[1]信延芳,闫 义,Marta Pérez-Gussinyé.2022.拉张速率和岩石圈流变结构对大陆岩石圈破裂影响的数值模拟研究.大地构造与成矿学,46(2):191-201.doi:10.16539/j.ddgzyckx.2022.02.001
 XIN Yanfang,YAN Yi,Marta Pérez-Gussinyé.2022.Impact of Extension Rate and Crustal Rheology on the Evolution of Passive Continental Margins.Geotectonica et Metallogenia,46(2):191-201.doi:10.16539/j.ddgzyckx.2022.02.001
点击复制

拉张速率和岩石圈流变结构对大陆岩石圈破裂影响的数值模拟研究
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2022年46卷02期
页码:
191-201
栏目:
构造地质学
出版日期:
2022-04-25

文章信息/Info

Title:
Impact of Extension Rate and Crustal Rheology on the Evolution of Passive Continental Margins
文章编号:
1001-1552(2022)02-0191-011
作者:
信延芳1、2、3、4 闫 义1、2、5、6* Marta Pérez-Gussinyé4 罗 阳7
1. 中国科学院 广州地球化学研究所, 边缘海与大洋地质重点实验室, 广东 广州 510640; 2. 中国科学院深地科学卓越创新中心, 广东 广州 510640; 3. 中国科学院大学, 北京 100049; 4. 不莱梅大学 海洋环境 研究中心, 德国 不莱梅; 5. 南方海洋科学与工程广东省实验室(广州), 广东 广州 511458; 6. 中国科学院南海生态环境工程创新研究院, 广东 广州 510301; 7. 中石化胜利油田发展规划部, 山东 东营 257001
Author(s):
XIN Yanfang1、2、3、4 YAN Yi1、2、5、6* Marta Pérez-Gussinyé4 LUO Yang7
1. Key Laboratory of Ocean and Marginal Sea Geology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China; 2. CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, Guangdong, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China; 4. Marum-center for Marine Environmental Sciences, University of Bremen, Germany; 5. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, China; 6. Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, China; 7. Department of Developing and Planning in Shengli Oil Field, SINOPEC Group, Dongying 257001, Shandong, China
关键词:
被动大陆边缘 拉张速率 岩石圈流变结构 数值模拟
Keywords:
passive continental margins extension rate lithosphere rheology numerical modelling
分类号:
P542; TE352
DOI:
10.16539/j.ddgzyckx.2022.02.001
文献标志码:
A
摘要:
拉张速率和岩石圈流变结构是影响大陆岩石圈破裂的重要因素, 共同控制大陆裂谷的演化过程, 最终形成不同结构的被动大陆边缘。本文通过热-动力学数值模拟, 分析了拉张速率和岩石圈流变结构对初始裂谷形态及最终大陆边缘结构的影响。模拟结果显示, 在不同下地壳厚度(15 km或20 km)和拉张速率(半拉张速率为2~50 mm/a)条件下, 大陆岩石圈的破裂时间、破裂过程及大陆边缘结构均会发生明显改变。两种不同初始流变结构模型的初始裂谷均为窄裂谷。当下地壳的厚度为15 km时, 较慢的拉张速率下(2~5 mm/a)最终产生了对称型大陆边缘, 较快的拉张速率下(10~25 mm/a)形成了非对称型大陆边缘。而当下地壳的厚度为20 km时, 不同的拉张速率下均形成非对称型大陆边缘。同时, 对于不同的岩石圈流变结构, 拉张速率越快, 岩石圈破裂发生时间越早。在超慢速数值模拟实验中, 由于岩石圈破裂时间长, 岩石圈热冷却程度较高, 上地壳主要发育脆性断裂, 壳幔耦合程度较高, 进而形成过度伸展的地壳。在超慢拉张速率(2~5 mm/a)和超快拉张速率(50 mm/a)下, 大陆边缘对称性较高。对于不同流变结构的岩石圈, 在超快拉张速率下会发育类似宽度的共轭大陆边缘。
Abstract:
Continental rifted margins, which record the processes from continental lithosphere extension and thinning to seafloor spreading, are a frontier research area in solid earth science. In order to investigate the influence of lithospheric extension rate and crustal structure on the configuration of continental rifted margins, ten sets of high-resolution two-dimensional elastic-visco-plastic thermodynamic numerical simulations with different crustal thicknesses and extension rates are carried out. In all models, the thickness of the quartz upper crust is set at 20 km, while the thickness of the crust is mainly controlled by the thickness of the mafic lower crust. When the thickness of the crust is 35 km, symmetric continental margins are eventually reproduced at lower extension rates, while asymmetric continental margins are formed at higher tension rates. The asymmetry reaches its maximum at an extension rate of 10 mm/a, with the wider side of the rift margin reaching a width of nearly 1000 km, while the narrower side of the rift margin is less than 100 km wide. The formation of this type of asymmetric continental rift margin is mainly caused by the oceanward migration of the spreading center. The oceanward migration of the spreading center is driven by the lower crustal flow formed at the root of the fault. The formation of the lower crustal flow requires that the upwelling of the asthenosphere to heat and weaken the fault roots while allowing sufficient time for thermal diffusion to cool and harden the lithosphere on the continental side. When the thickness of the lower crust of the model is 40 km, asymmetric continental margins are formed at different extension rates. Models with relatively high extension rates, asymmetric rift margins are also formed by the migration of the rift center. When the model has a very slow half extension rate (2 mm/a), the upper crust mainly develops brittle fractures due to the long lithospheric rupture time and high thermal cooling rate of the lithosphere, and the crust-mantle coupling is high, which leads to the formation of hyperextended rifted margins with a relatively wide width. On the contrary, continental margins tend to form symmetric configuration at ultra-slow half extension rates (2 - 5 mm/a) and ultra-fast half extension rates (50 mm/a).

