[1]邹艳红,张武桥,毛先成.2021.胶东焦家金矿床成矿过程热液蚀变化学反应数值模拟.大地构造与成矿学,优先出版:001-18.doi:10.16539/j.ddgzyckx.2022.01.010
 ZOU Yanhong,ZHANG Wuqiao,MAO Xiancheng.2021.Numerical Simulation of Hydrothermal Alteration Chemical Reactions during Ore-forming Process in the Jiaojia Gold Deposit, Jiaodong Peninsula, China.Geotectonica et Metallogenia,优先出版:001-18.doi:10.16539/j.ddgzyckx.2022.01.010
点击复制

胶东焦家金矿床成矿过程热液蚀变化学反应数值模拟
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2021年优先出版
页码:
001-18
栏目:
出版日期:
2022-12-30

文章信息/Info

Title:
Numerical Simulation of Hydrothermal Alteration Chemical Reactions during Ore-forming Process in the Jiaojia Gold Deposit, Jiaodong Peninsula, China
作者:
邹艳红 张武桥 毛先成 刘占坤
(1. 中南大学 有色金属成矿预测与地质环境监测教育部重点实验室, 湖南 长沙 410083; 2. 中南大学 地球科学与信息物理学院, 湖南 长沙 410083)
Author(s):
ZOU Yanhong ZHANG Wuqiao MAO Xiancheng LIU Zhankun
(1. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, Central South University, Changsha 410083, Hunan, China; 2. School of Geosciences and Info-Physics, Central South University, Changsha 410083, Hunan, China)
关键词:
数值模拟 焦家金矿床 化学反应 热液蚀变 TOUGHREACT
Keywords:
numerical simulation Jiaojia gold deposit chemical reaction hydrothermal alteration TOUGHREACT
分类号:
P618.51, P628.3
DOI:
10.16539/j.ddgzyckx.2022.01.010
文献标志码:
A
摘要:
焦家金矿床是胶东金矿集区中典型的破碎带蚀变岩型金矿床, 存在明显的蚀变分带特征, 然而, 热液蚀变分带的形成条件及发生金沉淀化学反应的空间位置尚不够明确。本文利用TOUGHREACT软件对焦家金矿床含矿热液与围岩化学反应进行了模拟, 旨在定量探讨该矿床热液蚀变过程。通过分析含矿热液与围岩发生的化学反应, 构建热液蚀变成矿概念模型, 模拟计算不同温压条件下成矿流体组分化学平衡浓度以及pH值的变化, 研究成矿过程热液蚀变矿物的溶解与沉淀机制。模拟结果显示Au+的化学平衡浓度在温度从280 ℃降至180 ℃的过程中呈明显下降趋势, Fe2+化学平衡浓度与Au+呈现相似的变化趋势, 表明金矿物最佳成矿温度范围为180~280 ℃, 成矿流体中Fe2+与 [Au(HS)2]- 络合物发生置换还原反应, 促使金沉淀析出; 不同温度和压力条件对成矿元素化学平衡浓度变化影响表明, 温度是控制金沉淀化学反应的关键因素, 压力影响相对较小; 而 pH值模拟结果表明热液蚀变反应过程成矿流体pH值升高, 成矿环境从酸性环境逐渐转变为中性、碱性环境, 与传统地质手段分析结果一致, 验证了模拟结果的有效性。上述研究结果表明, 在温度驱动力作用下, 成矿流体沿断裂侧向运移与围岩持续叠加的蚀变作用, 形成了蚀变分带; 在紧靠断裂带下盘的黄铁绢英岩化带, 由于易发生多种蚀变的叠加以及成矿温度、pH值的变化, 有利于金的沉淀富集。
Abstract:
The Jiaojia gold deposit is one of the most typical altered-type gold deposits in the Jiaodong gold province, with a clear alteration zonation. However, it is still unclear for the formation conditions of hydrothermal alteration zonation and the spatial location of chemical reaction associated with gold precipitation. This paper used the TOUGHREACT software to simulate the chemical reaction between ore-bearing fluids and wall rocks of the Jiaojia gold deposit to quantitatively discuss the hydrothermal process. Firstly, we constructed a conceptual mineralization model related to hydrothermal alteration by discussing the chemical reaction between