[1]暴宏天,王 焰,曹勇华.2021.内蒙古中部二叠纪额布图岩体的橄榄石成分特征及其对辉石岩地幔源区的指示.大地构造与成矿学,45(6):1185-1201.doi:10.16539/j.ddgzyckx.2021.06.005
 BAO Hongtian,WANG Christina Yan,CAO Yonghua and WEI Bo.2021.Compositions of Olivine of Permian Erbutu Ultramafic Intrusion in the Central Asian Orogenic Belt (Inner Mongolia): Insights for the Pyroxenite Mantle Source.Geotectonica et Metallogenia,45(6):1185-1201.doi:10.16539/j.ddgzyckx.2021.06.005
点击复制

内蒙古中部二叠纪额布图岩体的橄榄石成分特征及其对辉石岩地幔源区的指示
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2021年45卷06期
页码:
1185-1201
栏目:
岩石大地构造与地球化学
出版日期:
2021-12-25

文章信息/Info

Title:
Compositions of Olivine of Permian Erbutu Ultramafic Intrusion in the Central Asian Orogenic Belt (Inner Mongolia): Insights for the Pyroxenite Mantle Source
文章编号:
1001-1552(2021)06-1185-017
作者:
暴宏天1、2 王 焰1、3 曹勇华1 魏 博1、3
1.中国科学院 广州地球化学研究所, 矿物学与成矿学重点实验室, 广东 广州 510640; 2.中国科学院大学, 北京 100049; 3.广东省矿物物理与材料研究开发重点实验室, 广东 广州 510640
Author(s):
BAO Hongtian1、2 WANG Christina Yan1、3 CAO Yonghua1 and WEI Bo1、3
1. Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640, Guangdong, China
关键词:
橄榄石 辉石岩地幔 额布图超镁铁质岩体 中亚造山带
Keywords:
olivine pyroxenite mantle Erbutu ultramafic intrusion Central Asian Orogenic Belt
分类号:
P595
DOI:
10.16539/j.ddgzyckx.2021.06.005
文献标志码:
A
摘要:
内蒙古中部的额布图超镁铁质岩体位于中亚造山带与华北克拉通北缘的碰撞拼贴带内, 发育铜镍硫化物矿化。该岩体主要由橄榄斜方辉石岩和斜方辉石岩组成, 橄榄斜方辉石岩中橄榄石含量15%, 斜方辉石岩中橄榄石含量<5%, 两种岩石中橄榄石的Fo值介于83~87之间。在Fo值相同时, 与橄榄岩地幔部分熔融熔体中结晶的橄榄石相比, 额布图岩体中的橄榄石具有较低的Mn含量, 指示其母岩浆可能不是橄榄岩地幔的熔融产物。同时, 该岩体的橄榄石具有较低的Mn/Zn和Mn/Fe值、较高的Zn/Fe值, 与来源于典型辉石岩地幔的Mwenezi和Tuli玄武岩中橄榄石斑晶的相应比值一致。因此, 额布图岩体的地幔源区可能以辉石岩为主。同时, 该岩体中橄榄石的Ca含量较低、Li含量较高指示其源区可能经历了俯冲流体的改造。因此, 额布图岩体地幔源区中的辉石岩组分可能是当古亚洲洋板片向南俯冲至华北克拉通之下时, 来自俯冲板片的流体/挥发分进入上覆地幔楔, 造成先存于地幔中的古老下地壳组分发生熔融并交代周围的地幔橄榄岩形成的。
Abstract:
The Erbutu ultramafic intrusion is located in the suture zone between the Central Asian Orogenic Belt and the northern margin of the North China Craton (NCC). The intrusion contains Ni-Cu sulfide mineralization. The intrusion is mainly composed of orthopyroxenite and olivine orthopyroxenite, both of which contain olivine that has Fo contents ranging from 83 to 87. At given Fo contents, the olivine in the rocks of the Erbutu intrusion has much lower Mn than that of the olivine crystallized from the magma derived from the peridotite mantle, indicating that the parental magma of the Erbutu intrusion was unlikely derived from a peridotite mantle. The olivine in the rocks of the Erbutu intrusion has Mn/Zn, Mn/Fe and Zn/Fe ratios similar to those of the olivine in the Mwenezi and Tuli basalts that were derived from typical pyroxenite mantle. Therefore, the Erbutu intrusion is likely derived from a pyroxenite dominated mantle source. The olivine in the rocks of the Erbutu intrusion contains lower Ca but higher Li than that of the olivine in igneous rocks in intra-plate settings, indicating that the mantle source of the intrusion may have been metasomatized by slab-derived fluids. It is proposed that during the subduction of the paleo-Asian oceanic slab beneath the northern margin of the NCC, slab-derived fluids were released and added to the mantle wedge and triggered melting of ancient lower crustal materials (e.g., eclogite) in the mantle, the melt of the eclogite was then reacted with the ambient mantle peridotite and produced the pyroxenite component in the mantle.

