[1]王连峰,徐 扛,李智勇.2022.特提斯喜马拉雅错那洞穹隆成因机制研究: 来自构造变形与独居石U-Pb年代学的制约.大地构造与成矿学,46(2):253-271.doi:10.16539/j.ddgzyckx.2022.02.005
 WANG Lianfeng,XU Kang,LI Zhiyong.2022.Formation of the Cuonadong Dome, Tethyan Himalaya: Constraints from Petro-structural Observations and Monazite U-Pb Geochronology.Geotectonica et Metallogenia,46(2):253-271.doi:10.16539/j.ddgzyckx.2022.02.005
点击复制

特提斯喜马拉雅错那洞穹隆成因机制研究: 来自构造变形与独居石U-Pb年代学的制约
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2022年46卷02期
页码:
253-271
栏目:
构造地质学
出版日期:
2022-04-25

文章信息/Info

Title:
Formation of the Cuonadong Dome, Tethyan Himalaya: Constraints from Petro-structural Observations and Monazite U-Pb Geochronology
文章编号:
1001-1552(2022)02-0253-019
作者:
王连峰1、2、3 徐 扛1、2、3 李智勇1、2、3 王 强1、2 蒋映德1、2*
1. 中国科学院 广州地球化学研究所, 同位素地球化学国家重点实验室, 广东 广州 510640; 2. 中国科学院深地科学卓越创新中心, 广东 广州 510640; 3. 中国科学院大学, 北京 100049
Author(s):
WANG Lianfeng1、2、3 XU Kang1、2、3 LI Zhiyong1、2、3 WANG Qiang1、2 JIANG Yingde1、2*
1. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China; 2. CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, Guangdong, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
特提斯喜马拉雅 错那洞穹隆 构造变形 独居石U-Pb年龄 穹隆成因
Keywords:
Tethyan Himalayan Cuonadong Dome deformation monazite U-Pb age dome formation
分类号:
P542; P597
DOI:
10.16539/j.ddgzyckx.2022.02.005
文献标志码:
A
摘要:
为厘清错那洞穹隆的成因机制, 本文开展了详细的变质变形演化及独居石U-Pb年代学研究, 结果表明错那洞地区发育了两期主要构造变形。早期变形以发育近水平变质面理为特征, 而晚期变形以普遍发育轴向近东西的褶皱和高角度轴面劈理为特征。变质岩相学表明, 早期面理伴随云母、石榴石、十字石等巴罗型特征变质矿物组合的发育, 暗示地壳埋深加厚的进变质演化过程; 而晚期变质面理则表现为长石、石英及云母的重结晶和重定向排列, 无更高级变质矿物的发育, 具剥露的退变质演化特征。伴随晚期变形, 穹隆南侧核部与边部转换带发育一向南伸展的韧性剪切带, 而在穹隆东西两侧分别发育具有右行及左行的水平走滑断层, 表明穹隆边部相对于核部向南伸展拆离的剪切变形。独居石U-Pb年代学结果表明穹隆中淡色花岗岩的形成年龄约为19.9±1.0 Ma, 而穹隆核部石榴石-十字石云母片岩为19.3±2.2 Ma, 后者为晚期面理的形成时间。综合区域已有研究成果, 指出错那洞地区早期变形发生在中-晚始新世, 可能与该时期印度-亚洲板块碰撞而产生的地壳垂向显著增厚相关; 而第二期变形可能与中新世藏南拆离系活动的背景下, 中上地壳发生 南北向巨量缩短并伴随深部地壳物质经构造挤出在浅部地壳形成穹隆有关。
Abstract:
The underlying mechanism accounting for the formation of the Cuonadong Dome remains obscure due to the lack of detailed investigations on the tectonic-metamorphic history of the dome and its associated metamorphic envelops. In order to fill this research gap, detailed petro-structural analysis and monazite U-Pb geochronological studies were carried out for the Cuonadong Dome. On the basis of structural investigations, two prominent episodes of deformation were identified, designated as D1 and D2. The first episode of deformation (D1) is characterized by the formation an ubiquitous sub-horizontal metamorphic foliation (S1) whereas the second one (D2) is marked by the widespread nearly west-east-trending close to open F2 folds in association with spaced high-angle axial plane cleavages S2. Metamorphic petrographic analysis revealed that the S1 foliations developed in the metamorphic envelope and in the core of the dome are up to biotite zone and staurolite zone conditions, respectively. Petro-structural