero) weather stations and Australian rainfall map. Bureau of Meteorology, Canberra, ACT.
Burns P C, Finch R J. 1999. Wyartite: Crystallographic evidence for the first pentavalent-uranium mineral. American Mineralogist, 84(9): 1456-1460.
Camisani-Calzolari F A G M, de Klerk W J, van der Merwe P J. 1985. Assessment of South African uranium resources. Methods and results: Pretoria. Transactions of the Geological Society of South Africa, 88(1): 83-97.
Catalano J G, Brown J R G E. 2005. Uranyl adsorption onto montmorillonite: Evaluation of binding sites and carbonate complexation. Geochimica et Cosmochimica Acta, 69(12): 2995-3005.
Cheng T, Barnett M O, Roden E E, Zhuang J L. 2007. Reactive transport of uranium(Ⅵ) and phosphate in a goethite-coated sand column: An experimental study. Chemosphere, 68: 1218-1223.
Chudasama B, Porwal A, González-?lvarez I, Thakur S, Wilde A, Kreuzer O P. 2018. Calcrete-hosted surficial uranium systems in Western Australia: Prospectivity modeling and quantitative estimates of resources. Part 1 — Origin of calcrete uranium deposits in surficial environments: A review. Ore Geology Reviews, 102: 906-936.
Comarmond M J, Payne T E, Harrison J J, Thiruvoth S, Wong H K, Aughterson R D, Lumpkin G R, Muller K, Foerstendorf H. 2011. Uranium sorption on various forms of titanium dioxide — influence of surface area, surface charge, and impurities. Environmental Science and Technology, 45(13): 5536-5542.
Dahlkamp F J. 1991. Uranium ore deposits. Berlin: Springer- Verlag: 1-460.
Dargent M, Truche L, Dubessy J, Bessaque G, Marmier H. 2015. Reduction kinetics of aqueous U(Ⅵ) in acidic chloride brines to uraninite by methane, hydrogen or C-graphite under hydrothermal conditions: Implications for the genesis of unconformity-related uranium ore deposits. Geochimica et Cosmochimica Acta, 167: 11-26.
Derome D, Cathelineau M, Cuney M, Fabre C, Lhomme T, Banks D A. 2005. Mixing of sodic and calcic brines and uranium deposition at McArthur River, Saskatchewan, Canada: A Raman and laser-induced breakdown spectro-scopic study of fluid inclusions. Economic Geology, 100(8): 1529-1545.
Descostes M, Schlegel M L, Eglizaud N, Descamps F, Miserque F, Simoni E. 2010. Uptake of uranium and trace elements in pyrite (FeS2) suspensions. Geochimica et Cosmochimica Acta, 74(5): 1551-1562.
England G L, Rasmussen B, Krapez? B, Groves D I. 2001. The origin of uraninite, bitumen nodules, and carbon seams in Witwatersrand gold-uranium-pyrite ore deposits, based on a Permo-Triassic analogue. Economic Geology, 96(8): 1907-1920.
Feldman I, Havill J R, Neuman W F. 1954. Polymerization of uranyl-citrate, -malate, -tartrate and -lactate complexes. Journal of the American Chemical Society, 76(18): 4726-4732.
Finch R J, Ewing R C. 1992. The corrosion of uraninite under oxidizing conditions. Journal of Nuclear Materials, 190: 133-156.
Frimmel H E, Groves D I, Kirk J, Ruiz J, Chesley J, Minter W E L. 2005. The formation and preservation of the Witwatersrand goldfields, the world’s largest gold province. Economic Geology, 100: 769-797.
Frimmel H E, Minter W E L. 2002. Recent developments concerning the geological history and genesis of the Witwatersrand gold deposits, South Africa. Society of Economic Geologists Special Publication, 9: 17-45.
Fuchs S H, Schumann D, Williams-Jones A E, Murray A J, Couillard M, Lagarec K, Phaneuf M W, Vali H. 2017. Gold and uranium concentration by interaction of immiscible fluids (hydrothermal and hydrocarbon) in the Carbon Leader Reef, Witwatersrand Supergroup, South Africa. Precambrian Research, 293: 39-55.
