[1]王 朝,李 阳,储东如.2022.江南断裂带印支期以来构造演化及晚新生代活动特征——来自磁组构的记录.大地构造与成矿学,46(2):236-252.doi:10.16539/j.ddgzyckx.2022.02.004
 WANG Chao,LI Yang,CHU Dongru.2022.Tectonic Evolution of the Jiangnan Fault Zone Since the Indosinian Period — Evidence from Magnetic Fabric.Geotectonica et Metallogenia,46(2):236-252.doi:10.16539/j.ddgzyckx.2022.02.004
点击复制

江南断裂带印支期以来构造演化及晚新生代活动特征——来自磁组构的记录
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2022年46卷02期
页码:
236-252
栏目:
构造地质学
出版日期:
2022-04-25

文章信息/Info

Title:
Tectonic Evolution of the Jiangnan Fault Zone Since the Indosinian Period — Evidence from Magnetic Fabric
文章编号:
1001-1552(2022)02-0236-017
作者:
王 朝1 李 阳2 储东如1 汪雅菲1 王 松3 吴雪峰4
1. 安徽省地质调查院, 安徽 合肥 230000; 2. 大陆动力学国家重点实验室, 西北大学 地质学系, 陕西 西安 710069; 3. 合肥工业大学, 安徽 合肥 230000; 4. 安徽省公益性地质调查管理中心, 安徽 合肥 230000
Author(s):
WANG Chao1 LI Yang2 CHU Dongru1 WANG Yafei1 WANG Song3 WU Xuefeng4
1. Geological Survey of Anhui Province, Hefei 230000, Anhui, China; 2. State Key Laboratory of Continental Dynamics, Northwest University, Xi'an 710069, Shaanxi, China; 3. Hefei University of Technology, Hefei 230000, Anhui, China; 4. Public Geological Survey Management Center of Anhui Province, Hefei 230000, Anhui, China
关键词:
江南断裂带 磁组构特征 构造演化 印支期 皖南地区
Keywords:
Jiangnan fault magnetic fabric structural evolution Indosinian period South Anhui
分类号:
P542
DOI:
10.16539/j.ddgzyckx.2022.02.004
文献标志码:
A
摘要:
作为研究区域断裂构造的新兴手段, 磁组构在应变指示计较少的弱应变地区应用广泛。本文在详细调查江南断裂带(泾县段)露头构造特征的基础上, 对该断裂带的岩石磁组构特征开展了系统研究, 发现样品中磁化率椭球体最大轴Kmax为259°∠8°和102°∠12°、最小轴Kmin为358°∠48°和193°∠5°, 反映江南断裂带主要受近南北向挤压应力作用, 指示其活动以近南北向逆冲挤压为主, 兼具弱左行剪切运动。依据断裂活动性质并结合前人研究成果, 我们认为岩石磁组构指示的是江南断裂带晚新生代的活动特征, 时限可能为中新世-早更新世。构造岩磁组构特征为江南断裂带新生代构造活动研究提供了微观依据。
Abstract:
Magnetic fabric is a new method in regional fault structure study, it has been widely used in weak strain areas with few strain indicators. Detailed investigation of outgrowth structural characteristics and systematic study of rock magnetic fabric in the Jiangnan fault zone (Jingxian section) reveal that the maximum axis Kmax of the magnetic susceptibility ellipsoid is 259°∠8° and 102°∠12° , and the minimum axis Kmin is 358°∠48° and 193°∠5°, indicating that the Jiangnan fault zone was subjected to the near SN compression stress and its most recent activity was dominated by the nearly SN thrust compression with weak left-lateral translation. Based on the characteristics of fault activity and previous research results, we believe that the magnetic fabric of the rocks indicates the recent activity characteristics of the Jiangnan fault zone, which might have taken place in the Miocene-early Pleistocene. Therefore, it can be concluded that the magnetic fabric characteristics of tectonics may provide microscopic constraint on the Cenozoic tectonic activity of the Jiangnan fault zone.