analysis shows that biotite, garnet and staurolite index minerals grew synchronously with the S1 metamorphic foliations, suggesting D1 was probably associated with prograde Barrovian-type metamorphism and thus points to a progressive burial history. In contrast, during the D2 event, the S1 assemblage was affected by the F2 folding but remained stable, except for some quartz, feldspar and mica grains aligned parallel to the S2 foliations, which could represent re-orientated S1 assemblage or newly grew S2 assemblage. These features suggest that the S2 fabric probably corresponded with a retrograde evolution, implying an exhumation process. Besides, a prominent ductile shear zone developed syntectonically with D2 along the southern flank of the dome, as a transition zone separating the metamorphic envelop and the core of the dome. Meanwhile, the dextral and sinistral strike-slip movements developed along the eastern and western flanks of the dome, respectively. These features collectively suggest that the exhumation of the dome was associated with top-to-north shearing. Monazite U-Pb dating of (tourmaline) garnet-bearing leucogranite yielded a crystallization age of 19.9±1.0 Ma, suggestive of a Miocene magmatism in the region. In-situ U-Pb monazite dating of the garnet-staurolite mica-schist from the core of the dome gave an age of 19.3±2.2 Ma, overlapping with the age of the leucogranite. Taken the regional available age data into account, the monazite U-Pb age data from the mica-schist can be interpreted as the time of D2. Combined with regional available data, our study suggests that (1) the D1 deformation had activated at least since Middle-to-Late Eocene in association with significant crustal thickening, which represents an exemplification of the initial India-Asia collision; (2) the D2 event that was responsible for the F2 folding and formation of the Cuonadong Dome, was probably connected with the development of the Southern Tibetan Detachment System (STDS) in the Miocene, which might lead to the massive north-south shortening and significant tectonic extrusion.

参考文献/References:

丁慧霞, 李文坛, 江媛媛. 2019. 喜马拉雅造山带东段错那洞片麻岩穹窿的变质作用及构造意义. 岩石学报, 35(2): 312-324.
董汉文, 许志琴, 孟元库, 易治宇. 2017. 藏南错那洞淡色花岗岩年代学研究及其对藏南拆离系活动时间的限定. 岩石学报, 33(12): 3741-3752.
付建刚, 李光明, 王根厚, 张林奎, 梁维, 张小琼, 焦彦杰, 董随亮. 2020. 西藏错那洞穹窿同构造矽卡岩特征及相关铍钨锡稀有金属矿化的成矿时代. 吉林大学学报(地球科学版), 50(5): 1304-1322.
付建刚, 李光明, 王根厚, 张林奎, 梁维, 张志, 董随亮, 黄勇. 2018. 北喜马拉雅E-W向伸展变形时限: 来自藏南错那洞穹隆Ar-Ar年代学证据. 地球科学, 43(8): 2638-2650.
高利娥, 曾令森, 王莉, 侯可军, 郭春丽, 唐索寒. 2013. 藏南马拉山高钙二云母花岗岩的年代学特征及其形成机制. 岩石学报, 29(6): 1995-2012.
高利娥, 高家昊, 赵令浩, 侯可军, 唐索寒. 2017. 藏南拿日雍错片麻岩穹窿中新世淡色花岗岩的形成过程: 变泥质岩部分熔融与分离结晶作用. 岩石学报, 33(8): 2395-2411.
辜平阳, 何世平, 李荣社, 时超, 董增产, 査显锋, 吴继莲, 王轶. 2013. 藏南拉轨岗日变质核杂岩核部花岗质片麻岩的地球化学特征及构造意义. 岩石学报, 29(3): 756-768.
郭磊, 张进江, 张波. 2008. 北喜马拉雅然巴穹隆的构造、运动学特征、年代学及演化. 自然科学进展, 18(6): 640-650.