ore-bearing fluids and wall rocks. Subsequently, we simulated the chemical equilibrium concentration of ore-forming fluids and pH changes under different temperature and pressure conditions, which was used to study the dissolution and precipitation mechanism of hydrothermally minerals during ore-forming processes. The simulation results show that the chemical equilibrium concentration of Au+ significantly decreased with the temperature from 280 ℃ to 180 ℃, and the chemical equilibrium concentration of Fe2+ is also similar, indicating that the favorite gold metallogenic temperature range is 180 ℃ to 280 ℃, and Fe2+ in ore-forming fluids reacts with complex [Au(HS)2]- to promote gold precipitation. The influence of different temperature and pressure conditions on the changes of the chemical equilibrium concentration of ore elements shows that the temperature is the key factor of controlling gold precipitation, while the pressure influence is relatively weak. The pH simulation results show that the pH value of ore-forming fluids increased during the hydrothermal alteration reaction with the ore-forming environment changes from acidic to neutral and/or alkaline, which is consistent with the observation of traditional geological studies. This verified the validity of simulation results. The above results indicate that the lateral movement of ore-forming fluid along the fault resulted in the continuous overprinting alteration under the temperature driving. The pyrite-sericite-quartz alteration, located in the footwall of fault zone is conducive to gold precipitation and enrichment due to frequent overprinting of various alterations and changes of temperature and pH.

参考文献/References:

程志中, 袁慧香, 彭琳琳, 卢国安, 贾祥祥, 邴明明, 林成贵. 2021. 基岩区寻找隐伏矿的地球化学方法: 构造地球化学测量. 地学前缘, 28(3): 328–337.
戴文强, 李晓晖, 袁峰, 张明明, 胡训宇, 周涛发. 2019. 安庆铜矿床典型矽卡岩矿物形成过程数值模拟. 合肥工业大学学报(自然科学版), 42(3): 346–354.
邓军, 徐守礼, 方云, 周显强, 万丽. 1996. 胶东西北部构造体系及金成矿动力学. 北京: 地质出版社: 1–98.
邓军, 方云, 杨立强, 丁式江, 肖荣阁, 彭润民, 王建平. 2000. 剪切蚀变与物质迁移及金的富集——以胶东矿集区为例. 地球科学, 25(4): 428–432.
丁式江, 翟裕生, 邓军. 2000. 胶东焦家金矿蚀变岩中元素的质量迁移. 地质与勘探, 36(4): 28–31.
杜泽忠, 程志中, 姚晓峰, 于晓飞, 陈辉, 李少华, 鲍兴隆. 2020. 胶东谢家沟金矿热液蚀变作用过程的元素迁移规律. 地质通报, 39(8): 1137–1152.
范永香, 周群辉. 1987. 山东焦家金矿床成矿地球化学特征及成矿机理. 地球科学, 12(4): 414–424.
郭林楠. 2016. 胶东型金矿床成矿机理. 北京: 中国地质大学(北京)博士学位论文: 1–181.
郭涛, 吕古贤, 邓军, 李学军, 孙之夫, 郭初笋. 2003. 构造应力对元素分配的控制作用——以焦家金矿床为例. 地质力学学报, 9(2): 183–190.
胡受奚, 叶瑛, 方长泉. 2004. 交代蚀变岩岩石学及其找矿意义. 北京: 地质出版社: 1–264.
黄沁怡, 李增华, 许德如, 池国祥, 邓腾, 赵朝霞, 于得水. 2021. 多过程耦合动力学数值模拟在热液矿床研究中的应用及发展前景. 大地构造与成矿学, 45(6): 1146–1160.
