[1]薛颖瑜,刘海洋,孙卫东.2021.锂的地球化学性质与富集机理.大地构造与成矿学,45(6):1202-1215.doi:10.16539/j.ddgzyckx.2021.06.006
 XUE Yingyu,LIU Haiyang and SUN Weidong.2021.The Geochemical Properties and Enrichment Mechanism of Lithium.Geotectonica et Metallogenia,45(6):1202-1215.doi:10.16539/j.ddgzyckx.2021.06.006
点击复制

锂的地球化学性质与富集机理
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2021年45卷06期
页码:
1202-1215
栏目:
岩石大地构造与地球化学
出版日期:
2021-12-25

文章信息/Info

Title:
The Geochemical Properties and Enrichment Mechanism of Lithium
文章编号:
1001-1552(2021)06-1202-014
作者:
薛颖瑜1、2、3 刘海洋1、2、3 孙卫东1、2、3、4
1.中国科学院 海洋研究所, 深海研究中心, 山东 青岛 266071; 2.青岛海洋科学与技术试点国家实验室, 海洋矿产资源评价与探测技术功能实验室, 山东 青岛 266237; 3.中国科学院 海洋大科学研究中心, 山东 青岛 266071; 4.中国科学院大学, 北京 100049
Author(s):
XUE Yingyu1、2、3 LIU Haiyang1、2、3 and SUN Weidong1、2、3、4
1. Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; 2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, China; 3. Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; 4. University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
在地球化学性质上 锂表现为中度不相容元素的特征 因此在地壳中较为富集。由于锂易富集于流体中 在岩浆演化晚期 随着挥发分的增加 锂可以通过热液强烈富集 并形成伟晶岩型(花岗岩型)锂矿。在板块俯冲过程中 锂可以被多硅白云母、绿辉石等矿物带至深部。多硅白云母的分解释放出Li和F等助熔元素 可以诱发部分熔融 形成富锂岩浆岩。在地表风化过程中 锂易于进入水体 在封闭盆地内可以得到保存 进而形成大型的卤水型锂矿床。在碰撞带的腹地 岩浆岩通常富锂 而且由于造山带的阻隔 在背海面形成干旱气候
Keywords:
lithium geochemistry brine type deposits pegmatite type deposits plate subduction lithium isotopes
分类号:
P595
DOI:
10.16539/j.ddgzyckx.2021.06.006
文献标志码:
A
摘要:
在地球化学性质上, 锂表现为中度不相容元素的特征, 因此在地壳中较为富集。由于锂易富集于流体中, 在岩浆演化晚期, 随着挥发分的增加, 锂可以通过热液强烈富集, 并形成伟晶岩型(花岗岩型)锂矿。在板块俯冲过程中, 锂可以被多硅白云母、绿辉石等矿物带至深部。多硅白云母的分解释放出Li和F等助熔元素, 可以诱发部分熔融, 形成富锂岩浆岩。在地表风化过程中, 锂易于进入水体, 在封闭盆地内可以得到保存, 进而形成大型的卤水型锂矿床。在碰撞带的腹地, 岩浆岩通常富锂, 而且由于造山带的阻隔, 在背海面形成干旱气候区, 这些干旱地区的盆地可以储存碰撞后岩浆岩风化的产物, 进而形成卤水型锂矿床, 因此板块俯冲是形成锂矿床的关键因素。我国华南地区存在大量的中生代高分异锂-氟花岗岩, 该类花岗岩具有高的Li含量(9×10-6~5200×10-6)和高的Li/MgO值(13×10-4~130000×10-4), 是卤水型锂矿的重要物源, 因此该类花岗岩附近的中生代红层盆地是寻找大型卤水型锂矿床的重要靶区。作为新兴的示踪工具, Li同位素在硬岩型锂矿床中得到了初步应用, 并表现出一定的示踪潜力。
Abstract:
Since the beginning of the 21st century, partly due to the public awareness of global warming, the research and development of new energy has been rapidly advanced. As a critical metal, lithium is widely used in electronic products and new energy vehicles, and plays an important role. Lithium is a moderately incompatible element, which is enriched in the continental crust. It is a fluid mobile element, and thus it may be highly enriched during hydrothermal activities especially at the late stage of magmatic evolution, forming pegmatite type lithium deposit. During plate subduction, the decomposition of phengite may induce partial melting and form lithium-rich magmatic rocks favorable for the formation of pegmatite type lithium deposit. Lithium is also mobile during weathering, forming large brine type lithium deposits in closed basins. In the hinterland of a collisional belt, magmatic rocks are usually rich in lithium. Meanwhile, arid climate zones are formed due to the barrier of orogenic belt. Basins in these arid areas can store the weathering products from magmatic rocks, promoting the formation of brine type lithium deposits. Therefore, plate subduction is the key factor to the formation of lithium deposits. There are a large number of Mesozoic highly differentiated lithium-fluorine enriched granites in South China, which have high Li contents (9×10-6 to 5200×10-6) and high Li/MgO ratios (13×10-4 to 130000×10-4). Therefore, the Mesozoic basins in South China may be important target areas for exploration of large brine lithium deposits. It is worth pointing out that, as a new tracer, lithium isotopes have been preliminarily applied in exploration of pegmatite lithium deposits and showed some prospecting potential.