Fuchs S H, Schumann D, Williams-Jones A E, Vali H. 2015. The growth and concentration of uranium and titanium minerals in hydrocarbons of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa. Chemical Geology, 393: 55-66.
Gajowiak A, Majdan M, Drozdzal K. 2009. Sorption of uranium(Ⅵ) on clays and clay minerals. Przemysl Chemiczny, 88(2): 190-196.
G?tz C, Geipel G, Bernhard G. 2010. The influence of the temperature on the carbonate complexation of uranium (Ⅵ): A spectroscopic study. Journal of Radioanalytical and Nuclear Chemistry, 287(3): 961-969.
Grenthe I, Dro?d?ynński J, Fujino T, Buck E C, Albrecht- Schmitt T E, Wolf S F. 2008. Uranium // Morss L R, Edelstein N M, Fuger J. The Chemistry of the Actinide and Transactinide Elements. Dordrecht: Springer: 253- 698.
Guillaumont R, Fangh?nel T, Fuger J, Grenthe I, Neck V, Palmer D A, Rand M H. 2003. Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium. Amsterdam: Elsevier: 157- 292.
Guo Z T, Su H Y, Wu W S. 2009. Sorption and desorption of uranium (Ⅵ) on silica: Experimental and modeling studies. Radiochimica Acta, 97(3): 133-140.
Gupta D K, Walther C. 2020. Uranium in Plants and the Environment. Springer: 1-246.
Hayes K F, Papelis C, Leckie J O. 1988. Modeling ionic strength effects on anion adsorption at hydrous oxide/ solution interfaces. Journal of Colloid and Interface Science, 125(2): 717-726.
Hazen R M, Ewing R C, Sverjensky D A. 2009. Evolution of uranium and thorium minerals. American Mineralogist, 94(10): 1293-1311.
Henderson P. 1982. Inorganic geochemistry. Oxford: Pergamon Press: 1-254.
Hsieh P S, Chen C H, Yang H J, Lee C Y. 2008. Petrogenesis of the Nanling Mountains granites from South China: Constraints from systematic apatite geochemistry and whole-rock geochemical and Sr-Nd isotope compositions. Journal of Asian Earth Sciences, 33(5-6): 428-451.
Hu R Z, Bi X W, Zhou M F, Peng J T, Su W C, Liu S, Qi H W. 2008. Uranium metallogenesis in South China and its relationship to crustal extension during the Cretaceous to Tertiary. Economic Geology, 103(3): 583-598.
IAEA. 2016. World distribution of uranium deposits (UDEPO). Vienna: IAEA: 1-247.
Idemitsu K, Obata K, Furuya H, Inagaki Y. 1994. Sorption behavior of uranium(Ⅵ) on a biotite mineral. Materials Research Society, 353(1): 981-988.
Jang J H, Dempsey B A, Burgos W D. 2008. Reduction of U(Ⅵ) by Fe(Ⅱ) in the presence of hydrous ferric oxide and hematite: Effects of solid transformation, surface coverage, and humic acid. Water Research, 42: 2269- 2277.
Jiang Y H, Ling H F, Jiang S Y, Shen W Z, Fan H H, Ni P. 2006. Trace element and Sr-Nd isotope geochemistry of fluorite from the Xiangshan uranium deposit southeast China. Economic Geology, 101(8): 1613-1622.
Jolley S J, Freeman S R, Barnicoat A C, Phillips G M, Knipe R J, Pather A, Fox N P C, Strydom D, Birch M T G, Henderson I H C, Rowland T W. 2004. Structural controls on Witwatersrand gold mineralization. Journal of Structural Geology, 26: 1067-1086.
Kalintsev A, Migdisov A, Xu H, Roback R, Brugger J. 2019. Uranyl speciation in sulfate-bearing hydrothermal solutions up to 250 ℃. Geochimica et Cosmochimica Acta, 267: 75-91.
Keppler H, Wyllie P J. 1990. Role of fluids in transport and fractionation of uranium and thorium in magmatic processes. Nature, 348(5-6): 531-533.