李瑞红. 2017. 焦家金矿带构造控矿模式. 北京: 中国地质大学(北京)博士学位论文: 1–195.
李瑞红, 安平, 恽孟河, 孟银生, 刘汉粮. 2019. 焦家断裂带三维结构模型及其数值模拟: 以新城金矿床控矿构造为例. 大地构造与成矿学, 43(1): 33–45.
李士先, 刘长春, 安郁宏, 王为聪, 黄太岭, 杨承海. 2007. 胶东金矿地质. 北京: 地质出版社: 1–413.
凌洪飞, 胡受奚, 孙景贵, 倪培, 沈昆. 2002. 胶东金青顶和大尹格庄金矿床花岗质围岩的蚀变地球化学研究. 矿床地质, 21(2): 187–199.
刘家军, 翟德高, 王大钊, 高燊, 尹超, 柳振江, 王建平, 王银宏, 张方方. 2020. Au-(Ag)-Te-Se成矿系统与成矿作用. 地学前缘, 27(2): 79–98.
刘向东, 邓军, 张良, 林少一, 周明岭, 宋宇宙, 徐晓磊, 连琛芹. 2019. 胶西北寺庄金矿床热液蚀变作用. 岩石学报, 35(5): 1551–1565.
刘亚洲, 王恩敬, 王偲瑞, 郭广军, 李大鹏, 张炳林. 2018. 焦家金矿床水-岩反应过程及成矿流体组分变化规律. 高校地质学报, 24(6): 907–917.
吕古贤, 孙岩, 刘德良, 吴学益, 刘瑞珣. 2011. 构造地球化学的回顾与展望. 大地构造与成矿学, 35(4): 479–494.
宋明春, 伊丕厚, 徐军祥, 崔书学, 沈昆, 姜洪利, 袁文花, 王化江. 2012. 胶西北金矿阶梯式成矿模式. 中国科学: 地球科学, 42(7): 992–1000.
宋明春, 宋英昕, 沈昆, 姜洪利, 李世勇. 2013. 胶东焦家深部金矿矿床地球化学特征及有关问题讨论. 地球化学, 42(3): 274–289.
宋明春, 李三忠, 伊丕厚, 崔书学, 徐军祥, 吕古贤, 宋英昕, 姜洪利, 周明岭, 张丕建, 黄太岭, 刘长春, 刘殿浩. 2014. 中国胶东焦家式金矿类型及其成矿理论. 吉林大学学报(地球科学版), 44(1): 87–104.
宋明春, 林少一, 杨立强, 宋英昕, 丁正江, 李杰, 李世勇, 周明岭. 2020. 胶东金矿成矿模式. 矿床地质, 39(2): 215–236.
汪浩, 杨立强, 王偲瑞, 张良, 魏瑜吉, 吕广耀. 2020. 胶西北寺庄金矿床红化蚀变过程及其对金成矿贡献. 岩石学报, 36(5): 1515–1528.
王偲瑞, 杨立强, 成浩, 李大鹏, 单伟, 袁建江. 2020. 基底构造对矿床定位的控制机制: 焦家金矿带构造应力转移模拟. 岩石学报, 36(5): 1529–1546.
王玉荣, 胡受奚. 2000. 钾交代蚀变过程中金活化转移实验研究——以华北地台金矿为例. 中国科学(D辑), 30(5): 499–508.
王中亮. 2012. 焦家金矿田成矿系统. 北京: 中国地质大学(北京)博士学位论文: 1–230.
肖凡, 王恺其. 2021. 德兴斑岩铜矿床断裂与侵入体产状对成矿的控制作用: 从力-热-流三场耦合数值模拟结果分析. 地学前缘, 28(3): 190–207.
严育通, 张娜, 李胜荣, 李永生. 2013. 胶东各类型金矿床黄铁矿化学成分标型特征. 地学前缘, 20(3): 88–93.
杨立强, 邓军, 王中亮, 张良, 郭林楠, 宋明春, 郑小礼. 2014. 胶东中生代金成矿系统. 岩石学报, 30(9): 2447–2467.