参考文献/References:

车旭东, 王汝成, 胡欢, 张文兰, 黄小龙. 2007. 江西宜春黄玉-锂云母花岗岩中的铍矿化作用: 铍磷酸盐矿物组合. 岩石学报, 23(6): 1552-1560.
侯江龙, 李建康, 张玉洁, 李超. 2018. 四川甲基卡锂矿床花岗岩体Li同位素组成及其对稀有金属成矿的制约. 地球科学, 43(6): 2042-2054.
李侃, 高永宝, 滕家欣, 金谋顺, 李伟. 2019. 新疆和田县大红柳滩一带花岗伟晶岩型稀有金属矿成矿地质特征、成矿时代及找矿方向. 西北地质, 52(4): 206-221.
刘成林. 2013. 大陆裂谷盆地钾盐矿床特征与成矿作用. 地球学报, 34(5): 515-527.
刘成林, 余小灿, 赵艳军, 王九一, 王立成, 徐海明, 李坚, 王春连. 2016. 华南陆块液体钾、锂资源的区域成矿背景与成矿作用初探. 矿床地质, 35(6): 1119-1143.
刘锋, 曹峰, 张志欣, 李强. 2014. 新疆可可托海近3号脉花岗岩成岩时代及地球化学特征研究. 岩石学报, 30(1): 1-15.
刘锋, 张志欣, 李强, 屈文俊, 李超. 2012. 新疆可可托海3号伟晶岩脉成岩时代的限定: 来自辉钼矿Re-Os定年的证据. 矿床地质, 31(5): 1111-1118.
刘宏. 2013. 新疆阿尔泰阿拉尔花岗岩地球化学特征及其与可可托海3号脉演化关系. 昆明: 昆明理工大学硕士学位论文.
刘丽君, 王登红, 侯可军, 田世洪, 赵悦, 付小方, 袁蔺平, 郝雪峰. 2017a. 锂同位素在四川甲基卡新三号矿脉研究中的应用. 地学前缘, 24(5): 167-171.
刘丽君, 王登红, 刘喜方, 李建康, 代鸿章, 闫卫东. 2017b. 国内外锂矿主要类型、分布特点及勘查开发现状. 中国地质, 44(2): 263-278.
苏嫒娜, 田世洪, 侯增谦, 李建康, 李真真, 侯可军, 李延河, 胡文洁, 杨竹森. 2011. 锂同位素及其在四川甲基卡伟晶岩型锂多金属矿床研究中的应用. 现代地质, 25(2): 236-242.
苏本勋. 2017. 锂同位素在地幔地球化学中的应用. 矿物岩石地球化学通报, 36(1): 6-13.
孙涛. 2006. 新编华南花岗岩分布图及其说明. 地质通报, 25(3): 332-335, 426-427.
王登红, 刘丽君, 刘新星, 赵芝, 何晗晗. 2016. 我国能源金属矿产的主要类型及发展趋势探讨. 桂林理工大学学报, 36(1): 21-28.
王核, 李沛, 马华东, 朱炳玉, 邱林, 张晓宇, 董瑞, 周楷麟, 王敏, 王茜, 闫庆贺, 魏小鹏, 何斌, 卢鸿, 高昊. 2017. 新疆和田县白龙山超大型伟晶岩型锂铷多金属矿床的发现及其意义. 大地构造与成矿学, 41(6): 1053-1062.
王秀莲, 李金丽, 张明杰. 2001. 21世纪的能源金属——金属锂在核聚变反应中的应用. 黄金学报, 3(4): 249- 252.