参考文献/References:

敖红, 邓成龙. 2007. 磁性矿物的磁学鉴别方法回顾. 地球物理学进展, 22(2): 432-442.
陈应涛, 张国伟, 鲁如魁, 郭安林, 谢晋强, 朱伟. 2019. 龙门山南段盐井-五龙断裂磁组构特征及其对几何学、运动学的制约. 大地构造与成矿学, 43(2): 199- 212.
陈应涛, 张国伟, 鲁如魁, 谢晋强, 郭泱泱. 2013. 青藏高原东缘鲜水河断裂带磁组构特征及构造意义. 岩石学报, 29(3): 977-989.
崔可锐, 施央申. 1998. 岩石磁组构在构造混杂岩带和韧性剪切带研究中的应用——以西天山地区为例. 地球物理学进展, 13(1): 41-52.
侯贵廷, 王传成, 李乐. 2010. 华北南缘古元古代末岩墙群侵位的磁组构证据. 岩石学报, 26(1): 318-324.
贾东, 陈竹新, 罗良, 胡潜伟, 贾秋鹏, 李一泉. 2007. 断层相关褶皱的磁组构与有限应变: 川西岷江冲断构造的实例分析. 自然科学进展, 17(2): 188-195.
李建忠, 潘忠习, 冯心涛, 庄忠海, 朱同兴, 邹光富. 2006. 聂拉木地区高喜马拉雅岩石磁组构及其构造含义. 地球物理学报, 49(2): 496-503.
李三忠, 余珊, 赵淑娟, 刘鑫, 龚淑云, 索艳慧, 戴黎明, 马云, 许立青, 曹现志, 王鹏程, 孙文军, 杨朝, 朱俊江. 2013. 东亚大陆边缘的板块重建与构造转换. 海洋地质与第四纪地质, 33(3): 65-94.
李阳, 梁文天, 靳春胜, 董云鹏, 袁洪林, 张国伟. 2017. 秦岭沙沟街韧性剪切带的岩石磁学、磁组构和运动学涡度分析. 岩石学报, 33(6): 1919-1933.
李震宇, 黄宝春, 张春霞. 2010. 河南西南部典型白垩纪剖面的岩石磁组构特征及其构造意义. 岩石学报, 26(11): 3418-3430.
李自红, 李斌, 刘鸿福, 闫小兵, 扈桂让. 2015. 韩城断裂带NE段构造应力特征. 地震地质, 37(2): 468-481.
梁文天, 靳春胜, Prayath N, 张国伟. 2015. 秦岭造山带晚三叠世糜署岭岩体的岩石磁学及磁组构可靠性约束. 地球物理学报, 58(3): 953-970.
梁文天, 张国伟, 鲁如魁, 裴先治, 靳春胜, 王建其. 2009. 秦祁接合带造山缝合带磁组构特征及其构造意义. 地球物理学报, 52(1): 140-149.
刘国生. 1997. 江南断裂带(皖南段)的变形特征及震旦纪以来的构造演化. 合肥工业大学学报(自然科学版), 20(3): 100-105.
鲁如魁, 张国伟, 钟华明, 夏军, 童劲松, 余小俭. 2008. 阿尔金断裂带西段磁组构特征及其构造意义. 地球物理学报, 51(3): 752-761.
罗良, 贾东, 陈竹新, 胡潜伟, 贾秋鹏, 李一泉, 张元元. 2006. 川西北磁组构演化及其揭示的应变特征. 地质通报, 25(11): 1342-1348.
罗良, 漆家福, 贾东, 王开, 曾旭. 2013. 龙门山南段山前天全-乐山剖面磁组构研究及其对新生代构造变形的指示意义. 地球物理学报, 56(2): 558-566.
潘永信, 朱日祥. 1998. 磁组构研究现状. 地球物理学进展, 13(1): 53-60.
万天丰, 郝天珧. 2009. 黄海新生代构造及油气勘探前景. 现代地质, 23(3): 385-393.
万天丰, 赵庆乐. 2012. 中国东部构造-岩浆作用的成因. 中国科学: 地球科学, 42(2): 155-163.
王开, 贾东, 罗良, 董树文. 2017. 磁组构与构造变形. 地球物理学报, 60(3): 1007-1026.
王开, 贾东, 罗良, 张明正, 李一泉. 2014. 龙门山南段邛西断层转折褶皱磁组构及其有限应变. 地质通报, 33(5): 629-640.
王小亚, 朱文耀, 符养, 游新兆, 王琪, 程宗颐, 任金卫. 2002. GPS监测的中国及其周边现时地壳形变. 地球物理学报, 45(2): 198-209.
吴汉宁. 1988. 岩石的磁性组构及其在岩石变形分析中的应用. 岩石学报, 4(1): 94-98.
谢建磊, 杨坤光, 马昌前. 2006. 湘西花垣-张家界断裂带构造变形特征与ESR定年. 高校地质学报, 12(1): 14-21.
谢晋强, 张国伟, 郭秀峰, 鲁如魁, 梁文天, 陈应涛, 申怡博. 2014. 南大巴山前陆褶皱带荆竹坝-石窝剖面磁组构特征及其对构造演化的制约. 地球物理学报, 57(4): 1141-1154.
徐曦, 高顺莉. 2015. 下扬子区新生代断陷盆地的构造与形成. 地学前缘, 22(6): 148-166.
徐曦, 高顺莉, 王兴建, 黄俊菠, 王博. 2015. 下扬子区新生代伸展构造变形及其区域构造意义. 地球科学, 40(12): 1968-1986.
许顺山, 陈柏林. 1998. 应用岩石磁性组构研究动力变形作用. 地球学报, 19(1): 19-24.
杨绍祥. 1998. 湘西花垣-张家界逆冲断裂带地质特征及其控矿意义. 湖南地质, 17(2): 28-31, 36.
杨志坚. 1981. 江南一条地层、岩相、古生物等突变带的性质问题. 地质论评, 27(2): 123-129.
杨志坚. 1987. 横贯中国东南部的一条古断裂带. 地质科学, 22(3): 221-230.
杨志坚. 1988. 江南一条中强地震带初探. 地震地质, 10(2): 14-18.
余钦范, 郑敏, 郭武林, 谭承泽. 1991. 岩石磁组构分析及其地质应用(下). 国外地质勘探技术, (3): 30-36.
翟文建, 齐小兵, 章泽军. 2009. 江南断裂构造属性及成生环境初探. 大地构造与成矿学, 33(3): 372-380
张淑伟, 杨振宇, 王喜生, Maria T C, 乔彦松, 霍俊杰, Edgardo C T, 赵越. 2017. 磁化率各向异性的原理及应用实例. 地质力学学报, 23(1): 135-140.
周雁. 1998. 江南断裂构造特征及形成演化. 中国地球物理学会. 1998年中国地球物理学会第十四届学术年会论文集: 1.
周雁. 1999. 湘鄂边区断裂构造特征及其油气地质意义. 海相油气地质, 4(4): 31-38.
周勇, 许荣华, 阎月华, 杨灿尧, 罗伟, 潘裕生. 2000. 喀喇昆仑断裂带磁组构特征及其构造意义. 岩石学报, 16(1): 134-144.
朱光, 徐嘉炜, 刘国生, 李双应, 虞培玉. 1999. 下扬子地区前陆变形构造格局及其动力学机制. 中国区域地质, 18(1): 74-80.