杨立强, 邓军, 宋明春, 于学峰, 王中亮, 李瑞红, 王偲瑞. 2019. 巨型矿床形成与定位的构造控制: 胶东金矿集区剖析. 大地构造与成矿学, 2019, 43(3): 431–446.
于学峰, 杨德平, 李大鹏, 单伟, 熊玉新, 迟乃杰, 刘鹏瑞, 于雷亨. 2019. 胶东焦家金矿带3000m深部成矿特征及其地质意义. 岩石学报, 35(9): 2893–2910.
张炳林, 杨立强, 黄锁英, 刘跃, 刘文龙, 赵荣新, 徐咏彬, 刘胜光. 2014. 胶东焦家金矿床热液蚀变作用. 岩石学报, 30(9): 2533–2545.
张潮, 刘育, 刘向东, 冯建秋, 黄涛, 张庆, 王旭东. 2014. 胶西北新城金矿床硫同位素地球化学. 岩石学报, 30(9): 2495–2506.
张潮. 2015. 焦家金矿田断裂带构造控矿模式. 北京: 中国地质大学(北京)博士学位论文: 1–187.
张潮, 黄涛, 刘向东, 刘育, 赵海, 王旭东. 2016. 胶西北新城金矿床热液蚀变作用. 岩石学报, 32(8): 2433–2450.
张德会. 2000. 计算流体地球化学研究的进展. 地学前缘, 7(S2): 147–158.
张理刚, 陈振胜, 刘敬秀, 于桂香, 王炳成, 徐金方, 郑文深. 1994. 焦家式金矿水–岩交换作用——成矿流体氢氧同位素组成研究. 矿床地质, 13(3): 193–200.
张良, 杨立强, 王中亮, 刘跃. 2013. 焦家金矿带控矿构造应力场数值模拟. 高校地质学报, 19(S): 406.
张婉秋, 邹艳红. 2020. 基于TOUGHREACT的成矿过程化学反应数值模拟——以虎头崖铅锌多金属矿床为例. 地质找矿论丛, 35(3): 354–362.
赵伦山, 陈岳龙, 叶荣. 1998. 含金黄铁矿的模拟合成实验及热液作用中金富集机制. 地学前缘, 5(2): 301–310.
赵泽霖. 2016. 山东焦家金矿成矿作用与深部预测. 北京: 中国地质科学院硕士学位论文: 1–113.
赵泽霖, 李俊建, 党智财, 付超, 唐文龙, 郭瑞鹏, 张文. 2020. 胶西北焦家金矿深部成矿流体性质及成矿作用. 地质论评, 66(2): 425–438.
Chang C, Luo G. 2021. Coupled THMC finite-element modeling of hydrothermal systems: Insights into the Jiama porphyry metallogenic system. Ore Geology Reviews, 138: 104404.
Cox S F. 2010. The application of failure mode diagrams for exploring the roles of fluid pressure and stress states in controlling styles of fracture-controlled permeability enhancement in faults and shear zones. Geofluids, 10: 217–233.
Deng J, Yang L Q, Li R H, Groves D I, Santosh M, Wang Z L, Sai S X, Wang S R. 2019. Regional structural control on the distribution of world-class gold deposits: An overview from the Giant Jiaodong Gold Province, China. Geological Journal, 54(1): 378–391.
Deng J, Yang L Q, Groves D I, Zhang L, Qiu K F, Wang Q F. 2020. An integrated mineral system model for the gold deposits of the giant Jiaodong province, eastern China. Earth-Science Reviews, 208(2): 103274.
Feng J W, Zhang X, Luo P, Li X Z, Du H. 2019. Mineral Filling Pattern in Complex Fracture System of Carbonate Reservoirs: Implications from Geochemical Modeling of Water-Rock Interaction. Geofluids, 2019(5): 1–19.