伍守荣, 赵景宇, 张新, 张辉. 2015. 新疆阿尔泰可可托海3号伟晶岩脉岩浆-热液过程: 来自电气石化学组成演化的证据. 矿物学报, 35(3): 299-308.
许志琴, 王汝成, 赵中宝, 付小方. 2018. 试论中国大陆“硬岩型”大型锂矿带的构造背景. 地质学报, 92(6): 1091-1106.
许志琴, 王汝成, 朱文斌, 秦宇龙, 付小芳, 李广伟. 2020. 川西花岗-伟晶岩型锂矿科学钻探: 科学问题和科学意义. 地质学报, 94(8): 2177-2189.
杨泽黎, 邱检生, 邢光福, 余明刚, 赵姣龙. 2014. 江西宜春雅山花岗岩体的成因与演化及其对成矿的制约. 地质学报, 88(5): 850-868.
章荣清, 陆建军, 王汝成, 姚远, 丁腾, 胡加斌, 张怀峰. 2016. 湘南王仙岭地区中生代含钨与含锡花岗岩的岩石成因及其成矿差异机制. 地球化学, 45(2): 105-132.
郑绵平, 刘喜方. 2007. 中国的锂资源. 新材料产业, (8): 13-16.
Barnes E M, Weis D and Groat L A. 2012. Significant Li isotope fractionation in geochemically evolved rare element-bearing pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada. Lithos, 132-133: 21-36.
Bebout G E, Bebout A E and Graham C M. 2007. Cycling of B, Li, and LILE (K, Cs, Rb, Ba, Sr) into subduction zones: SIMS evidence from micas in high-P/T metasedimentary rocks. Chemical Geology, 239(3-4): 284-304.
Beck P, Chaussidon M, Barrat J A, Gillet P and Bohn M. 2006. Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks: The case of pyroxene phenocrysts from nakhlite meteorites. Geochimica et Cosmochimica Acta, 70(18): 4813-4825.
Bradley D C. 2011. Secular trends in the geologic record and the supercontinent cycle. Earth-Science Reviews, 108(1): 16-33.
Bradley D C and McCauley A D. 2013. A preliminary deposit model for lithium-cesium-tantalum (LCT) pegmatites. US Geological Survey Open-File Report 2013- 1008, 1-7.
Bradley D C, McCauley A D and Stillings L M. 2017. Mineral-deposit model for lithium-cesium-tantalum pegmatites. US Geological Survey, 14-16.
?ern? P. 1991. Fertile granites of Precambrian rare-element pegmatite fields: Is geochemistry controlled by tectonic setting or source lithologies? Precambrian Research, 51(1-4): 429-468.
Chan L H, Alt J C and Teagle D A H. 2002. Lithium and lithium isotope profiles through the upper oceanic crust: A study of seawater-basalt exchange at ODP Sites 504B and 896A. Earth and Planetary Science Letters, 201(1): 187-201.
Chen B, Gu H O, Chen Y, Sun K and Chen W. 2018. Lithium isotope behaviour during partial melting of metapelites from the Jiangnan Orogen, South China: Implications for the origin of REE tetrad effect of F-rich granite and associated rare-metal mineralization. Chemical Geology, 483: 372-384.
Chen B, Huang C and Zhao H. 2020a. Lithium and Nd isotopic constraints on the origin of Li-poor pegmatite with implications for Li mineralization. Chemical Geology, 551, 119769.
Chen B, Ma X H and Wang Z Q. 2014. Origin of the fluorine-rich highly differentiated granites from the Qianlishan composite plutons (South China) and implications for polymetallic mineralization. Journal of Asian Earth Sciences, 93: 301-314.
Chen C, Lee C A, Tang M, Biddle K and Sun W D. 2020b. Lithium systematics in global arc magmas and the importance of crustal thickening for lithium enrichment. Nature Communications, 11(1), 5313.
Deveaud S, Millot R and Villaros A. 2015. The genesis of LCT-type granitic pegmatites, as illustrated by lithium isotopes in micas. Chemical Geology, 411: 97-111.
Fan J J, Tang G J, Wei G J, Wang H, Xu Y G, Wang Q, Zhou J S, Zhang Z Y, Huang T Y and Wang Z L. 2020. Lithium isotope fractionation during fluid exsolution: Implications for Li mineralization of the Bailongshan pegmatites in the West Kunlun, NW Tibet. Lithos, 352-353, 105236.
Garcia M G, Borda L G, Godfrey L V, López Steinmetz R L and Losada-Calderon A. 2020. Characterization of lithium cycling in the Salar De Olaroz, Central Andes, using a geochemical and isotopic approach. Chemical Geology, 531, 119340.