参考文献/References:

崔学军, 夏斌, 张宴华, 刘宝明, 王冉, 闫义. 2005. 地幔活动在南海扩张中的作用数值模拟与讨论. 大地构造与成矿学, 29(3): 334-338.
孙珍, 刘思青, 庞雄, 姜建群, 毛爽. 2016. 被动大陆边缘伸展-破裂过程研究进展. 热带海洋学报, 35(1): 1-16.
吴哲, 许怀智, 杨风丽, 邵磊. 2014. 南海东北部岩石圈伸展的构造模拟约束. 大地构造与成矿学, 38(1): 71-81.
夏斌, 崔学军, 张宴华, 刘宝明, 王冉, 闫义. 2005. 南海扩张的动力学因素及其数值模拟讨论. 大地构造与成矿学, 29(3): 328-333.
Andrés-Martínez M, Morgan J P, Pérez-Gussinyé M, Rüpke L. 2015. A new free-surface stabilization algorithm for geodynamical modelling: Theory and numerical tests. Physics of the Earth and Planetary Interiors, 246: 41-51.
Andrés-Martínez M, Pérez-Gussinyé M, Armitage J, Morgan J P. 2019. Thermomechanical implications of sediment transport for the architecture and evolution of continental rifts and margins. Tectonics, 38(2): 641-665.
Beaumont C, Ings S J. 2012. Effect of depleted continental lithosphere counterflow and inherited crustal weakness on rifting of the continental lithosphere: General results. Journal of Geophysical Research: Solid Earth, 117, B08407.
Bendick R, McClusky S, Bilham R, Asfaw L, Klemperer S. 2006. Distributed Nubia-Somalia relative motion and dike intrusion in the Main Ethiopian Rift. Geophysical Journal International, 165(1): 303-310.
Bennett R A, Wernicke B P, Davis J L. 1998. Continuous GPS measurements of contemporary deformation across the northern Basin and Range province. Geophysical Research Letters, 25(4): 563-566.
Berglund H T, Sheehan A F, Murray M H, Roy M, Lowry A R, Nerem R S, Blume F. 2012. Distributed deformation across the Rio Grande rift, Great Plains, and Colorado plateau. Geology, 40(1): 23-26.
Brun J P. 1999. Narrow rifts versus wide rifts: Inferences for the mechanics of rifting from laboratory experiments. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 357(1753): 695-712.
Brune S, Williams S E, Butterworth N P, Müller R D. 2016. Abrupt plate accelerations shape rifted continental margins. Nature, 536(7615): 201-204.
Buck W R. 1991. Modes of continental lithospheric extension. Journal of Geophysical Research: Solid Earth, 96(B12): 20161-20178.
Buck W R, Lavier L L, Poliakov A N. 1999. How to make a rift wide? Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engi?neering Sciences, 357(1753): 671-693.
Buck W R, Poliakov A N. 1998. Abyssal hills formed by stretching oceanic lithosphere. Nature, 392(6673): 272- 275.
Burov E, Poliakov A. 2001. Erosion and rheology controls on synrift and postrift evolution: Verifying old and new ideas using a fully coupled numerical model. Journal of Geophysical Research: Solid Earth, 106(B8): 16461- 16481.
Calais E, Lesne O, Déverchère J, San’kov V, Lukhnev A, Miroshnitchenko A, Buddo V, Levi K, Zalutzky V, Bashkuev Y. 1998. Crustal deformation in the Baikal rift from GPS measurements. Geophysical Research Letters, 25(21): 4003-4006.
Dabrowski M, Krotkiewski M, Schmid D W. 2008. MILAMIN: MATLAB-based finite element method solver for large problems. Geochemistry, Geophysics, Geosystems, 9(4), 2007GC001719.
Franke D. 2013. Rifting, lithosphere breakup and volcanism: Comparison of magma-poor and volcanic rifted margins. Marine and Petroleum Geology, 43: 63-87.