Almqvist B S G, Hirt A M, Schmidt V, Dietrich D. 2009. Magnetic fabrics of the morcles nappe complex. Tecto?no-physics, 466(1-2): 89-100.
Borradaile G J, Hamilton T. 2004. Magnetic fabrics may proxy as neotectonic stress trajectories, Polis rift, Cyprus. Tectonics, 23(1), TC1001.
Borradaile G J, Henry B. 1997. Tectonic applications of magnetic susceptibility and its anisotropy. Earth-Science Reviews, 42(1-2): 49-93.
Borradaile G J. 1988. Magnetic susceptibility, petrofabrics and strain. Tectonophysics, 156(1): 1-20.
Cande S C, Raymond C A, Stock J, Haxby W F. 1995. Geophysics of the pitman fracture zone and pacific- antarctic plate motions during the Cenozoic. Science, 270: 947-953.
Chadima M, Hrouda F, Melichar R. 2006. Magnetic fabric study of the SE Rhenohercynian Zone (Bohemian Massif): Implications for dynamics of the Paleozoic accretionary wedge. Tectonophysics, 418(S1-2): 93-109
Cifelli F, Mattei M, Chadima M, Hirt A M, Hansen A. 2005. The origin of tectonic lineation extensional basins: Combined neutron texture and magnetic analyses on “undeformed” clays. Earth and Planetary Science Letters, 235(1-2): 62-78.
Cifelli F, Rossetti F, Mattei M, Hirt A M, Funiciello R, Tortorici L. 2004. An AMS, structural and paleomagnetic study of quaternary deformation in eastern Sicily. Journal of Structural Geology, 26(1): 29-46.
Garcia-Lasanta C, Oliva-Urcia B, Román-Berdiel T, Casas A M, Gil-Pe?a I, Sánchez-Moya Y, Sope?a A, Hirt A M, Mattei M. 2015. Evidence for the Permo-Triassic transtensional rifting in the Iberian Range (NE Spain) according to magnetic fabrics results. Tectonophysics, 651-652: 216-231.
Hrouda F. 1982. Magnetic anisotropy of rocks and its application in geology and geophysics. Geophysical Surveys, 5(1): 37-82.
Jakub T, Ji?í ?, Marta C, Vojtěch J. 2009. Magnetic fabric of the ?í?any granite, Bohemian Massif: A record of helical magma flow? Journal of Volcanology and Geothermal Research, 181(1): 25-34.
Jelinek V. 1981. Characterization of the magnetic fabric of rocks. Tectonophysics, 79(3-4): 64-67.
Kissel C, Barrier E, Laj C, Teh-Quei L. 1986. Magnetic fabric in “undeformed” marine clays from compressional zones. Tectonics, 5(5): 769-781.
Kligfield R, Lowrie W, Dalziel I. 1977. Magnetic susceptibility anisotropy as a strain indicator in the Sudbury Basin, Ontario. Tectonophysics, 40(3-4): 287- 308.
Kodama K P. 1995. Magnetic fabrics. Reviews of Geophysics, 33(S1): 129-135.
Larrasoana J C, Pueyo E L, Pares J M. 2004. An integrated AMS, structural, palaeo- and rock-magnetic study of Eocene marine marls from the Jaca-Pamplona basin (Pyrenees, N Spain); new insights into the timing of magnetic fabric acquisition in weakly deformed mudrocks. Geological Society, London, Special Publications, 238(1): 127-144.