参考文献/References:

党智财, 李俊健, 宋雪龙, 赵泽霖, 付超, 唐文龙. 2014. 内蒙古中部镁铁质-超镁铁质岩带铜镍硫化物矿床地质特征. 地质找矿论丛, 29(3): 329-335.
江思宏, 聂凤军, 刘妍, 王新亮. 2003. 内蒙古小南山-铂-铜-镍矿区辉长岩地球化学特征及成因. 地球学报, 24(2): 121-126.
李鹏, 任陪林, 白启星, 张淼鑫, 周南. 2013. 乌拉特中旗克布矿区镍矿床岩石学特征及成因浅析. 现代矿业, 53(6): 65-66.
李志丹, 王佳营, 文思博, 陈军强, 段明, 张锋, 魏佳林, 谢瑜. 2015. 内蒙古乌拉特中旗克布镍矿地质特征及超基性-基性岩LA-ICP-MS锆石U-Pb年龄. 矿物学报, 35(1): 130-131.
吕林素, 毛景文, 周振华, 李宏博, 张作衡, 汪云峰. 2012.吉林红旗岭1号和7号岩体中含矿超镁铁质岩的矿物化学特征: 对岩浆演化过程以及铜镍硫化物矿床形成机制的约束. 岩石学报, 28(1): 319-344.
孙涛, 钱壮志, 汤中立, 姜常义, 何克, 孙亚莉, 王建中, 夏明哲. 2010. 新疆葫芦铜镍矿床锆石U-Pb年代学、铂族元素地球化学特征及其地质意义. 岩石学报, 26(11): 3339-3349.
赵磊, 吴泰然, 罗红玲. 2011. 内蒙古乌拉特中旗北七哥陶辉长岩SHRIMP锆石U-Pb年龄、地球化学特征及其地质意义. 岩石学报, 27(10): 3071-3082.
赵泽霖, 李俊建, 党智财, 付超, 唐文龙, 王守光, 刘利双, 赵丽君. 2016. 内蒙古黄花滩铜镍矿区辉长岩LA-ICP-MS锆石U-Pb定年及地球化学特征. 岩矿测试, 35(2): 208-216.
Arndt N, Lesher C M and Czamanske G K. 2005. Mantle-derived magmas and magmatic Ni-Cu-(PGE) deposits. Economic Geology, 100th Aniversary Volume: 5-24.
Barnes S J and Lightfoot P C. 2005. Formation of magmatic nickel sulfide ore deposits and processes affecting their copper and platinum group element contents. Economic Geology, 100th Anniversary Volume: 179-213.
Barnes S J, Melezhik V and Sokolov S. 2001. The composition and mode of formation of the pechenga nickel deposits, Kola Peninsula, Northwestern Russia. Canadian Mineralogist, 39(2): 447-471.
Barnes S J and Naldrett A J. 1985. Geochemistry of the J-M (Howland) reef of the Stillwater complex, Minneapolis Adit area; I, Sulfide chemistry and sulfide-olivine equilibrium. Economic Geology, 80(3): 627-645.