Guo L N, Goldfarb R J, Wang Z L, Li R H, Chen B H, Li J L. 2016. A comparison of Jiaojia- and Linglong-type gold deposit ore-forming fluids: do they differ? Ore Geology Reviews, 88: 511–533.
Hobbs B E, Zhang Y, Ord A, Zhao C. 2000. Application of coupled deformation, fluid flow, thermal and chemical modelling to predictive mineral exploration. Journal of Geochemical Exploration, 69: 505–509.
Jonas L, John T, King H E, Geisler T, Putnis A. 2014. The role of grain boundaries and transient porosity in rocks as fluid pathways for reaction front propagation. Earth & Planetary Science Letters, 386(1): 64–74.
Klunk M A, Dasgupta S, Das M, Concei?#227o R V, Siqueira X, Soyane J, Chemale F, Wander P R. 2021. Application of geochemical modelling software as a tool to predict the diagenetic reactions between the marine connate water and the salt dome in a petroleum system. Journal of South American Earth Sciences, 109(3): 103272.
Li L, Santosh M, Li S R. 2015. The ’Jiaodong type’ gold deposits: Characteristics, origin and prospecting. Ore Geology Reviews, 65: 589–611.
Li Z, Xu Y, Yang L, Guo J, Chen J. 2016. Physical and numerical simulations of the presence of a forsterite transitional zone at high temperature and pressure: insight for scCO(2) geological storage. Australian Journal of Earth Sciences, 63(4): 503–512.
Liu L M, Wang C L, Zhao C B, Zhao Y L. 2011. Geodynamic constraints on orebody localization in the Anqing orefield, China: Computational modeling and facilitating predictive exploration of deep deposits. Ore Geology Reviews, 43(1): 249–263.
Liu Z K, Mao X C, Deng H, Li B, Zhang S G, Lai J Q, Bayless R C, Pan M, Li L J, Shang Q H. 2018. Hydrothermal processes at the Axi epithermal Au deposit, western Tianshan: insights from geochemical effects of alteration, mineralization and trace elements in pyrite. Ore Geology Reviews, 102: 368–385.
Mazzarini F, Musumeci G, Viola G, Garofalo P S, Mattila J. 2019. Structural and lithological control on fluid circulation, dilation and ore mineralization (Rio Albano mine, Island of Elba, Italy). Journal of Structural Geology, 126: 210–230.
Myagkiy A, Truche L, Cathelineau M, Golfier F. 2017. Revealing the conditions of Ni mineralization in the laterite profiles of New Caledonia: Insights from reactive geochemical transport modelling. Chemical Geology, 466(5): 274–284.
Song M C, Li S Z, Santosh M, Zhao S J, Yu S, Yi P H, Cui S X, Lv G X, Xu J X, Song Y X. 2015. Types, characteristics and metallogenesis of gold deposits in the Jiaodong Peninsula, Eastern North China Craton. Ore Geology Reviews, 65(3): 612–625.
Steefel C I, Lasaga A C. 1994. A coupled model for transport of multiple chemical-species and kinetic precipitation dissolution reactions with application to reactive flow in single-phase hydrothermal systems. American Journal of science, 294(5): 529–592.
Wang Z L, Yang L Q, Deng J, Santosh M, Zhang H F, Liu Y, Li R H, Huang T, Zheng X L, Zhao H. 2014. Gold-hosting high Ba-Sr granitoids in the Xincheng gold deposit, Jiaodong Peninsula, East China: Petrogenesis and tectonic setting. Journal of Asian Earth Sciences, 95: 274–299.
Wang Z L, Yang L Q, Guo L N, Marsh E, Wang J P, Liu Y, Zhang C, Li R H, Zhang L, Zheng X L, Zhao R X. 2015. Fluid immiscibility and gold deposition in the Xincheng deposit, Jiaodong Peninsula, China: A fluid inclusion study. Ore Geology Reviews, 65: 701–717.