郝爽, 李惠民, 李国占, 耿建珍, 周红英, 肖志斌, 崔玉荣, 涂家润. 2016. LA-ICP-MS测定锡石U-Pb同位素年龄时两种普通铅扣除方法的原理及适用性比较. 地质通报, 35(4): 622-632.
黄春梅, 李光明, 张志, 梁维, 黄勇, 张林奎, 付建刚. 2018. 藏南错那洞淡色花岗岩成因: 来自全岩地球化学和锆石U-Pb年龄的约束. 地学前缘, 25(6): 182- 195.
金胜, 魏文博, 汪硕, 叶高峰, 邓明, 谭捍东. 2010. 青藏高原地壳高导层的成因及动力学意义探讨——大地电磁探测提供的证据. 地球物理学报, 53(10): 2376- 2385.
李志泰. 2020. 藏南然巴地区变质变形作用与淡色花岗岩成因研究. 广州: 中国科学院广州地球化学研究所硕士学位论文.
林彬, 唐菊兴, 郑文宝, 冷秋锋, 林鑫, 王艺云, 孟展, 唐攀, 丁帅, 徐云峰, 袁梅. 2016. 西藏错那洞淡色花岗岩地球化学特征、成岩时代及岩石成因. 岩石矿物学杂志, 35(3): 391-406.
刘志超. 2013. 喜马拉雅然巴淡色花岗岩时代与成因. 北京: 中国科学院地质与地球物理研究所博士学位论文.
莫宣学, 赵志丹, 邓晋福, 喻学惠, 罗照华, 董国臣. 2007. 青藏新生代钾质火山活动的时空迁移及向东部玄武岩省的过渡: 壳幔深部物质流的暗示. 现代地质, (2): 255-264.
戚学祥, 曾令森, 孟祥金, 许志琴, 李天福. 2008. 特提斯喜马拉雅打拉花岗岩的锆石SHRIMP U-Pb定年及其地质意义. 岩石学报, 24(7): 1501-1508.
王晓先, 张进江, 闫淑玉, 刘江. 2016. 藏南错那淡色花岗岩LA-MC-ICP-MS锆石U-Pb年龄、岩石地球化学及其地质意义. 地质通报, 35(1): 91-103.
吴福元, 刘志超, 刘小驰, 纪伟强. 2015. 喜马拉雅淡色花岗岩. 岩石学报, 31(1): 1-36.
许志琴, 马绪宣. 2015. 中国大陆显生宙俯冲型、碰撞型和复合型片麻岩穹窿(群). 岩石学报, 31(12): 3509-3523.
许志琴, 杨经绥, 姜枚, 李海兵. 1999. 大陆俯冲作用及青藏高原周缘造山带的崛起. 地学前缘, 6(3): 139-151.
张进江. 2007. 北喜马拉雅及藏南伸展构造综述. 地质通报, 26(6): 639-649.
张进江, 郭磊, 张波. 2007. 北喜马拉雅穹隆带雅拉香波穹隆的构造组成和运动学特征. 地质科学, 42(1): 16-30.
张进江, 杨雄英, 戚国伟, 王德朝. 2011. 马拉山穹窿的活动时限及其在藏南拆离系——北喜马拉雅片麻岩穹窿形成机制的应用. 岩石学报, 27(12): 3535-3544.
张林奎, 李光明, 曹华文, 张志, 付建刚, 夏祥标, 董随亮, 梁维, 黄勇. 2019. 藏南错那洞花岗质片麻岩锆石年龄、Hf同位素及其对原特提斯洋演化的启示. 中国地质, 46(6): 1312-1335.
张林奎, 张志, 李光明, 董随亮, 夏祥标, 梁维, 付健刚, 曹华文. 2018. 特提斯喜马拉雅错那洞穹隆的岩石组合、构造特征与成因. 地球科学, 43(8): 2664-2683.
张泽明, 董昕, 丁慧霞, 田作林, 向华. 2017. 喜马拉雅造山带的变质作用与部分熔融. 岩石学报, 33(8): 2313- 2341.