Li Q, You X Z, Yang S M, Du R L, Qiao X J, Zou R, Wang Q. 2012. A precise Velocity field of tectonic deformation in China as inferred from intensive GPS observation. Science China: Earth Sciences, 55(5): 695-698.
Li Y, Liang W T, Zhang G W, Jiang D Z, Wang J L. 2017. Tectonic setting of the Late Triassic magmatism in the Qinling Orogen: New constraints from the interplay between granite emplacement and shear zone deformation in the Shagou area. Geological Journal, 52: 250-271.
Li Y, Liang W T, Zhang G W, Ran Y Z, Shen Q, Wang J L, Jin C S. 2018. Granitoid emplacement during syn-convergent transtension: An example from the Huamenlou pluton in North Qinling, central China. Geoscience Frontiers, 9: 191-205.
Lüneburg C M, Lampert S A, Lebit H D, Hirt A M, Casey M, Lowrie W. 1999. Magnetic anisotropy, rock fabrics and finite strain in deformed sediments of SW Sardinia (Italy). Tectonophysics, 307(1): 51-74.
Oliva-Urcia B, Larrasona?a J C, Pueyo E L, Gil A, Mata P, Parés J M, Schleicher A M, Pueyo O. 2009. Disentangling magnetic subfabrics and their link to deformation processes in cleaved sedimentary rocks from the Internal Sierras (West central Pyrenees, Spain). Journal of Structural Geology, 31(2): 163-176.
Parés J M, Pluijm B A V D. 2002. Evaluating magnetic lineations (AMS) in deformed rocks. Tectonophysics, 350(4): 283-298.
Ren J, Tamaki K, Li S, Junxia Z. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics, 344(3): 175- 205.
Rochette P, Jackson M, Aubourg C. 1992. Rock magnetism and the interpretation of anisotropy of magnetic suscep?tibility. Reviews of Geophysics, 30(3): 209-226.
Sagnotti L, Faccenna C, Funiciello R, Mattei M. 1994. Magnetic fabric and structural setting of Plio-Pleistocene clayey units in an extensional regime: The Tyrrhenian margin of central Italy. Journal of Structural Geology, 16(9): 1243-1257.
Scheepers P J J, Langereis C G. 1994. Magnetic fabric of Pleistocene clays from the Tyrrhenian arc: A magnetic lineation induced in the final stage of the middle Pleistocene compressive event. Tectonics, 13(5): 1190-1200.
Thompson R, Oldfie F. 1986. Environmental Magnetism. London: Allen and Unwin: 1-227.
Tarduno J A, Duncan R A, Scholl D W, Cottrell R D, Steinberger B, Thordarson T, Kerr B C, Neal C R, Frey F A, Torii M, Carvallo C. 2003. The Emperor Seamounts: Southward motion of the Hawaiian hotspot plume in Earth’s mantle. Science, 301(5636): 1064-1069.
Tarduno J A. 2007. On the motion of Hawaii and other mantle plumes. Chemical Geology, 241(3): 234-247.
Tarling D, Hrouda F. 1993. The Magnetic Anisotropy of Rocks. London: Chapman and Hall: 1-189.

备注/Memo

备注/Memo:
收稿日期: 2019-07-04; 改回日期: 2019-10-21
项目资助: 中国地质调查局安徽1∶5万南陵县等5幅区域地质矿产调查项目(12120113069200)、长江中下游成矿带安庆-盱眙地区地质矿产调查项目(DD20160036)和安徽省公益性地质项目(2016-g-3-32)联合资助。
第一作者简介: 王朝(1988-), 男, 硕士, 工程师, 从事区域地质调查工作及构造地质学研究。Email: dynasty136671371@126.com
更新日期/Last Update: 2022-04-10