Kornilovich B Y, Pshinko G N, Kovalchuk I A. 2001. Influence of fulvic acids on the interaction of U(Ⅵ) with clayey components of soils. Radiokhimiya, 43(5): 404-407.
Kraemer D, Kopf S, Bau M. 2015. Oxidative mobilization of cerium and uranium and enhanced release of “immobile” high field strength elements from igneous rocks in the presence of the biogenic siderophore desferrioxamine B. Geochimica et Cosmochimica Acta, 165: 263-279.
Krepelova A, Sachs S, Bernhard G. 2006. Uranium(Ⅵ) sorption onto kaolinite in the presence and absence of humic acid. Radiochimica Acta, 94: 825-833.
Kyser K. 2014. Uranium ore deposits // Holland H D and Turekian K K. Treatise on Geoche?mistry: 489-513.
Langmuir D. 1978. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochimica et Cosmochimica Acta, 42(6): 547-569.
Latta D E, Boyanov M I, Kemner K M, O’Loughlin E J, Scherer M M. 2012. Abiotic reduction of uranium by Fe(Ⅱ) in soil. Applied Geochemistry, 27(8): 1512-1524.
Latta D E, Kemner K M, Mishra B, Boyanov M I. 2016. Effects of calcium and phosphate on uranium(Ⅳ) oxidation: Comparison between nanoparticulate uraninite and amorphous UⅣ — Phosphate. Geochimica et Cosmo-chimica Acta, 174: 122-142.
Lenhart J J, Honeyman B D. 1999. Uranium(Ⅵ) sorption to hematite in the presence of humic acid. Geochimica et Cosmochimica Acta, 63: 2891-2901.
Li X L, Wu J J, Liao J L, Zhang D, Yang J, Feng Y, Zeng J H, Wen W, Yang Y Y, Tang J, Liu N. 2013. Adsorption and desorption of uranium(Ⅵ) in aerated zone soil. Journal of Environmental Radioactivity, 115: 143-150.
Li Z Y, Huang Z Z, Li X Z, Guo J, Fan C. 2015. The discovery of native uranium and its significance. Acta Geologica Sinica (English Edition), 89(5): 1561-1567.
Liermann L, Kalinowski B E, Brantley S L, Ferry J G. 2000. Role of bacterial siderophores in dissolution of hornblende. Geochimica et Cosmochimica Acta, 64(4): 587-602.
Liger E, Charlet L, Cappellen P. 1999. Surface catalysis of uranium(Ⅵ) reduction by iron(Ⅱ). Geochimica et Cosmochimica Acta, 63: 2939-2955.
Liu J, Zhao C S, Yuan G Y, Dong Y, Yang J J, Li F Z, Liao J L, Yang Y Y, Liu N. 2017. Adsorption of U(Ⅵ) on a chitosan/polyaniline composite in the presence of Ca/Mg- U(Ⅵ)-CO3 complexes. Hydrometallurgy, 175: 300-311.
Mann A W, Deutscher R L. 1978. Genesis principles for the precipitation of carnotite in calcrete drainages in Western Australia. Economic Geology, 73(8): 1724-1737.
Manning D A C. 1981. The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb. Contributions to Mineralogy and Petrology, 76(2): 206-215.
Massey M S, Lezama-Pacheco J S, Jones M E, Ilton E S, Cerrato J M, Bargar J R, Fendorf S. 2014. Competing retention pathways of uranium upon reaction with Fe(Ⅱ). Geochimica et Cosmochimica Acta, 142: 166- 185.
McGloin M V, Tomkins A G, Webb G P, Spiers K, MacRae C M, Paterson D, Ryan C G. 2016. Release of uranium from highly radiogenic zircon through metamictization: The source of orogenic uranium ores. Geology, 44(1): 15-18.
Merino E, Villaseca C, Orejana D, Jeffries T. 2013. Gahnite, chrysoberyl and beryl co-occurrence as accessory minerals in a highly evolved peraluminous pluton: The Belvís de Monroy leucogranite (Cáceres, Spain). Lithos, 179: 137-156.