张泽明, 康东艳, 丁慧霞, 田作林, 董昕, 秦圣凯, 穆虹辰, 李梦梅. 2018. 喜马拉雅造山带的部分熔融与淡色花岗岩成因机制. 地球科学, 43(1): 82-98.
张志, 李光明, 张林奎, 董随亮, 梁维, 付健刚, 黄勇, 曹华文, 夏祥标. 2020. 藏南错那洞穹隆早渐新世含绿柱石花岗伟晶岩的成因机制及其地质意义. 沉积与特提斯地质, 40(2): 18-34.
Aguilar C, Liesa M, ?típská P, Schulmann K, Mu?oz J A, Casas J M. 2015. P-T-t-d evolution of orogenic middle crust of the Roc de Frausa Massif (Eastern Pyrenees): A result of horizontal crustal flow and Carboniferous doming? Journal of Metamorphic Geology, 33(3): 273-294.
Aleinikoff J N, Schenck W S, Plank M O, Srogi L, Fanning C M, Kamo S L, Bosbyshell H. 2006. Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite. Geological Society of America Bulletin, 118(1-2): 39- 64.
Aoya M, Wallis S R, Terada K, Lee J, Kawakami T, Wang Y and Heizler M. 2005. North-south extension in the Tibetan crust triggered by granite emplacement. Geology, 33(11): 853-856.
Brookfield M E. 1993. The Himalayan passive margin from Precambrian to Cretaceous times. Sedimentary Geology, 84(1-4): 1-35.
Brown M, Johnson T. 2018. Secular change in metamorphism and the onset of global plate tectonics. American Mine?ra-logist, 103(2): 181-196.
Brun J P, Sokoutis D, Driessche J V D. 1994. Analogue modeling of detachment fault systems and core complexes. Geology, 22(4): 319-322.
Buck W R. 1991. Modes of continental lithospheric extension. Journal of Geophysical Research: Solid Earth, 96(B12): 20161-20178.
Burchfiel B C, Chen Z, Hodges K V, Liu Y, Royden L H, Deng C, Xu J. 1992. The South Tibetan detachment system, Himalayan Orogen: Extension contemporaneous with and parallel to shortening in a collisional mountain belt. Geological Society of America Special Papers, 269: 1-41.
Burg J P, Chen G M. 1984. Tectonics and structural zonation of southern Tibet, China. Nature, 311(5983): 219-223.
Burg J P, Guiraud M, Chen G M, Li G C. 1984. Himalayan metamorphism and deformations in the North Himalayan Belt (southern Tibet, China). Earth and Planetary Science Letters, 69(2): 391-400.
Calvert A T, Gans P B, Amato J M. 1999. Diapiric ascent and cooling of a sillimanite gneiss dome revealed by 40Ar/39Ar thermochronology: The Kigluaik Mountains, Seward Peninsula, Alaska. Geological Society, London, Special Publications, 154(1): 205-232.
Cao H W, Li G M, Zhang Z, Zhang L K, Dong S L, Xia X B, Liang W, Fu J G, Huang Y, Xiang A P, Qing C S, Dai Z W, Pei Q M, Zhang Y H. 2020. Miocene Sn polymetallic mineralization in the Tethyan Himalaya, southeastern Tibet: A case study of the Cuonadong deposit. Ore Geology Reviews, 119: 1-16.
Chen Z, Liu Y, Hodges K V, Burchfiel B C, Royden L H, Deng C. 1990. The Kangmar Dome: A metamorphic core complex in southern Xizang (Tibet). Science, 250(4987): 1552-1556.
Ding H X, Zhang Z M, Dong X, Tian Z L, Xiang H, Mu H C, Gou Z B, Shui X F, Li W C, Mao L J. 2016a. Early Eocene (c. 50 Ma) collision of the Indian and Asian continents: Constraints from the North Himalayan metamorphic rocks, southeastern Tibet. Earth and Planetary Science Letters, 435: 64-73.
Ding H X, Zhang Z M, Hu K M, Dong X, Xiang H, Mu H C. 2016b. P-T-t-D paths of the North Himalayan metamorphic rocks: Implications for the Himalayan orogeny. Tecto?no-physics, 683: 393-404.
Ding L, Kapp P, Wan X Q. 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics, 24(3), TC3001.
Donaldson D G, Webb A A G, Menold C A, Kylander-Clark A R C, Hacker B R. 2013. Petrochronology of Himalayan ultrahigh-pressure eclogite. Geology, 41(8): 835-838.
England P C, Thompson A B. 1984. Pressure-temperature- time paths of regional metamorphism: I. Heat transfer during the evolution of regions of thickened continental crust. Journal of Petrology, 25(4): 894-928.
Eskola P E. 1949. The problem of mantled geniss domes. Quarterly Journal of the Geological Society of London, 104: 461-476.
Fletcher R C. 1972. Application of a mathematical model to the emplacement of mantled gneiss domes. American Journal of Science, 272(3): 197-216.
Fu J G, Li G M, Wang G H, Huang Y, Zhang L K, Dong S L, Liang W. 2016. First field identification of the Cuonadong dome in southern Tibet: Implications for EW extension of the North Himalayan gneiss dome. International Journal of Earth Sciences, 106(5): 1581-1596.
Fu J G, Li G M, Wang G H, Zhang L K, Liang W, Zhang X Q, Jiao Y J, Dong S L, Huang Y. 2020. Structural analysis of sheath folds and geochronology in the Cuonadong Dome, southern Tibet, China: New constraints on the timing of the South Tibetan detachment system and its relationship to North Himalayan Gneiss Domes. Terra Nova, 32(4): 300-323.
Fu J G, Li G M, Wang G H, Zhang L K, Liang W, Zhang X Q, Jiao Y J, Huang Y. 2021. Structural and thermochronologic constraints on skarn rare-metal mineralization in the Cenozoic Cuonadong Dome, Southern Tibet. Journal of Asian Earth Sciences, 205: 1-13.
Fu J G, Li G M, Wang G H, Zhang L K, Liang W, Zhang Z, Zhang X Q, Huang Y. 2018. Synchronous granite intrusion and E-W extension in the Cuonadong dome, southern Tibet, China: Evidence from field observations and thermochronologic results. International Journal of Earth Sciences, 107(6): 2023-2041.
Gao L E, Zeng L S. 2014. Fluxed melting of metapelite and the formation of Miocene high-CaO two-mica granites in the Malashan gneiss dome, southern Tibet. Geochimica et Cosmochimica Acta, 130: 136-155.
Gao L E, Zeng L S, Asimow P D. 2017. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites. Geology, 45(1): 39-42.
Harrison M T, Lovera O M, Grove M. 1997. New insights into the origin of two contrasting Himalayan granite belts. Geology, 25(10): 899.
Harrison T M, Mckeegan K D, Lefort P. 1995. Detection of inherited monazite in the Manaslu leucogranite by 208Pb-232Th ion microprobe dating: Crystallization age and tectonic implications. Earth and Planetary Science Letters, 133(3-4): 271-282.
Hodges K V. 1998. The thermodynamics of Himalayan orogenesis. Geological Society, London, Special Publi-cations, 138(1): 7-22.
Hou Z Q, Zheng Y C, Zeng L S, Gao L E, Huang K X, Li W, Li Q Y, Fu Q, Liang W, Sun Q Z. 2012. Eocene- Oligocene granitoids in southern Tibet: Constraints on crustal anatexis and tectonic evolution of the Himalayan orogen. Earth and Planetary Science Letters, 349-350: 38-52.
Huangfu P P, Wang Y J, Li Z H, Fan W M, Zhang Y. 2016. Effects of crustal eclogitization on plate subduction/ collision dynamics: Implications for India-Asia collision. Journal of Earth Science, 27(5): 727-739.
Jiang Y D, Schulmann K, Sun M, Weinberg R F, ?típská P, Li P F, Zhang J, Chopin F, Wang S, Xia X P, Xiao W J. 2019. Structural and geochronological constraints on Devonian suprasubduction tectonic switching, Permian collisional dynamics in the Chinese Altai, Central Asia. Tectonics, 38(1): 253-280.