Begg G C, Hronsky J, Arndt N T, Griffin W L, O’reilly S Y and Hayward N H. 2010. Lithospheric, cratonic, and geodynamic setting of Ni-Cu-PGE sulfide deposits. Economic Geology, 105(6): 1057-1070.
Bouman C, Elliott T and Vroon P Z. 2004. Lithium inputs to subduction zones. Chemical Geology, 212(1-2): 59-79.
Brenan J M, Neroda E, Lundstrom C C, Shaw H, Ryerson F and Phinney D L. 1998. Behaviour of boron, beryllium, and lithium during melting and crystallization: Constraints from mineral-melt partitioning experiments — Inferences from 10Be. Geochimica et Cosmochimica Acta, 62(12): 2129-2141.
Chan L H, Alt J C and Teagle D A H. 2002. Lithium and lithium isotope profiles through the upper oceanic crust: A study of seawater-basalt exchange at ODP Sites 504B and 896A. Earth and Planetary Science Letters, 201(1): 187-201.
Chan L H and Kastner M. 2000. Lithium isotopic compositions of pore fluids and sediments in the Costa Rica subduction zone: Implications for fluid processes and sediment contribution to the arc volcanoes. Earth and Planetary Science Letters, 183(1-2): 275-290.
Chan L H, Lassiter J C, Hauri E H, Hart S R and Blusztajn J. 2009. Lithium isotope systematics of lavas from the Cook-Austral Islands: Constraints on the origin of HIMU mantle. Earth and Planetary Science Letters, 277(3-4): 433-442.
Chen B, Jahn B M and Tian W. 2009. Evolution of the Solonker suture zone: Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction- and collision-related magmas and forearc sediments. Journal of Asian Earth Sciences, 34(3): 245-257.
Dai H K and Zheng J P. 2019. Mantle xenoliths and host basalts record the Paleo-Asian oceanic materials in the mantle wedge beneath northwest North China Craton. Solid Earth Sciences, 4(4): 150-158.
Dai H K, Zheng J P, Xiong Q, Su Y P, Pan S K, Ping X Q and Zhou X. 2018. Fertile lithospheric mantle underlying ancient continental crust beneath the northwestern North China craton: Significant effect from the southward subduction of the Paleo-Asian Ocean. GSA Bulletin, 131(1-2): 3-20.
De Hoog J C M, Gall L and Cornell D H. 2010. Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chemical Geology, 270(1-4): 196-215.
Eizenh?fer P R, Zhao G C, Zhang J and Sun M. 2014. Final closure of the Paleo-Asian Ocean along the Solonker Suture Zone: Constraints from geochronological and geochemical data of Permian volcanic and sedimentary rocks. Tectonics, 33(4): 441-463.
Ernst R E. 2007. Large igneous provinces in Canada through time and their metallogenic potential. Geological Association of Canada Special Publication, 5: 929-937.
Feig S T, Koepke J and Snow J E. 2006. Effect of water on tholeiitic basalt phase equilibria: An experimental study under oxidizing conditions. Contributions to Mineralogy and Petrology, 152(5): 611-638.
Foley S F, Prelevic D, Rehfeldt T and Jacob D E. 2013. Minor and trace elements in olivines as probes into early igneous and mantle melting processes. Earth and Planetary Science Letters, 363(2): 181-191.
Gao J F and Zhou M F. 2013. Generation and evolution of siliceous high magnesium basaltic magmas in the formation of the Permian Huangshandong intrusion (Xinjiang, NW China). Lithos, 162-163(2): 128-139.
Gao S, Rudnick R L, Xu W L, Yuan H L, Liu Y S, Walker R J, Puchtel I S, Liu X, Huang H, Wang X R and Yang J. 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth and Planetary Science Letters, 270(1-2): 41-53.
Gao S, Rudnick R L, Yuan H L, Liu X M, Liu Y S, Xu W L, Ling W L, Ayers J, Wang X C and Wang Q H. 2004. Recycling lower continental crust in the North China craton. Nature, 432(7019): 892-897.