Wen B J, Fan H R, Santosh M, Hu F F, Pirajno F, Yang K F. 2015. Genesis of two different types of gold mineralization in the Linglong gold field, China: Constrains from geology, fluid inclusions and stable isotope. Ore Geology Reviews, 65: 643–658.
Xu T F, Sonnenthal E, Spycher N, Pruess K. 2006. TOUGHREACT-A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2 geological sequestration. Computers & Geosciences, 32(2): 145–165.
Xu T F, Spycher N, Sonnenthal E, Zhang G X, Zheng L G, Pruess K. 2011. TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions. Computers & Geosciences, 37(6): 763–774.
Yang L Q, Deng J, Goldfarb R J, Zhang J, Gao B F, Wang Z L. 2014. 40Ar/ 39Ar geochronological constraints on the formation of the Dayingezhuang gold deposit: New implications for timing and duration of hydrothermal activity in the Jiaodong gold province, China. Gondwana Research, 25(4): 1469–1483.
Yang L Q, Deng J, Wang Z L, Guo L N, Li R H, Groves D I, Danyushevsky L V, Zhang C, Zheng X L, Zhao H. 2016a. Relationships between gold and pyrite at the Xincheng gold deposit, Jiaodong Peninsula, China: Implications for gold source and deposition in a brittle epizonal environment. Economic Geology, 111(1): 105–126.
Yang L Q, Deng J, Guo R P, Wang Z L, Chen B H, Wang X D. 2016b. World-class Xincheng gold deposit: An example from the giant Jiaodong Gold Province. Geoscience Frontiers, 7(3): 419–430.
Zhao C B, Hobbs B E, Mühlhaus H B, Ord A. 2001. Finite element modelling of rock alteration and metamorphic process in hydrothermal systems. Communications in Numerical Methods in Engineering, 17(12): 833–843.
Zhao C B, Hobbs B E, Ord A. 2009. Fundamentals of computational geoscience: numerical methods and algorithms. Springer, Berlin.
Zhao C B, Hobbs B E, Ord A. 2018. Modeling of mountain topography effects on hydrothermal Pb-Zn mineralization patterns: Generic model approach. Journal of Geochemical Exploration, 190: 400–410.
Zou Y H, Liu Y, Dai T G, Mao X C, Lei Y B, Lai J Q, Tian H L. 2017. Finite difference modeling of metallogenic processes in the Hutouya Pb-Zn deposit, Qinghai, China: Implications for hydrothermal mineralization. Ore Geology Reviews, 91: 463–476.
Zou Y H, Liu Y, Pan Y, Yang K D, Dai T G, Mao X C, Lai J Q, Tian H L. 2019. Numerical simulation of hydrothermal mineralization associated with simplified chemical reactions in Kaerqueka polymetallic deposit, Qinghai, China. Transactions of Nonferrous Metals Society of China, 29(1): 165–177.

相似文献/References:

[1]桑广森.松辽盆地徐家围子三维构造应力场数值模拟研究.大地构造与成矿学,2010.34(2):196.
 SANG Guangseng,XIA Bin.Jaeger J C. 1979. Fundamentals of Rock Mechanics. London: Chapman and Hall.Numerical Modeling of 3D Tectonic Stress Field for the Xujiaweizi Fault Depression of Songliao Basin.Geotectonica et Metallogenia,2010.优先出版:196.
[2]张胜利,夏斌*,胡振华.丽水-椒江凹陷新生代构造应力场数值模拟与油气运聚关系探讨.大地构造与成矿学,2007.31(2):180.
 ZHANG Shengli,XIA Bin,HU Zhenhua and Zhang Y H.NUMERICAL SIMULATION OF CENOZOIC TECTONIC STRESS FIELD AND HYDROCARBON MIGRATION AND ACCUMULATION IN LISHUI-JIAOJIANG SAG.Geotectonica et Metallogenia,2007.优先出版:180.
[3]周叶.单层褶皱变形过程中最大主应力与水平应变的变化及其影响因素.大地构造与成矿学,2007.31(1):037.