Migdisov A A, Boukhalfa H, Timofeev A, Runde W, Roback R, Williams-Jones A E. 2018. A spectroscopic study of uranyl speciation in chloride-bearing solutions at temperatures up to 250 ℃. Geochimica et Cosmochimica Acta, 222: 130-145.
Missana T, García-Gutiérrez M, Maffiotte C. 2003. Experi?mental and modeling study of the uranium(Ⅵ) sorption on goethite. Journal of Colloid and Interface Science, 260: 291-301.
Mossman D, Gauthierlafaye F, Jackson S. 2005. Black shales, organic matter, ore genesis and hydrocarbon generation in the Paleoproterozoic Franceville Series, Gabon. Precambrian Research, 137(3-4): 253-272.
Myers J S. 1997. Preface: Archaean geology of the Eastern Goldfields of Western Australia — Regional overview. Precambrian Research, 83(1-3): 1-10.
Needham S. 2009. Yeelirrie uranium deposit in Western Australia. Canberra: Parliament of Australia, Department of Parliamentary Service, Background Note: 1-12.
Nex P A M, Kinnaird J A, Oliver G J H. 2001. Petrology, geochemistry and mineralization of post-collisional magmatism in the southern Central Zone, Damaran Orogen, Namibia. Journal of African Earth Sciences, 33: 481-502.
Nguyen-Trung C, Palmer D A, Begun G M, Peiffert C, Mesmer R E. 2000. Aqueous uranyl complexes 1. Raman spectroscopic study of the hydrolysis of uranyl(Ⅵ) in solutions of trifluoromethanesulfonic acid and/or tetramethylammonium hydroxide at 25 ℃ and 0.1 MPa. Journal of Solution Chemistry, 29: 101-129.
Noble R R P, Gray D J, Reid N. 2011. Regional exploration for channel and playa uranium deposits in Western Australia using groundwater. Applied Geochemistry, 26(12): 1956-1974.
Pabalan R T, Bertetti F P, Prikryl J D, Turner D R. 1996. UraniumⅥ sorption onto selected mineral surfaces: key geochemical parameters // Jenne E A. Adsorption of metals by geomedia. San Diego: Academic Press: 99- 130.
Panias A K. 2004. Uranium (Ⅵ) speciation diagrams in the UO22+/CO32-/H2O system at 25 ℃. The European Journal of Mineral Processing and Environmental Protection, 4(2): 113-129.
Payne T E, Davis J A, Lumpkin G R, Chisari R, Waite T D. 2004. Surface complexation model of uranyl sorption on Georgia kaolinite. Applied Clay Science, 26: 151- 162.
Peiffert C, Cuney M. 1996. Uranium in granitic magmas: Part 2. Experimental determination of uranium solubility and fluid-melt partition coefficients in the uranium oxide-haplogranite-H2O-NaX (X=Cl, F) system at 770 ℃, 2 kbar. Geochimica et Cosmochimica Acta, 60(9): 1515-1529.
Prakash O M, Gihring T M, Dalton D D, Chin K J, Green S J, Akob D M, Wanger G, Kostka J E. 2010. Geobacter daltonii sp. nov., an Fe(Ⅲ)- and uranium(Ⅵ)-reducing bacterium isolated from a shallow subsurface exposed to mixed heavy metal and hydrocarbon contamination. International Journal of Systematic and Evolutionary Microbiology, 60(3): 546-553.
Ramdohr P. 1980. The Ore Minerals and Their Intergrowths (2nd ed.). Oxford: Pergamon Press: 1-1205.
Richard A, Rozsypal C, Mercadier J, Banks D A, Cuney M, Boiron M C, Cathelineau M. 2011. Giant uranium deposits formed from exceptionally uranium-rich acidic brines. Nature Geoscience, 5(2): 142-146.
Roberts H E, Morris K, Law G T W, Mosselmans J F W, Bots P, Kvashnina K, Shaw S. 2017. Uranium(V) incorporation mechanisms and stability in Fe(Ⅱ)/Fe(Ⅲ) (oxyhydr)oxides. Environmental Science and Technology Letters, 4: 421-426.
Romberger S B. 1984. Transport and deposition of uranium in hydrothermal systems at temperatures up to 300 ℃: Geological implications // De Vivo B, Ippolito F, Capaldi G, Simpson P R. Uranium Geochemistry, Mineralogy, Geology, Exploration and Resources. Dordrecht: Springer: 12-17.
Rudnick R L, Gao S. 2014. Composition of the continental crust // Holland H D and Turekian K K. Treatise on Geochemistry: 1-51.
Sandino M C A, Grambow B. 1994. Solubility equilibria in the U(Ⅵ)-Ca-K-Cl-H2O system: Transformation of schoepite into becquerelite and compreignacite. Radio?chimica Acta, 66(s1): 37-44.
Schidlowski M. 1981. Uraniferous constituents of the Witwa?ter-srand conglomerates: Ore-microscopic observations and implications for the Witwatersrand metallogeny. U.S. Geological Survey Professional Paper, 1161-N: 1-23.
Sherman D M, Peacock C L, Hubbard C G. 2008. Surface complexation of U(Ⅵ) on goethite (α-FeOOH), Geochi-mica et Cosmochimica Acta, 72: 298-310.
Skomurski F N, Ilton E S, Engelhard M H, Arey B W, Rosso K M. 2011. Heterogeneous reduction of U6+ by structural Fe2+ from theory and experiment. Geochimica et Cosmo-chimica Acta, 75(22): 7277-7290.
S?rensen H, Bailey J C, Rose-Hansen J. 2011. The emplacement and crystallization of the U-Th-REE-rich agpaitic and hyperagpaitic lujavrites at Kvanefjeld, Ilímaussaq alkaline complex, South Greenland. Bulletin of the Geological Society of Denmark, 59: 69-92.
Spirakis C S. 1996. The roles of organic matter in the formation of uranium deposits in sedimentary rocks. Ore Geology Reviews, 11: 53-69.
Stewart B D, Amos R T, Nico P S, Fendorf S. 2011. Influence of uranyl speciation and iron oxides on uranium biogeo-chemical redox reactions. Geomicrobiology Journal, 28(5-6): 444-456.
Stewart B D, Mayes M A, Fendorf S. 2010. Impact of uranyl-calcium-carbonato complexes on uranium(Ⅵ) adsorption to synthetic and natural sediments. Environ-mental Science Technology, 44(3): 928-934.
Stylo M, Neubert N, Roebbert Y, Weyer S, Bernier-Latmani R. 2015. Mechanism of uranium reduction and immobi?lization in Desulfovibrio vulgaris biofilms. Environmental Science and Technology, 49(17): 10553-10561.
Tartese R, Boulvais P, Poujol M, Gloaguen E, Cuney M. 2013. Uranium mobilization from the Variscan Questembert syntectonic granite during fluid-rock interaction at depth. Economic Geology, 108(2): 379-386.
Tian G X, Rao L F. 2009. Spectrophotometric and calorimetric studies of U(Ⅵ) complexation with sulfate at (25 to 70)℃. The Journal of Chemical Thermodynamics, 41: 569- 574.
Timofeev A, Migdisov A A, Williams-Jones A E, Roback R, Nelson A T, Xu H. 2018. Uranium transport in acidic brines under reducing conditions. Nature Communi?cation, 9(1), 1469.
Tournassat C, Tinnacher R M, Grangeon S, Davis J A. 2018. Modeling uranium(Ⅵ) adsorption onto montmorillonite under varying carbonate concentrations: A surface complexation model accounting for the spillover effect on surface potential. Geochimica et Cosmochimica Acta, 220: 291-308.
Troyer L D, Maillot F, Wang Z, Wang Z, Mehta V S, Giammar D E, Catalano J G. 2016. Effect of phosphate on U(Ⅵ) sorption to montmorillonite: Ternary complexation and precipitation barriers. Geochimica et Cosmochi?mica Acta, 175: 86-99.