Gavrilenko M and Herzberg C. 2016. A calcium-in-olivine geohygrometer and its application to subduction zone magmatism. Journal of Petrology, 57(9): 1811-1832.
Guo P Y, Niu Y L, Ye L, Liu J J, Sun P, Cui H X, Zhang Y, Gao J P, Su L X, Zhao J X and Feng Y X. 2014. Lithosphere thinning beneath west North China Craton: Evidence from geochemical and Sr-Nd-Hf isotope compositions of Jining basalts. Lithos, 202-203: 37-54.
Herd C D K, Dwarzski R E and Shearer C K. 2009. The behavior of Co and Ni in olivine in planetary basalts: An experimental investigation. American Mineralogist, 94(2-3): 244-255.
Herzberg C. 2011. Identification of source lithology in the Hawaiian and Canary islands: Implications for origins. Journal of Petrology, 52(1): 113-146.
Herzberg C and Asimow P D. 2008. Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. Geochemistry, Geophysics, Geosystems, 9(9): 1-25.
Hirschmann M M, Kogiso T, Baker M B and Stolper E M. 2003. Alkalic magmas generated by partial melting of garnet pyroxenite. Geology, 31(6): 481-484.
Hofmann A W. 2014. Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements // Holland H D and Turekian K K. Treatise on Geochemistry, second edition. Oxford: Elsevier: 67-101.
Howarth G H and Harris C. 2017. Discriminating between pyroxenite and peridotite sources for continental flood basalts (CFB) in southern Africa using olivine chemistry. Earth and Planetary Science Letters, 475: 143-151.
Jahn B M. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. Geological Society, London, Special Publications, 226(1): 73-100.
Jeffcoate A B, Elliott T, Kasemann S A, Ionov D, Cooper K and Brooker R. 2007. Li isotope fractionation in peridotites and mafic melts. Geochimica et Cosmochimica Acta, 71(1): 202-218.
Jian P, Liu D Y, Kr?ner A, Windley B F, Shi Y R, Zhang F Q, Shi G H, Miao L C, Zhang W, Zhang Q, Zhang L Q and Ren J S. 2008. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth. Lithos, 101(3): 233-259.
Jurewicz A J G and Watson E B. 1988. Cations in olivine, Part 1: Calcium partitioning and calcium-magnesium distribution between olivines and coexisting melts, with petrologic applications. Contributions to Mineralogy and Petrology, 99(2): 176-185.
Kamenetsky V S, Elburg M, Arculus R and Thomas R. 2006. Magmatic origin of low-Ca olivine in subduction-related magmas: Co-existence of contrasting magmas. Chemical Geology, 233(3-4): 346-357.
Kiseeva E S and Wood B J. 2015. The effects of composition and temperature on chalcophile and lithophile element partitioning into magmatic sulphides. Earth and Planetary Science Letters, 424(2015): 280-294.
Kogiso T, Hirschmann M M and Frost D J. 2003. High- pressure partial melting of garnet pyroxenite: Possible mafic lithologies in the source of ocean island basalts. Earth and Planetary Science Letters, 216(4): 603-617.
Laubier M, Grove T L and Langmuir C H. 2014. Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: An experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth and Planetary Science Letters, 392(5): 265-278.
Le Roux V, Dasgupta R and Lee C T A. 2011. Mineralogical heterogeneities in the Earth’s mantle: Constraints from Mn, Co, Ni and Zn partitioning during partial melting. Earth and Planetary Science Letters, 307(3-4): 395-408.
Le Roux V, Lee C T A and Turner S J. 2010. Zn/Fe systematics in mafic and ultramafic systems: Implications for detecting major element heterogeneities in the Earth’s mantle. Geochimica et Cosmochimica Acta, 74(9): 2779-2796.
Li C S, Naldrett A J and Ripley E M. 2007. Controls on the Fo and Ni contents of olivine in sulfide-bearing mafic- ultramafic intrusions: Principles, modeling, and examples from Voisey’s Bay. Earth Science Frontiers, 14(5): 177- 183.