Grew E S. 2020. The minerals of lithium. Elements, 16(4): 235-240.
Halama R, Savov I P, Rudnick R L and McDonough W F. 2009. Insights into Li and Li isotope cycling and sub-arc metasomatism from veined mantle xenoliths, Kamchatka. Contributions to Mineralogy and Petrology, 158(2): 197-222.
Helvaci C, Mordogan H, ?olak M and Gündogan I. 2004. Presence and distribution of lithium in borate deposits and some recent lake waters of West-Central Turkey. International Geology Review, 46(2): 177-190.
Huh Y, Chan L H and Edmond J M. 2001. Lithium isotopes as a probe of weathering processes: Orinoco River. Earth and Planetary Science Letters, 194(1-2): 189-199.
Huh Y, Chan L H, Zhang L and Edmond J M. 1998. Lithium and its isotopes in major world rivers: Implications for weathering and the oceanic budget. Geochimica et Cosmochimica Acta, 62(12): 2039-2051.
Keller G. 2008. Cretaceous climate, volcanism, impacts, and biotic effects. Cretaceous Research, 29(5): 754-771.
Li J, Huang X L, Wei G J, Liu Y, Ma J L, Han L and He P L. 2018. Lithium isotope fractionation during magmatic differentiation and hydrothermal processes in rare-metal granites. Geochimica et Cosmochimica Acta, 240: 64-79.
Liu H Y, Sun H, Xiao Y L, Wang Y Y, Zeng L S, Li W Y, Guo H H, Yu H M and Pack A. 2019a. Lithium isotope systematics of the Sumdo Eclogite, Tibet: Tracing fluid/ rock interaction of subducted low-T altered oceanic crust. Geochimica et Cosmochimica Acta, 246: 385-405.
Liu H Y, Xiao Y L, Sun H, Tong F T, Heuser A, Churikova T and W?rner G. 2020. Trace elements and Li isotope compositions across the Kamchatka arc: Constraints on slab-derived fluid sources. Journal of Geophysical Research: Solid Earth, 125(5), e2019JB019237.
Liu H Y, Xiao Y L, van den Kerkhof A, Wang Y Y, Zeng L S and Guo H H. 2019b. Metamorphism and fluid evolution of the Sumdo eclogite, Tibet: Constraints from mineral chemistry, fluid inclusions and oxygen isotopes. Journal of Asian Earth Sciences, 172: 292-307.
Magna T, Novák M, Cempírek J, Janou?ek V, Ullmann C V and Wiechert U. 2016. Crystallographic control on lithium isotope fractionation in Archean to Cenozoic lithium- cesium-tantalum pegmatites. Geology, 44(8): 655-658.
Maneta V and Baker D R. 2019. The potential of lithium in alkali feldspars, quartz, and muscovite as a geochemical indicator in the exploration for lithium-rich granitic pegmatites: A case study from the spodumene-rich Moblan pegmatite, Quebec, Canada. Journal of Geochemical Exploration, 205, 106336.
Marschall H R, Pogge von Strandmann P A E, Seitz H M, Elliott T and Niu Y L. 2007. The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth and Planetary Science Letters, 262(3-4): 563-580.
McDonough W F and Sun S S. 1995. The composition of the Earth. Chemical Geology, 120(3): 223-253.
Munk L, A. Hynek S, Bradley D, Boutt D, Labay K and Jochens H. 2016. Rare earth and critical elements in ore deposits // Philip L V and Murray W H. Lithium Brines: A Global Perspective. Society of Economic Geologists, 18: 339-365.
Richter F M, Davis A M, DePaolo D J and Watson E B. 2003. Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochimica et Cosmochimica Acta, 67(20): 3905-3923.
Rudnick R L and Gao S. 2014. Composition of the continental crust // Holland H D and Turekian K K. Treatise on Geochemistry (Second Edition). Oxford: Elsevier: 1-51.
Ryan J G and Langmuir C H. 1987. The systematics of lithium abundances in young volcanic rocks. Geochimica et Cosmochimica Acta, 51(6): 1727-1741.
Sauzéat L, Rudnick R L, Chauvel C, Gar?on M and Tang M. 2015. New perspectives on the Li isotopic composition of the upper continental crust and its weathering signature. Earth and Planetary Science Letters, 428: 181-192.
Schwartz M O. 1992. Geochemical criteria for distinguishing magmatic and metasomatic albite-enrichment in granitoids — Examples from the Ta-Li granite Yichun (China) and the Sn-W deposit Tikus (Indonesia). Mineralium Deposita, 27(2): 101-108.
Simmons W B, Falster A U and Freeman G. 2020. The Plumbago North pegmatite, Maine, USA: A new potential lithium resource. Mineralium Deposita, 55(7): 1505-1510.
Smith S A F, Holdsworth R E and Collettini C. 2012. Interactions between low-angle normal faults and plutonism in the upper crust: Insights from the Island of Elba, Italy: Reply. GSA Bulletin, 124(11-12): 1916-1917.
Stanley C J, Jones G C, Rumsey M S, Blake C, Roberts A C, Stirling J A R, Carpenter G J C, Whitfield P S, Grice J D and Lepage Y. 2007. Jadarite, LiNaSiB3O7(OH), a new mineral species from the Jadar Basin, Serbia. European Journal of Mineralogy, 19(4): 575-580.
Su B X, Chen C, Pang K N, Sakyi P A, Uysal I, Avci E, Liu X and Zhang P F. 2018. Melt penetration in oceanic lithosphere: Li isotope records from the Pozant?-Karsant? ophiolite in southern Turkey. Journal of Petrology, 59(1): 191-205.
Su B X, Zhou M F and Robinson P T. 2016. Extremely large fractionation of Li isotopes in a chromitite-bearing mantle sequence. Scientific Reports, 6, 22370.
Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes // Saunders A D and Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345.
Sun W D, Ding X, Hu Y H and Li X H. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth and Planetary Science Letters, 262(3): 533-542.
Tang Y J, Zhang H F, Deloule E, Su B X, Ying J F, Santosh M and Xiao Y. 2014. Abnormal lithium isotope composition from the ancient lithospheric mantle beneath the North China Craton. Scientific Reports, 4(1): 4274.
Tang Y J, Zhang H F, Deloule E, Su B X, Ying J F, Xiao Y and Hu Y. 2012. Slab-derived lithium isotopic signatures in mantle xenoliths from northeastern North China Craton. Lithos, 149: 79-90.
Tang Y J, Zhang H F, Nakamura E, Moriguti T, Kobayashi K and Ying J F. 2007b. Lithium isotopic systematics of peridotite xenoliths from Hannuoba, North China Craton: Implications for melt-rock interaction in the considerably thinned lithospheric mantle. Geochimica et Cosmochimica Acta, 71(17): 4327-4341.
Tang Y J, Zhang H F, Nakamura E and Ying J F. 2011. Multistage melt/fluid-peridotite interactions in the refertilized lithospheric mantle beneath the North China Craton: Constraints from the Li-Sr-Nd isotopic disequilibrium between minerals of peridotite xenoliths. Contributions to Mineralogy and Petrology, 161(6): 845-861.
Tang Y J, Zhang H F and Ying J F. 2007a. Review of the lithium isotope system as a geochemical tracer. International Geology Review, 49(4): 374-388.
Tang Y J, Zhang H F and Ying J F. 2010. A brief review of isotopically light Li—A feature of the enriched mantle? International Geology Review, 52(9): 964-976.
Teng F Z, Mcdonough W F and Rudnick R L. 2006a. Diffusion-driven lithium isotope fractionation: Models and implications. Geochimica et Cosmochimica Acta, 70(18): A643.
Teng F Z, McDonough W F, Rudnick R L, Dalpe C, Tomascak P B, Chappell B W and Gao S. 2004. Lithium isotopic composition and concentration of the upper continental crust. Geochimica et Cosmochimica Acta, 68(20): 4167-4178.
Teng F Z, McDonough W F, Rudnick R L and Walker R J. 2006b. Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite. Earth and Planetary Science Letters, 243(3-4): 701-710.
Teng F Z, McDonough W F, Rudnick R L, Walker R J and Sirbescu M L C. 2006c. Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota. American Mineralogist, 91(10): 1488-1498.
Teng F Z, Rudnick R L, McDonough W F, Gao S, Tomascak P B and Liu Y S. 2008. Lithium isotopic composition and concentration of the deep continental crust. Chemical Geology, 255(1-2): 47-59.
Thomas R and Davidson P. 2012. Water in granite and pegmatite- forming melts. Ore Geology Reviews, 46: 32-46.
Thomas R and Davidson P. 2016. Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state — Consequences for the formation of pegmatites and ore deposits. Ore Geology Reviews, 72: 1088-1101.