Tsarev S, Collins R N, Ilton E S, Fahy A, Waite D. 2017. The short-term reduction of uranium by nanoscale zero-valent iron (nZVI): Role of oxide shell, reduction mechanism and the formation of U(V)-carbonate phases. Environmental Science: Nano, 6(4): 1304-1313.
Ulrich K U, Ilton E S, Veeramani H, Sharp J O, Bernier- Latmani R, Schofield E J, Bargar J R, Giammar D E. 2009. Comparative dissolution kinetics of biogenic and chemogenic uraninite under oxidizing conditions in the presence of carbonate. Geochimica et Cosmochimica Acta, 73(20): 6065-6083.
Wander M C F, Shuford K L. 2012. A theoretical study of the qualitative reaction mechanism for the homogeneous disproportionation of pentavalent uranyl ions. Geochimica et Cosmochimica Acta, 84: 177-185.
Wang Z, Lee S W, Kapoor P, Tebo B M, Giammar D E. 2013. Uraninite oxidation and dissolution induced by manganese oxide: A redox reaction between two insoluble minerals. Geochimica et Cosmochimica Acta, 100: 24-40.
Waite T D, Davis J A, Payne T E, Waychunas G A, Xu N. 1994. Uranium(Ⅵ) sorption to ferrihydrite: Application of a surface complexation model. Geochimica et Cosmo?chimica Acta, 58: 5465-5478.
Wersin P, Hochella M F J, Persson P, Redden G, Leckie J O, Harris D W. 1994. Interaction between aqueous uranium (Ⅵ) and sulfide minerals: Spectroscopic evidence for sorption and reduction. Geochimica et Cosmochimica Acta, 58(13): 2829-2843.
Wilkins M J, Livens F R, Vaughan D J, Lloyd J R. 2006. The impact of Fe(Ⅲ) — Reducing bacteria on uranium mobility. Biogeochemistry, 78(2): 125-150.
Wolff-Boenisch D, Traina S J. 2006. A comparative study of the effect of desferrioxamine B, oxalic acid, and Na-alginate on the desorption of U(Ⅵ) from goethite at pH 6 and 25 ℃. Geochimica et Cosmochimica Acta, 70(17): 4356-4366.
Wongfun N, Pl?tze M, Furrer G, Brandl H. 2014. Weathering of granite from the Damma Glacier area: The contribution of cyanogenic bacteria. Geomicrobiology Journal, 31(2): 93-100.
Xia Q Y, Zhang L M, Dong H L, Li Z Y, Zhang Y Y, Hu J L, Chen H Y, Chen Y. 2020. Bio-weathering of a uranium- bearing rhyolitic rock from Xiangshan uranium deposit, Southeast China. Geochimica et Cosmochimica Acta, 279: 88-106.
Xie S B, Zhang C, Zhou X H, Yang J, Zhang X J, Wang J S. 2009. Removal of uranium(Ⅵ) from aqueous solution by adsor?ption of hematite. Journal of Environmental Radioactivity, 100: 162-166.
Xing Y L, Mei Y, Etschmann B, Liu W H, Brugger J. 2018. Uranium transport in F-Cl-bearing fluids and hydrothermal upgrading of U-Cu ores in IOCG deposits. Geofluids, 2018: 1-22.
Yang Y, Saiers J E, Barnett M O. 2013. Impact of interactions between natural organic matter and metal oxides on the desorption kinetics of uranium from heterogeneous colloidal suspensions. Environmental Science and Technology, 47(6): 2661-2669.
Yang Y, Saiers J E, Xu N, Minasian S G, Tyliszczak T, Kozimor S A, Shuh D K, Barnett M O. 2012. Impact of natural organic matter on uranium transport through saturated geologic materials: From molecular to column scale. Environmental Science and Technology, 46(11): 5931-5938.
Yu Z Q, Ling H F, Mavrogenes J, Chen P R, Chen W F, Fang Q C. 2019. Metallogeny of the Zoujiashan uranium deposit in the Mesozoic Xiangshan volcanic-intrusive complex, southeast China: Insights from chemical compo?sitions of hydrothermal apatite and metal elements of individual fluid inclusions. Ore Geology Reviews, 113, 103085.