Li C S, Thakurta J and Ripley E M. 2011. Low-Ca contents and kink-banded textures are not unique to mantle olivine: Evidence from the Duke Island complex, Alaska. Mineralogy and Petrology, 104(3-4): 147-153.
Li C S, Zhang M J, Fu P E, Qian Z Z, Hu P Q and Ripley E M. 2012. The Kalatongke magmatic Ni-Cu deposits in the Central Asian Orogenic Belt, NW China: Product of slab window magmatism? Mineralium Deposita, 47(1): 51-67.
Li X H, Su L, Chung S L, Li Z X, Liu Y, Song B and Liu D Y. 2005. Formation of the Jinchuan ultramafic intrusion and the world’s third largest Ni-Cu sulfide deposit: Associated with the ~825 Ma south China mantle plume? Geochemistry, Geophysics, Geosystems, 6(11): 1-16.
Li Y and Audétat A. 2012. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions. Earth and Planetary Science Letters, 355- 356: 327-340.
Libourel G. 1999. Systematics of calcium partitioning between olivine and silicate melt: Implications for melt structure and calcium content of magmatic olivines. Contributions to Mineralogy and Petrology, 136(1): 63-80.
Liu Y S, Gao S, Lee C T A, Hu S, Liu X and Yuan H. 2005. Melt-peridotite interactions: Links between garnet pyroxenite and high-Mg# signature of continental crust. Earth and Planetary Science Letters, 234(1-2): 39-57.
Liu Y S, Hu Z, Gao S, Günther D, Xu J, Gao C and Chen H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43.
Mallik A and Dasgupta R. 2012. Reaction between MORB- eclogite derived melts and fertile peridotite and generation of ocean island basalts. Earth and Planetary Science Letters, 329-330: 97-108.
Mao Y J, Qin K Z, Li C, Xue S C and Ripley E M. 2014. Petrogenesis and ore genesis of the Permian Huangshanxi sulfide ore-bearing mafic-ultramafic intrusion in the Central Asian Orogenic Belt, western China. Lithos, 200-201: 111-125.
Marschall H R, Wanless V D, Shimizu N, Pogge Von Strandmann P A E, Elliott T and Monteleone B D. 2017. The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle. Geochimica et Cosmochimica Acta, 207: 102-138.
Naldrett A J. 1989. Magmatic Sulfide Deposits. Oxford: Oxford University Press: 1-728.
Naldrett A J. 2010. Secular Variation of magmatic sulfide deposits and their source magmas. Economic Geology, 105(3): 669-688.
O’Reilly S. 1997. Minor elements in olivine from spinel lherzolite xenoliths: Implications for thermobarometry. Mineralogical Magazine, 61(405): 257-269.
Pang C J, Wang X C, Xu B, Luo Z W and Liu Y Z. 2017. Hydrous parental magmas of Early to Middle Permian gabbroic intrusions in western Inner Mongolia, North China: New constraints on deep-Earth fluid cycling in the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 144: 184-204.
Papike J J, Fowler G W, Adcock C T and Shearer C K. 1999. Systematics of Ni and Co in olivine from planetary melt systems: Lunar mare basalts. American Mineralogist, 84(3): 392-399.
Patten C, Barnes S J, Mathez E A and Jenner F E. 2013. Partition coefficients of chalcophile elements between sulfide and silicate melts and the early crystallization history of sulfide liquid: LA-ICP-MS analysis of MORB sulfide droplets. Chemical Geology, 358(6): 170-188.
Peng R M, Zhai Y S, Li C S and Ripley E M. 2013. The Erbutu Ni-Cu deposit in the Central Asian Orogenic Belt: A Permian magmatic sulfide deposit related to boninitic magmatism in an arc setting. Economic Geology, 108(8): 1879-1888.
Pirajno F. 2000. Magmatic ore deposits // Ore Deposits and Mantle Plumes. Dordrecht, Netherland: Springer: 387-467.
Pirajno F, Ernst R E, Borisenko A S, Fedoseev G and Naumov E A. 2009. Intraplate magmatism in Central Asia and China and associated metallogeny. Ore Geology Reviews, 35(2): 114-136.