Golombek M P, McGILL G E, Brown L. 1983. Tectonic and geologic evolution of the Espanola Basin, Rio Grande Rift: Structure, rate of extension, and relation to the state of stress in the western United States. Tectonophysics, 94(1-4): 483-507.
Hammond W C, Thatcher W. 2004. Contemporary tectonic deformation of the Basin and Range province, western United States: 10 years of observation with the Global Positioning System. Journal of Geophysical Research: Solid Earth, 109(B8). doi: 10.1029/2003JB002746
Heine C, Zoethout J, Müller R D. 2013. Kinematics of the South Atlantic rift. Solid Earth, 4(2): 215-253.
Huet B, Le Pourhiet L, Labrousse L, Burov E B, Jolivet L. 2011. Formation of metamorphic core complex in inherited wedges: A thermomechanical modelling study. Earth and Planetary Science Letters, 309(3-4): 249-257.
Huismans R, Beaumont C. 2011. Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins. Nature, 473(7345): 74-78.
Huismans R S, Beaumont C. 2002. Asymmetric lithospheric extension: The role of frictional plastic strain softening inferred from numerical experiments. Geology, 30(3): 211-214.
Huismans R S, Beaumont C. 2007. Roles of lithospheric strain softening and heterogeneity in determining the geometry of rifts and continental margins. Geological Society, London, Special Publications, 282(1): 111-138.
Huismans R S, Beaumont C. 2008. Complex rifted continental margins explained by dynamical models of depth- dependent lithospheric extension. Geology, 36(2): 163- 166.
Huismans R S, Podladchikov Y Y, Cloetingh S. 2001. Transition from passive to active rifting: Relative importance of asthenospheric doming and passive extension of the lithosphere. Journal of Geophysical Research: Solid Earth, 106(B6): 11271-11291.
Jarvis G T, McKenzie D P. 1980. Sedimentary basin formation with finite extension rates. Earth and Planetary Science Letters, 48(1): 42-52.
Kaus M, Kowal J, Sauer D U. 2010. Modelling the effects of charge redistribution during self-discharge of superca?pa-citors. Electrochimica Acta, 55(25): 7516-7523.
Lavier L L, Manatschal G. 2006. A mechanism to thin the continental lithosphere at magma-poor margins. Nature, 440(7082): 324-328.
Le Pourhiet L, Burov E, Moretti I. 2004. Rifting through a stack of inhomogeneous thrusts (the dipping pie concept). Tectonics, 23(4), doi: 10.1029/2003TC001584
Manatschal G. 2004. New models for evolution of magma- poor rifted margins based on a review of data and concepts from West Iberia and the Alps. International Journal of Earth Sciences, 93(3): 432-466.
McClusky S, Reilinger R, Ogubazghi G, Amleson A, Healeb B, Vernant P, Sholan J, Fisseha S, Asfaw L, Bendick R, Kogan L. 2010. Kinematics of the southern Red Sea — Afar Triple Junction and implications for plate dynamics. Geophysical Research Letters, 37(5), doi: 10.1029/ 2009GL041127
McKenzie D. 1978. Active tectonics of the Alpine — Himalayan belt: The Aegean Sea and surrounding regions. Geophysical Journal International, 55(1): 217-254.
Müller R D, Sdrolias M, Gaina C, Roest W R. 2008. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochemistry, Geophysics, Geosystems, 9(4), 2007GC001743
Nem?ok M, Sinha S T, Stuart C J, Welker C, Choudhuri M, Sharma S P, Misra A A, Sinha N, Venkatraman S. 2013. East Indian margin evolution and crustal architecture: Integration of deep reflection seismic interpretation and gravity modelling. Geological Society, London, Special Publications, 369(1): 477-496.
Nem?ok M, Stuart C, Rosendahl B R, Welker C, Smith S, Sheya C, Sinha S T, Choudhuri M, Allen R, Reeves C, Sharma S P. 2012. Continental break-up mechanism; lessons from intermediate- and fast-extension settings. Geological Society, London, Special Publications, 369(1): 373-401.
Pérez-Gussinyé M, Andrés-Martínez M, Araújo M, Xin Y, Armitage J, Morgan J P. 2020. Lithospheric strength and rift migration controls on synrift stratigraphy and breakup unconformities at rifted margins: Examples from numerical models, the Atlantic and South China Sea margins. Tectonics, 39(12), 2020TC006255.
Pérez-Gussinyé M, Reston T J, Morgan J P. 2001. Serpenti?ni-zation and magmatism during extension at non-volcanic margins: The effect of initial lithospheric structure. Geological Society, London, Special Publications, 187(1): 551-576.
Péron-Pinvidic G, Manatschal G. 2009. The final rifting evolution at deep magma-poor passive margins from Iberia-Newfoundland: A new point of view. International Journal of Earth Sciences, 98(7): 1581-1597.
Reston T J. 2009. The structure, evolution and symmetry of the magma-poor rifted margins of the North and Central Atlantic: A synthesis. Tectonophysics, 468(1-4): 6-27.
Snow J K, Wernicke B P. 2000. Cenozoic tectonism in the central Basin and Range; magnitude, rate, and distribution of upper crustal strain. American Journal of Science, 300(9): 659-719. doi: 10.2475/ajs.300.9.659
Spohn T, Schubert G. 1983. Convective thinning of the lithosphere: A mechanism for rifting and mid-plate volcanism on Earth, Venus, and Mars. Tectonophysics, 94(1-4): 67-90.
Tesfaye S, Harding D J, Kusky T M. 2003. Early continental breakup boundary and migration of the Afar triple junction, Ethiopia. GSA Bulletin, 115(9): 1053-1067.
Vigny C, Huchon P, Ruegg J C, Khanbari K, Asfaw L M. 2006. Confirmation of Arabia slow motion by new GPS data in Yemen. Journal of Geophysical Research: Solid Earth, 111(B2), doi: 10.1029/2004JB003229
Wernicke B. 1985. Uniform-sense normal simple shear of the continental lithosphere. Canadian Journal of Earth Sciences, 22(1): 108-125.
Wernicke B, Burchfiel B C. 1982. Modes of extensional tectonics. Journal of Structural Geology, 4(2): 105-115.
Woodward L A. 1977. Rate of crustal extension across the Rio Grande rift near Albuquerque, New Mexico. Geology, 5(5): 269-272.

相似文献/References:

[1]高金尉,吴时国,彭学超.南海共轭被动大陆边缘洋陆转换带构造特征.大地构造与成矿学,2015.39(4):555.doi:10.16539/j.ddgzyckx.2015.04.001
 GAO Jinwei,WU Shiguo,PENG Xuechao.Structures of Continent-Ocean Transition at the Conjugate Passive Margins of the South China Sea.Geotectonica et Metallogenia,2015.46(2):555.doi:10.16539/j.ddgzyckx.2015.04.001

备注/Memo

备注/Memo:
收稿日期: 2021-03-09; 改回日期: 2021-03-31
项目资助: 国家自然科学基金项目(41676048、U1701641)、南方海洋科学与工程广东省实验室团队项目(GML 2019ZD0205)和中国科学院南海生态环境工程创新研究院自主部署项目(ISEE2020YB07)联合资助。
第一作者简介: 信延芳(1991-), 女, 博士研究生, 构造地质学专业。E-mail: xinyanfang1990@163.com
通信作者: 闫义(1974-), 男, 研究员, 主要从事边缘海构造与盆地演化方面的研究工作。E-mail: yanyi@gig.ac.cn
更新日期/Last Update: 2022-04-10