 ZHOU Ye,LIN Ge.VARIATION BETWEEN THE MAXIMUM PRINCIPAL STRESS AND HORIZONTAL STRAIN DURING SINGLE FOLD DEFORMATION AND ITS CONTROLLING FACTORS.Geotectonica et Metallogenia,2007.优先出版:037.
[4]徐政语.江汉叠合盆地及邻区中生代以来盆山耦合数值模拟研究.大地构造与成矿学,2006.3(3):305.
 XU Zhengyu,YAO Genshun.A NUMERICAL APPROACH OF COUPLING BETWEEN MESOZOIC SEDIMENTARY BASIN AND OROGENIC BELT IN JIANGHAN OVERLAIN BASIN AND ITS ADJACENT AREA.Geotectonica et Metallogenia,2006.优先出版:305.
[5]李细光,曾佐勋,彭晓文.北淮阳及其邻接区地壳稳定性研究.大地构造与成矿学,2003.27(3):287.
 Li Xi-guang,Zeng Zun-xun,Peng Xiao-wen.THE STUDY ON THE CRUSTAL STABILITY OF BEIHUAIYANG REGION AND ITS VICINITY.Geotectonica et Metallogenia,2003.优先出版:287.
[6]马德云,高振敏,杨世瑜.北衙金矿区构造应力场数值模拟.大地构造与成矿学,2003.27(2):160.
 Ma Deyun,Gao Zhenmin.DIGITAL SIMULATION OF THE STRUCTURAL STRESS FIELD OF BEIYA GOLD DEPOSIT.Geotectonica et Metallogenia,2003.优先出版:160.
[7]马润勇,席先武,彭建兵.青藏高原递进式隆升的力学模式.大地构造与成矿学,2005.29(4):451.
 MA Runyong,XI Xianwu,PENG Jianbing.MECHANICS MODEL OF PROGRESSIVE UPLIFT OF QINGHAI-TIBET PLATEAU.Geotectonica et Metallogenia,2005.优先出版:451.
[8]龚纪文,崔建军,席先武.FLAC数值模拟软件及其在地学中的应用.大地构造与成矿学,2002.26(3):321.
 GONG Ji-wen,CUI Jian -jun,XI Xian -wu.FLAC METHOD FOR NUMERICAL MODELING AND ITS GEOLOGICAL APPLICATION.Geotectonica et Metallogenia,2002.优先出版:321.
[9]夏斌,崔学军,张宴华.南海扩张的动力学因素及其数值模拟讨论.大地构造与成矿学,2005.29(3):328.
 XIA Bin,CUI Xuejun,ZHANG Y H.DYNAMIC FACTORS FOR THE OPENING OF SOUTH CHINA SEA AND A NUMERICAL MODELING DISCUSSION.Geotectonica et Metallogenia,2005.优先出版:328.
[10]崔学军,夏斌,张宴华.地幔活动在南海扩张中的作用数值模拟与讨论.大地构造与成矿学,2005.29(3):334.
 CUI Xuejun,XIA Bin,ZHANG Y H.A NUMERICAL MODELING STUDY ON THE “ASTHENOSPHERE UPWELLING” OF SOUTH CHINA SEA.Geotectonica et Metallogenia,2005.优先出版:334.

备注/Memo

备注/Memo:
项目资助:国家自然科学基金项目(41872249、42030809)、湖南省科技创新计划项目(2021RC4055)和中南大学中央高校基本科研业务费专项资金(2021zzts0799)联合资助。
第一作者简介: 邹艳红(1971-), 女, 教授, 博士生导师, 主要从事三维地学建模与矿产资源定量预测研究与教学工作。E-mail: zouyanhong@csu.edu.cn
通信作者: 毛先成(1963-), 男, 教授, 博士生导师, 主要从事三维成矿预测的研究与教学工作。E-mail: mxc@csu.edu.cn
更新日期/Last Update: 2022-03-08