Rapp R P, Shimizu N, Norman M D and Applegate G S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356.
Seitz H M and Woodland A B. 2000. The distribution of lithium in peridotitic and pyroxenitic mantle lithologies — An indicator of magmatic and metasomatic processes. Chemical Geology, 166(1): 47-64.
S?ager N, Portnyagin M, Hoernle K, Holm P M, Hauff F and Garbe-Sch?nberg D. 2015. Olivine major and trace element compositions in southern Payenia basalts, Argentina: Evidence for pyroxenite-peridotite melt mixing in a back-arc setting. Journal of Petrology, 56(8): 1495-1518.
Sobolev A V, Hofmann A W, Kuzmin D, Yaxley G, Arndt N, Chung S L, Danyushevsky L, Elliott T, Frey F, Garcia M, Gurenko A, Kamenetsky V, Kerr A, Krivolutskaya N A K N, Matvienkov V, Nikogosian I, Rocholl A, Sigurdsson I, Sushchevskaya N and Teklay M. 2007. The amount of recycled crust in sources of mantle- derived melts. Science, 316(5823): 412-417.
Sobolev A V, Hofmann A W, Sobolev S V and Nikogosian I K. 2005. An olivine-free mantle source of Hawaiian shield basalts. Nature, 434(7033): 590-597.
Sobolev A V, Krivolutskaya N A and Kuzmin D V. 2009. Petrology of the parental melts and mantle sources of Siberian trap magmatism. Petrology, 17(3): 253-286.
Song X Y, Chen L M, Deng Y F and Xie W. 2013. Syncollisional tholeiitic magmatism induced by asthenosphere upwelling owing to slab detachment at the southern margin of the central Asian Orogenic Belt. Journal of the Geological Society, 170(6): 941-950.
Song X Y and Li X R. 2009. Geochemistry of the Kalatongke Ni-Cu-(PGE) sulfide deposit, NW China: Implications for the formation of magmatic sulfide mineralization in a postcollisional environment. Mineralium Deposita, 44(3): 303-327.
Song X Y, Xie W, Deng Y F, Crawford A J, Zheng W Q, Zhou G F, Deng G, Cheng S L and Li J. 2011. Slab break-off and the formation of Permian mafic-ultramafic intrusions in southern margin of Central Asian Orogenic Belt, Xinjiang, NW China. Lithos, 127(1): 128-143.
Stracke A. 2012. Earth’s heterogeneous mantle: A product of convection-driven interaction between crust and mantle. Chemical Geology, 330-331: 274-299.
Straub S M, Lagatta A B, Martin-Del Pozzo A L and Langmuir C H. 2008. Evidence from high-Ni olivines for a hybridized peridotite/pyroxenite source for orogenic andesites from the central Mexican Volcanic Belt. Geochemistry, Geophysics, Geosystems, 9(3): 1-33.
Sun T, Qian Z Z, Deng Y F, Li C S, Song X Y and Tang Q Y. 2013. PGE and isotope (Hf-Sr-Nd-Pb) constraints on the origin of the Huangshandong magmatic Ni-Cu sulfide deposit in the Central Asian Orogenic Belt, northwestern China. Economic Geology, 108(8): 1849-1864.
Tang D M, Qin K Z, Li C S, Qi L, Su B X and Qu W J. 2011. Zircon dating, Hf-Sr-Nd-Os isotopes and PGE geochemistry of the Tianyu sulfide-bearing mafic-ultramafic intrusion in the Central Asian Orogenic Belt, NW China. Lithos, 126(1-2): 84-98.
Tang D M, Qin K Z, Su B X, Sakyi P A, Liu Y S, Mao Q, Santosh M and Ma Y G. 2013. Magma source and tectonics of the Xiangshanzhong mafic-ultramafic intrusion in the Central Asian Orogenic Belt, NW China, traced from geochemical and isotopic signatures. Lithos, 170-171: 144-163.
Tang Y J, Zhang H F, