[1]曾闰灵,魏俊浩,李 欢.2021.东昆仑鑫拓斑状二长花岗岩成因及其地质意义.大地构造与成矿学,45(6):1233-1251.doi:10.16539/j.ddgzyckx.2021.06.008
 ZENG Runling,WEI Junhao,LI Huan.2021.Petrogenesis of the Xintuo Porphyritic Monzogranite from East Kunlun and its Geological Implications.Geotectonica et Metallogenia,45(6):1233-1251.doi:10.16539/j.ddgzyckx.2021.06.008
点击复制

东昆仑鑫拓斑状二长花岗岩成因及其地质意义
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2021年45卷06期
页码:
1233-1251
栏目:
岩石大地构造与地球化学
出版日期:
2021-12-25

文章信息/Info

Title:
Petrogenesis of the Xintuo Porphyritic Monzogranite from East Kunlun and its Geological Implications
文章编号:
1001-1552(2021)06-1233-019
作者:
曾闰灵 魏俊浩 李 欢 黄啸坤 闫茂强 张新铭
中国地质大学 资源学院, 湖北 武汉 430074
Author(s):
ZENG Runling WEI Junhao LI Huan HUANG Xiaokun YAN Maoqiang and ZHANG Xinming
School of Earth Resources, China University of Geosciences, Wuhan 430074, Hubei, China
关键词:
东昆仑造山带 古特提斯洋 埃达克质岩 中三叠世 俯冲-碰撞转换
Keywords:
East Kunlun orogenic belt Proto-Tethys Ocean adakitic rocks Middle Triassic subduction-collision transition
分类号:
P595 P597
DOI:
10.16539/j.ddgzyckx.2021.06.008
文献标志码:
A
摘要:
对于东昆仑地区晚古生代-早中生代古特提斯演化中洋盆闭合的时限目前还存在较大争议。本文对位于东昆仑造山带中段五龙沟地区鑫拓斑状二长花岗岩开展详细的LA-ICP-MS锆石U-Pb年代学、元素和同位素地球化学研究, 确定其形成时代, 探讨其岩石成因及成岩构造背景, 限定古特提斯洋的形成演化过程。结果表明, 斑状二长花岗岩LA-ICP-MS锆石U-Pb年龄为240.5±1.2 Ma, 指示其侵位于中三叠世中晚期。岩石K2O/Na2O值为0.79~1.02, Mg#为34~39, σ为1.71~1.96, A/CNK为1.00~1.05, 属弱过铝质高钾钙碱性系列。岩石的轻重稀土元素分异明显((La/Yb)N= 20.93~32.89), 具有微弱的Eu负异常(Eu/Eu=0.88~0.93), 富集大离子亲石元素Rb、K、Pb、Sr等, 亏损高场强元素Nb、Ta、P、Ti等, 以及具有较高的Sr含量(384~460 μg/g)和Sr/Y值(46.11~61.53), 较低的Y(7.20~9.30 μg/g)和Yb(0.63~0.89 μg/g)含量, 显示埃达克质岩石的地球化学特征。锆石εHf(t)值介于-7.7~-0.3, 对应二阶段模式年龄(tDM2)为1157~1565 Ma。综合分析表明, 鑫拓斑状二长花岗岩形成于由俯冲向同碰撞转换的构造背景, 源于增厚的古老下地壳含石榴子石角闪岩的部分熔融, 且在岩浆形成演化过程中, 经历了一定程度的分离结晶作用, 但未发生明显的壳幔混合。综合区域构造演化以及同时代岩浆岩证据, 本文认为鑫拓斑状二长花岗岩侵位于古特提斯洋北向俯冲的末期、陆(弧)陆局部初始碰撞造山阶段, 古特提斯洋最终完全闭合时间应为中三叠世晚期-晚三叠世早期。
Abstract:
Even though many dating researches have been carried out, however, the closure time of the Paleo-Tethys Ocean remains elusive. The Xintuo porphyritic monzogranite in the East Kunlun orogenic belt may yield constraints on the evolution of Paleo-Tethys Ocean. The results including zircon LA-ICP-MS U-Pb ages, major and trace element concentrations and Lu-Hf isotope compositions are utilized to constrain the petrogenesis and tectonic setting of the Xintuo porphyritic monzogranite, as well as the evolution of the Proto-Tethys Ocean. LA-ICP-MS zircon U-Pb dating yielded a weighted mean age of 240.5±1.2 Ma, indicating that it was emplaced in the Middle Triassic. It is characterized by low K2O/Na2O, σ and A/CNK, indicating that it belongs to the high-K calc-alkaline and weakly peraluminous series. The rocks exhibit right-dipping REE patterns with weakly negative Eu anomalies and high (La/Yb)N ratios (between 20.9 and 32.9). The rocks are enriched in LILE (large ion lithophile elements, such as Rb, K, Pb, Sr), and depleted in HFSE (high field strength elements, such as Nb, Ta, P, Ti). Besides, all the samples have high Sr (vary from 384 to 460 μg/g) and low Y (vary from 7.20 to 9.30 μg/g), Yb (vary from 0.63 to 0.89 μg/g) contents with relatively high Sr/Y ratios (between 46.11 and 61.53), displaying geochemical characteristics similar to those of adakitic rocks. The εHf(t) values of the Xintuo porphyritic monzogranite vary from -7.7 to -0.3, with two-stage Hf model ages vary from 1157 to 1565 Ma. According to the lithological and geochemical characteristics and isotopic compositions of the rocks, we propose that the Xintuo porphyritic monzogranite was derived from partial melting of garnet amphibolite of thickened ancient lower crust, formed in a subduction-collision transition tectonic environment. Finally, in combination with the tectonic evolution of the East Kunlun orogenic belt and the geochronological results and geochemical characteristics of the contemporary intrusive rocks, it is concluded that the Xintuo porphyritic monzogranite was formed at the initial stage of land-land (arc-land) collision at the end of Paleo-Tethys Ocean subduction, and the final closure of the Paleo-Tethys Ocean occurred in the late Middle Triassic to the early Late Triassic.

参考文献/References:

陈功, 裴先治, 李佐臣, 李瑞保, 陈有炘, 刘成军, 陈国超, 王旭斌, 桑继镇, 杨森, 邓文兵. 2016. 东昆仑东段巴隆地区朝火鹿陶勒盖花岗闪长岩体锆石U-Pb年龄、地球化学及其地质意义. 地质通报, 35(12): 1990-2005.
陈国超, 裴先治, 李瑞保, 李佐臣, 刘成军, 陈有炘, 裴磊, 张永明, 王盟, 李小兵, 张玉. 2017. 东昆仑东段香加南山花岗岩基中加鲁河中基性岩体形成时代、成因及其地质意义. 大地构造与成矿学, 41(6): 1097- 1115.
陈国超, 裴先治, 李瑞保, 李佐臣, 裴磊, 刘成军, 陈有炘, 王盟, 高峰, 李小兵. 2019. 东昆仑古特提斯后碰撞阶段伸展作用: 来自晚三叠世岩浆岩的证据. 地学前缘, 26(4): 191-208.
陈国超, 裴先治, 李瑞保, 李佐臣, 裴磊, 刘成军, 陈有炘, 王盟, 高峰, 魏均启. 2020. 东昆仑造山带东段晚古生代-早中生代构造岩浆演化与成矿作用[J/OL]. 地学前缘. https: //doi.org/10.13745/j.esf.sf.2020.4.20.
陈国超, 裴先治, 李瑞保, 李佐臣, 裴磊, 刘战庆, 陈有炘, 刘成军, 高景民, 魏方辉. 2013a. 东昆仑造山带东段南缘和勒冈希里克特花岗岩体时代、成因及其构造意义. 地质学报, 87(10): 1525-1541.
陈国超, 裴先治, 李瑞保, 李佐臣, 裴磊, 刘战庆, 陈有炘, 刘成军, 高景民, 魏方辉. 2013b. 东昆仑洪水川地区科科鄂阿龙岩体锆石U-Pb年代学、地球化学及其地质意义. 地质学报, 87(2): 178-196.
陈国超. 2014. 东昆仑造山带(东段)晚古生代-早中生代花岗质岩石特征、成因及地质意义. 西安: 长安大学博士学位论文: 1-193.
陈加杰. 2018. 东昆仑造山带东端沟里地区构造岩浆演化与金成矿. 武汉: 中国地质大学博士学位论文: 1-224.
高永宝, 李文渊, 钱兵, 李侃, 李东生, 何书跃, 张照伟, 张江伟. 2014. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征. 岩石学报, 30(6): 1647-1665.
郭正府, 邓晋福, 许志琴, 莫宣学, 罗照华. 1998. 青藏东昆仑晚古生代末-中生代中酸性火成岩与陆内造山过程. 现代地质, 12(3): 344-352.
国显正, 贾群子, 李金超, 孔会磊, 姚学钢, 栗亚芝. 2019. 东昆仑扎玛休玛正长花岗岩年代学、地球化学特征及其构造意义. 地质学报, 93(4): 830-842.
国显正, 栗亚芝, 贾群子, 李金超, 孔会磊, 南卡俄吾. 2018. 东昆仑五龙沟金多金属矿集区晚二叠世-三叠纪岩浆岩年代学、地球化学及其构造意义. 岩石学报, 34(8): 2359-2379.
何成, 王力圆, 田立明, 徐净. 2018. 东昆仑哈拉森地区花岗岩类岩石成因及地质意义. 地球科学, 43(4): 1207-1221.
菅坤坤, 朱云海, 王利伟, 高峰, 刘向东, 何元方, 袁璋, 陈继平, 高维强. 2017. 东昆仑中灶火地区中三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因及构造意义. 地质论评, 63(3): 659-676.
李瑞保, 裴先治, 李佐臣, 刘战庆, 陈国超, 陈有炘, 魏方辉, 高景民, 刘成军, 裴磊. 2012. 东昆仑东段晚古生代—中生代若干不整合面特征及其对重大构造事件的响应. 地学前缘, 19(5): 244-254.
李瑞保, 裴先治, 李佐臣, 裴磊, 陈国超, 陈有炘, 刘成军, 王生明. 2018. 东昆仑东段古特提斯洋俯冲作用——乌妥花岗岩体锆石U-Pb年代学和地球化学证据. 岩石学报, 34(11): 3399-3421.
李小伟, 莫宣学, 赵志丹, 朱弟成. 2010. 关于A型花岗岩判别过程中若干问题的讨论. 地质通报, 29(Z1): 278-285.
栗亚芝, 孔会磊, 李金超, 贾群子, 王家有, 南卡俄吾. 2015. 青海五龙沟矿区月亮湾斜长花岗岩地球化学特征及U-Pb年代学研究. 矿物岩石地球化学通报, 34(2): 401-409.
刘智刚. 2011. 东昆仑阿拉克湖—红水川地区晚古生代-早中生代地层构造特征及其构造演化. 西安: 长安大学硕士学位论文: 1-84.
罗照华, 柯珊, 曹永清, 邓晋福, 谌宏伟. 2002. 东昆仑印支晚期幔源岩浆活动. 地质通报, 21(6): 292-297.
马昌前, 熊富浩, 尹烁, 王连训, 高珂. 2015. 造山带岩浆作用的强度和旋回性: 以东昆仑古特提斯花岗岩类岩基为例. 岩石学报, 31(12): 3555-3568.
莫宣学, 罗照华, 邓晋福, 喻学惠, 刘成东, 谌宏伟, 袁万明, 刘云华. 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403-414.
苏玉平, 唐红峰. 2005. A型花岗岩的微量元素地球化学. 矿物岩石地球化学通报, 24(3): 245-251.
王国灿, 王青海, 简平, 朱云海. 2004. 东昆仑前寒武纪基底变质岩系的锆石SHRIMP年龄及其构造意义. 地学前缘, 11(4): 481-490.
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220.
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604.
熊富浩. 2014. 东昆仑造山带东段古特提斯域花岗岩类时空分布、岩石成因及其地质意义. 武汉: 中国地质大学博士学位论文: 1-191.
徐博, 李海宾, 南燕云, 王成勇, 岳涛, 赵明福. 2019. 祁漫塔格山阿格腾地区晚三叠世火成岩LA-MC-ICP- MS锆石U-Pb年龄、地球化学特征及构造意义. 地质论评, 65(2): 353-369.
许庆林, 孙丰月, 李碧乐, 钱烨, 李良, 杨延乾. 2014. 东昆仑莫河下拉银多金属矿床花岗斑岩年代学、地球化学特征及其构造背景. 大地构造与成矿学, 38(2): 421-433.
许志琴, 李海兵, 杨经绥. 2006. 造山的高原——青藏高原巨型造山拼贴体和造山类型. 地学前缘, 13(4): 1-17.
许志琴, 杨经绥, 李文昌, 李化启, 蔡志慧, 闫臻, 马昌前. 2013. 青藏高原中的古特提斯体制与增生造山作用. 岩石学报, 29(6): 1847-1860.
袁万明, 莫宣学, 喻学惠, 罗照华. 2000. 东昆仑印支期区域构造背景的花岗岩记录. 地质论评, 46(2): 203-211.
张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么? 岩石矿物学杂志, 31(4): 621-626.
张旗, 王焰, 钱青, 杨进辉, 王元龙, 赵太平, 郭光军. 2001. 中国东部燕山期埃达克岩的特征及其构造-成矿意义. 岩石学报, 17(2): 236-244.
张旗. 2008. 埃达克岩研究的回顾和前瞻. 中国地质, 35(1): 32-39.
张宇婷. 2018. 青海东昆仑中段五龙沟矿集区金矿成矿作用研究. 长春: 吉林大学博士学位论文: 1-261.
赵旭, 付乐兵, 魏俊浩, 赵玉京, 唐洋, 杨宝荣, 管波, 王晓云. 2018. 东昆仑按纳格角闪辉长岩体地球化学特征及其对古特提斯洋演化的制约. 地球科学, 43(2): 354-370.
朱迎堂, 田景春, 白生海, 余存莲, 张翔, 肖玲, 曹桐生. 2009. 青海省石炭纪—三叠纪岩相古地理. 古地理学报, 11(4): 384-392.
Atherton M P and Petford N. 1993. Generation of sodium- rich magmas from newly underplated basaltic crust. Nature, 362(6416): 144-146.
Batchelor R A and Bowden P. 1985. Petrogenetic inter- pretation of granitoid rock series using multicationic parameters. Chemical Geology, 48(1-4): 43-55.
Blichert-Toft J, Chauvel C and Albarede F. 1997. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contributions to Mineralogy and Petrology, 127(3): 248-260.
Castillo P R, Janney P E and Solidum R U. 1999. Petrology and geochemistry of Camiguin Island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, 134(1): 33-51.
Chappell B W. 1999. Aluminum saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535-551.
Chappell B W and White A. 1992. I- and S-type granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2): 1-26.
Chung S L, Chu M F, Ji J Q, O’Reilly S Y, Pearson N J, Liu D Y, Lee T Y and Lo C H. 2009. The nature and timing of crustal thickening in Southern Tibet: Geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics, 477(1-2): 36-48.
Chung S L, Liu D Y, Ji J Q, Chu M F, Lee H Y, Wen D J, Lo C H, Lee T Y, Qian Q and Zhang Q. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31(11): 1021- 1024.
Collins W J, Beams S D, White A and Chappell B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200.
Defant M J and Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665.
Foley S, Tiepolo M and Vannucci R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417(6891): 837-840.
Frost B R, Barnes C G, Collins W J, Arculus R J, Ellis D J and Frost C D. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11): 2033-2048.
Gao S, Rudnick R L, Yuan H L, Liu X M, Liu Y S, Xu W L, Ling W L, Ayers J, Wang X C and Wang Q H. 2004. Recycling lower continental crust in the North China craton. Nature, 432(7019): 892-897.
Griffin W L, Belousova E A, Shee S R, Pearson N J O and Reilly S Y. 2004. Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf isotope evidence from detrital zircons. Precambrian Research, 131(3-4): 231-282.
Hou Z Q, Gao Y F, Qu X M, Rui Z Y and Mo X X. 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155.
Hu Z C, Liu Y S, Gao S, Liu W G, Zhang W, Tong X R, Lin L, Zong K Q, Li M and Chen H H. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399.
Kay R W and Kay S M. 1993. Delamination and delamination magmatism. Tectonophysics, 219(1-3): 177-189.
Kaygusuz A, Siebel W, C S En C U N and Satir M. 2008. Petrochemistry and petrology of I-type granitoids in an arc setting: The composite Torul pluton, Eastern Pontides, NE Turkey. International Journal of Earth Sciences, 97(4): 739-764.
Li J W, Zhao X F, Zhou M F, Ma C Q, de Souza Z S E R and Vasconcelos P. 2009. Late Mesozoic magmatism from the Daye region, eastern China: U-Pb ages, petrogenesis, and geodynamic implications. Contributions to Mineralogy and Petrology, 157(3): 383-409.
Liu H T. 2005. Petrology, geochemistry and geochronology of late Triassic volcanics, Kunlun orogenic belt, western China: Implications for tectonic setting and petrogenesis. Geochemical Journal, 39(1): 1-20.
Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G and Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43.
Mamani M, W O Rner G and Sempere T. 2010. Geochemical variations in igneous rocks of the Central Andean orocline (13 S to 18 S): Tracing crustal thickening and magma generation through time and space. GSA Bulletin, 122(1-2): 162-182.
Martin H, Smithies R H, Rapp R, Moyen J and Champion D. 2005. An overview of adakite, tonalite-trondhjemite- granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79(1-2): 1-24.
Moyen J C C O. 2009. High Sr/Y and La/Yb ratios: The meaning of the “adakitic signature”. Lithos, 112(3-4): 556-574.
Pearce J A, Harris N B and Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983.
Peccerillo A and Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81.
Rapp R P, Shimizu N, Norman M D and Applegate G S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356.
Rapp R P and Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891-931.
Rudnick R L. 1995. Making continental crust. Nature, 378(6557): 571-578.
Rudnick R L and Gao S. 2003. Composition of the Continental Crust // Treatise on Geochemistry, volume 3. Elsevier: 1-64.
S?derlund U, Patchett P J, Vervoort J D and Isachsen C E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324.
Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes // Saunders A D and Norry M J. Magmatism in Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345.
Tang G J, Wang Q, Wyman D A, Li Z X, Zhao Z H, Jia X H and Jiang Z Q. 2010. Ridge subduction and crustal growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (West China). Chemical Geology, 277(3-4): 281-300.
Wang Q, Wyman D A, Zhao Z H, Xu J F, Bai Z H, Xiong X L, Dai T M, Li C F and Chu Z Y. 2007. Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China): Implications for Phanerozoic crustal growth in the Central Asia orogenic belt. Chemical Geology, 236(1-2): 42-64.
Whalen J B, Currie K L and Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419.
Wilson M. 1989. Igneous Petrogenesis. London: Unwin Hyman Press: 295-323.
Xia R, Wang C M, Qing M, Deng J, Carranza E J M, Li W L, Guo X D, Ge L S and Yu W Q. 2015b. Molybdenite Re-Os, zircon U-Pb dating and Hf isotopic analysis of the Shuangqing Fe-Pb-Zn-Cu skarn deposit, East Kunlun Mountains, Qinghai province, China. Ore Geology Reviews, 66: 114-131.
Xia R, Wang C M, Qing M, Li W L, Carranza E J M, Guo X D, Ge L S and Zeng G Z. 2015a. Zircon U-Pb dating, geochemistry and Sr-Nd-Pb-Hf-O isotopes for the Nan’getan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen: Record of closure of the Paleo-Tethys. Lithos, 234: 47-60.
Xiong F H, Ma C Q, Zhang J and Liu B. 2012. The origin of mafic microgranular enclaves and their host granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau: Implications for magma mixing during subduction of Paleo-Tethyan lithosphere. Mineralogy and Petrology, 104: 211-224.
Xu J F, Castillo P R, Li X H, Yu X Y, Zhang B R and Han Y W. 2002. MORB-type rocks from the Paleo-Tethyan Mian-Lueyang northern ophiolite in the Qinling Mountains, central China: Implications for the source of the low 206Pb/204Pb and high 143Nd/144Nd mantle component in the Indian Ocean. Earth and Planetary Science Letters, 198(3-4): 323-337.
Yuan C, Sun M, Xiao W J, Wilde S, Li X H, Liu X H, Long X P, Xia X P, Ye K and Li J L. 2009. Garnet-bearing tonalitic porphyry from East Kunlun, Northeast Tibetan Plateau: Implications for adakite and magmas from the MASH Zone. International Journal of Earth Sciences, 98(6): 1489-1510.

相似文献/References:

[1]刘兵兵.哀牢山构造带两侧上志留-下泥盆统碎屑锆石年代学: 物源及其构造意义.大地构造与成矿学,2017.预出版:000.doi:10.16539/j.ddgzyckx.2017.03.014
 LIU Bingbing,PENG Touping.Geochronology of Detrital Zircon from the Upper Silurian-Lower Devonian Sedimentary Rocks at both Sides of the Ailaoshan Tectonic Zone: Provenance and Geological Significance.Geotectonica et Metallogenia,2017.45(6):000.doi:10.16539/j.ddgzyckx.2017.03.014
[2]刘兵兵,彭头平,范蔚茗.哀牢山构造带两侧上志留统-下泥盆统碎屑锆石年代学: 物源及其构造意义·.大地构造与成矿学,2017.41(4):735.doi:10.16539/j.ddgzyckx.2017.03.014
 LIU Bingbing,PENG Touping,FAN Weiming.Geochronology of Detrital Zircon from the Upper Silurian?Lower Devonian Sedimentary Rocks at both Sides of the Ailaoshan Tectonic Zone: Provenance and Geological Significance.Geotectonica et Metallogenia,2017.45(6):735.doi:10.16539/j.ddgzyckx.2017.03.014
[3]陈国超,裴先治*,李瑞保.东昆仑东段香加南山花岗岩基中加鲁河中基性岩体形成时代、成因及其地质意义.大地构造与成矿学,2017.41(6):1097.doi:10.16539/j.ddgzyckx.2017.06.008
 CHEN Guochao,PEI Xianzhi*,LI Ruibao.Age and Petrogenesis of Jialuhe Basic-Intermediate Pluton in Xiangjia’nanshan Granite Batholith in the Eastern Part of East Kunlun Orogenic Belt, and its Geological Significance.Geotectonica et Metallogenia,2017.45(6):1097.doi:10.16539/j.ddgzyckx.2017.06.008

备注/Memo

备注/Memo:
收稿日期: 2020-05-22; 改回日期: 2020-07-04
项目资助: 国家自然科学基金项目(41772071)资助。
第一作者简介: 曾闰灵(1995-), 男, 硕士研究生, 矿产普查与勘探专业。Email: zengrl_jx@163.com
更新日期/Last Update: 2021-12-20