Kali E, Leloup P H, Arnaud N, Maheo G, Liu D, Boutonnet E, Woerd J V D, Liu X, Liu-Zeng J, Li H. 2010. Exhumation history of the deepest central Himalayan rocks, Ama Drime range: Key pressure-temperature- deformation-time constraints on orogenic models. Tectonics, 29(2): 1-31.
King J, Harris N, Argles T, Parrish R, Zhang H. 2010. Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet. Geological Society of America Bulletin, 123(1-2): 218-239.
Langille J, Lee J, Hacker B, Seward G. 2010. Middle crustal ductile deformation patterns in southern Tibet: Insights from vorticity studies in Mabja Dome. Journal of Structural Geology, 32(1): 70-85.
Lee J, Whitehouse M J. 2007. Onset of mid-crustal extensional flow in southern Tibet: Evidence from U/Pb zircon ages. Geology, 35(1): 45-48.
Lee J, Hacker B, Wang Y. 2004. Evolution of North Himalayan gneiss domes: Structural and metamorphic studies in Mabja Dome, southern Tibet. Journal of Structural Geology, 26(12): 2297-2316.
Lee J, Hacker B R, Dinklage W S, Wang Y, Gans P, Calvert A, Wan J, Chen W, Blythe A E, McClelland W. 2000. Evolution of the Kangmar Dome, southern Tibet: Structural, petrologic, and thermochronologic constraints. Tectonics, 19(5): 872-895.
Lee J, Hager C, Wallis S R, Stockli D F, Whitehouse M J, Aoya M, Wang Y. 2011. Middle to late Miocene extremely rapid exhumation and thermal reequilibration in the Kung Co rift, southern Tibet. Tectonics, 30(2), TC2007.
Lee J, Mcclelland W, Wang Y, Blythe A, Mcwilliams M. 2006. Oligocene-Miocene middle crustal flow in southern Tibet: Geochronology of Mabja Dome. Geological Society, London, Special Publications, 268(1): 445-469.
Leech M. 2008. Does the Karakoram fault interrupt mid- crustal channel flow in the western Himalaya? Earth and Planetary Science Letters, 276(3-4): 314-322.
Leloup P H, Mahéo G, Arnaud N, Kali E, Boutonnet E, Liu D Y, Liu X H, Li H B. 2010. The South Tibet detachment shear zone in the Dinggye area Time constraints on extrusion models of the Himalayas. Earth and Planetary Science Letters, 292(1-2): 1-16.
Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q, Wang D B. 2010. Continental and oceanic crust recycling-induced melt-peridotite Interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571.
Liu Z C, Wu F Y, Ji W Q, Wang J G, Liu C Z. 2014. Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model. Lithos, 208-209: 118-136.
Pati?o Douce A E, Harris N. 1998. Experimental constraints on Himalayan anatexis. Journal of Petrology, 39(4): 689-710.
Quigley M, Yu L J, Liu X H, Wilson C J L, Sandiford M, Phillips D. 2006. 40Ar/39Ar thermochronology of the Kampa Dome, southern Tibet: Implications for tectonic evolution of the North Himalayan gneiss domes. Tectonophysics, 421(3-4): 269-297.
Sachan H K, Kohn M J, Saxena A, Corrie S L. 2010. The Malari leucogranite, Garhwal Himalaya, northern India: Chemistry, age, and tectonic implications. Geological Society of America Bulletin, 122(11-12): 1865-1876.
Schultz M H, Hodges K V, Ehlers T A, Soest M V, Wartho J A. 2017. Thermochronologic constraints on the slip history of the South Tibetan detachment system in the Everest region, southern Tibet. Earth and Planetary Science Letters, 459: 105-117.
Spratt J E, Jones A G, Nelson K D, Unsworth M J. 2005. Crustal structure of the India-Asia collision zone, southern Tibet, from INDEPTH MT investigations. Physics of the Earth and Planetary Interiors, 150(1-3): 227-237.
?típská P, Schulmann K, Powell R. 2008. Contrasting metamorphic histories of lenses of high-pressure rocks and host migmatites with a flat orogenic fabric (Bohemian Massif, Czech Republic): A result of tectonic mixing within horizontal crustal flow? Journal of Metamorphic Geology, 26(6): 623-646.