Zeng H, Singh A, Basak S, Ulrich K U, Sahu M, Biswas P, Catalano J G, Giammar D E. 2009. Nanoscale size effects on uranium(Ⅵ) sorption to hematite. Environmental Science and Technology, 43: 1373-1378.
Zhang H X, Wen C X, Tao Z Y, Wu W S. 2011. Effects of nitrate, fulvate, phosphate, phthalate, salicylate and catechol on the sorption of uranyl onto SiO2: A comparative study. Journal of Radioanalytical and Nuclear Chemistry, 287: 13-20.
Zhou P, Gu B H. 2005. Extraction of oxidized and reduced forms of uranium from contaminated soils: Effects of carbonate concentration and pH. Environmental Science and Technology, 39(12): 4435-4440.

相似文献/References:

[1]张树明,余达淦,吴仁贵.相山铀矿田钾玄质岩石与铀成矿.大地构造与成矿学,2005.29(4):527.
 ZHANG Shuming,YU Dagan,WU Rengui and ZHANG Lifen.SHOSHONITIC ROCK AND URANIUM MINERALIZATION IN XIANGSHAN URANIUM ORE-FIELD IN JIANGXI.Geotectonica et Metallogenia,2005.46(2):527.
[2]姚振凯.碳酸盐岩中铀成矿的构造地球化学显示.大地构造与成矿学,1984.8(3):261.
 YAO Zhenkai.TECTONO-GEOCHEMICAL MANIFESTATION OF URANIUM MINERALIZATION IN CARBONATE ROCKS.Geotectonica et Metallogenia,1984.46(2):261.
[3]王学增,姚振凯.湘桂地区铀成矿的某些特征.大地构造与成矿学,1985.9(1):047.
 WANG Xuezheng YAO Zhenkai.SOME CHARACTERISTICS OF URANIUM MINERALIZATION IN THE HUNAN-GUANGXI REGION.Geotectonica et Metallogenia,1985.46(2):047.
[4]姚振凯.地洼学说在找铀矿及研究铀成矿学中的应用.大地构造与成矿学,1986.1(4):323.
 YAO Zhenkai.APPLICATION OF DIWA (GEODEPRESSION) THEORY TO THE SEARCH FOR URANIUM AND METALLOGENY OF URANIUM.Geotectonica et Metallogenia,1986.46(2):323.
[5]章健,陈卫锋,陈培荣.华南印支期产铀和非产铀花岗岩黑云母矿物化学成分差异.大地构造与成矿学,2011.35(2):270.
 ZHANG Jian,CHEN Weifeng and CHEN Peirong.Compositional Differences of the Biotites from the Uranium Forming and Non Uranium Forming Indosinian Granites in South China.Geotectonica et Metallogenia,2011.46(2):270.
[6]姚振凯,刘翔.中亚独联体五国铀成矿的大地构造背景.大地构造与成矿学,2000.24(1):001.
 YAO Zhen-kai,LIU Xiang.GEOTECTONIC BACKGROUND OF URANIUM METALLOGENYOF THE COMMONWEALTH OF INDEPENDENT STATESFIVE COUNTRIES IN CENTRAL ASIA.Geotectonica et Metallogenia,2000.46(2):001.

备注/Memo

备注/Memo:
收稿日期: 2020-09-08; 改回日期: 2020-12-23
项目资助: 核资源与环境国家重点实验室自主基金项目(Z1913、2020Z10、2020Z02)、矿床地球化学国家重点实验室开放基金项目(201808)、江西省“双一流”学科建设专项经费(2400100017)和江西省“双千计划”项目联合资助。
第一作者简介: 王大钊(1991-), 男, 博士, 讲师, 主要从事矿床学研究。E-mail: dazhaowang@foxmail.com
通信作者: 冷成彪(1982-), 男, 博士, 教授, 主要从事矿床地质与地球化学方面的研究。E-mail: lcb8207@163.com
更新日期/Last Update: 2022-04-10