Tomascak P B, Tera F, Helz R T and Walker R J. 1999. The absence of lithium isotope fractionation during basalt differentiation: New measurements by multicollector sector ICP-MS. Geochimica et Cosmochimica Acta, 63(6): 907-910.
Wang H, Gao H, Zhang X Y, Yan Q H, Xu Y G, Zhou K L, Dong R and Li P. 2020. Geology and geochronology of the super-large Bailongshan Li-Rb-(Be) rare-metal pegmatite deposit, West Kunlun orogenic belt, NW China. Lithos, 360-361, 105449.
Xiao Y L, Hoefs J, Hou Z H, Simon K and Zhang Z M. 2011. Fluid/rock interaction and mass transfer in continental subduction zones: Constraints from trace elements and isotopes (Li, B, O, Sr, Nd, Pb) in UHP rocks from the Chinese Continental Scientific Drilling Program, Sulu, East China. Contributions to Mineralogy and Petrology, 162(4): 797-819.
Xing C M, Wang C Y and Wang H. 2020. Magmatic-hydrothermal processes recorded by muscovite and columbite- group minerals from the Bailongshan rare-element pegmatites in the West Kunlun-Karakorum orogenic belt, NW China. Lithos, 364-365, 105507.
Xu Z Q, Fu X F, Wang R C, Li G W, Zheng Y L, Zhao Z B and Lian D Y. 2019. Generation of lithium-bearing pegmatite deposits within the Songpan-Ganze orogenic belt, East Tibet. Lithos, 354-355, 105281.
Yin L, Pollard P J, Hu S X and Taylor R G. 1995. Geologic and Geochemical Characteristics of the Yichun Ta-Nb-Li Deposit, Jiangxi Province, South China. Economic Geology and the Bulletin of the Society of Economic Geologists, 90(3): 577-585.
Zhang L P, Hu Y B, Liang J L, Ireland T, Chen Y L, Zhang R Q, Sun S J and Sun W D. 2017a. Adakitic rocks associated with the Shilu copper-molybdenum deposit in the Yangchun Basin, South China, and their tectonic implications. Acta Geochimica, 36(2): 132-150.
Zhang L P, Zhang R Q, Hu Y B, Liang J L, Ouyang Z Y, He J J, Chen Y X, Guo J and Sun W D. 2017b. The formation of the Late Cretaceous Xishan Sn-W deposit, South China: Geochronological and geochemical perspectives. Lithos, 290-291: 253-268.
Zhang L P, Zhang R Q, Wu K, Chen Y X, Li C Y, Hu Y B, He J J, Liang J L and Sun W D. 2018. Late Cretaceous granitic magmatism and mineralization in the Yingwuling W-Sn deposit, South China: Constraints from zircon and cassiterite U-Pb geochronology and whole-rock geochemistry. Ore Geology Reviews, 96: 115-129.
Zhang Q C, Liu Y, Wu Z H, Huang H, Li K and Zhou Q. 2019. Late Triassic granites from the northwestern margin of the Tibetan Plateau, the Dahongliutan example: Petrogenesis and tectonic implications for the evolution of the Kangxiwa Palaeo-Tethys. International Geology Review, 61(2): 175-194.
Zhang R Q, Lu J J, Lehmann B, Li C Y, Li G L, Zhang L P, Guo J and Sun W D. 2017. Combined zircon and cassiterite U-Pb dating of the Piaotang granite-related tungsten-tin deposit, southern Jiangxi tungsten district, China. Ore Geology Reviews, 82: 268-284.
Zhu Y F, Zeng Y S and Gu L B. 2006. Geochemistry of the rare metal-bearing pegmatite No.3 vein and related granites in the Keketuohai region, Altay Mountains, northwest China. Journal of Asian Earth Sciences, 27(1): 61-77.

备注/Memo

备注/Memo:
收稿日期: 2020-08-13; 改回日期: 2020-09-22
项目资助: 国家自然科学基金项目(41903006)、中国博士后科学基金项目(2019M652497)、山东省博士后创新项目和青岛市博士后应用研究项目联合资助。
第一作者简介: 薛颖瑜(1988-), 女, 博士, 从事岩石地球化学及同位素地球化学研究工作。Email: yingyuxue01@hotmail.com
通信作者: 刘海洋(1989-), 男, 博士, 主要从事金属稳定同位素地球化学及海洋地质研究工作。Email: hyliu@qdio.ac.cn
更新日期/Last Update: 2021-12-20