Teyssier C, Whitney D L. 2002. Gneiss domes and orogeny. Geology, 30(12): 1139-1142.
Vance D, Harris N. 1999. Timing of prograde metamorphism in the Zanskar Himalaya. Geology, 27(5): 395-398.
Vanderhaeghe O, Teyssier C, Wysoczanski R. 1999. Structural and geochronological constraints on the role of partial melting during the formation of the Shuswap metamorphic core complex at the latitude of the Thor-Odin dome, British Columbia. Canadian Journal of Earth Sciences, 36(6): 917-943.
Wagner T, Lee J, Hacker B R, Seward G. 2010. Kinematics and vorticity in Kangmar Dome, southern Tibet: Testing midcrustal channel flow models for the Himalaya. Tectonics, 29, TC6011.
Wang J M, Zhang J J, Wei C J, Rai S M, Wang M, Qian J H. 2015. Characterising the metamorphic discontinuity across the Main Central Thrust Zone of eastern-central Nepal. Journal of Asian Earth Sciences, 101(1): 83-100.
Webb A A G, Yin A, Harrison T M, Célérier J, Burgess W P. 2007. The leading edge of the Greater Himalayan Crystalline complex revealed in the NW Indian Himalaya: Impli?cations for the evolution of the Himalayan orogen. Geology, 35(10): 955-958.
Xie J J, Qiu H N, Bai X J, Zhang W F, Wang Q, Xia X P. 2018. Geochronological and geochemical constraints on the Cuonadong leucogranite, eastern Himalaya. Acta Geochimica, 37(3): 347-359.
Xie L, Tao X Y, Wang R C, Wu F Y, Liu C, Liu X, Li X C, Zhang R Q. 2020. Highly fractionated leucogranites in the eastern Himalayan Cuonadong dome and related magmatic Be-Nb-Ta and hydrothermal Be-W-Sn mineralization. Lithos, 354-355, 105286.
Xu Z Q, Wang Q, Pêcher A, Liang F H, Qi X X, Cai Z H, Li H Q, Zeng L S, Cao H. 2013. Orogen-parallel ductile extension and extrusion of the Greater Himalaya in the late Oligocene and Miocene. Tectonics, 32(2): 191-215.
Xu Z Q, Yang J S, Li H B, Ji S C, Liu Y. 2011. On the tectonics of the India-Asia collision. Acta Geologica Sinica, 85(1): 1-33.
Yin A. 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Science Reviews, 76(1-2): 1-131.
Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280.
Zeng L S, Gao L E, Tang S H, Hou K J, Guo C L, Hu G Y. 2014. Eocene magmatism in the Tethyan Himalaya, southern Tibet. Geological Society, London, Special Publications, 412(1): 287-316.
Zhang H F, Harris N, Parrish R, Kelley S, Zhang L, Rogers N, Argles T, King J. 2004. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth and Planetary Science Letters, 228(1-2): 195-212.
Zhang J J, Guo L. 2007. Structure and geochronology of the southern Xainza-Dinggye rift and its relationship to the south Tibetan detachment system. Journal of Asian Earth Sciences, 29(5-6): 722-736.
Zhang J J, Santosh M, Wang X X, Guo L, Yang X Y, Zhang B. 2012. Tectonics of the northern Himalaya since the India-Asia collision. Gondwana Research, 21(4): 939- 960.
Zhang Z M, Xiang H, Dong X, Ding H X, He Z Y. 2015. Long-lived high-temperature granulite-facies metamorphism in the Eastern Himalayan orogen, south Tibet. Lithos, 212-215: 1-15.

备注/Memo

备注/Memo:
收稿日期: 2021-02-01; 改回日期: 2021-04-02
项目资助: 第二次青藏高原科学考察研究计划(STEP)(2019QZKK0702)资助。
第一作者简介: 王连峰(1993-), 男, 硕士研究生, 构造地质学专业。E-mail: wanglianfeng@gig.ac.cn
通信作者: 蒋映德(1982-), 男, 研究员, 主要从事造山带构造变形与变质演化研究。E-mail: jiangyd@gig.ac.cn
更新日期/Last Update: 2022-04-10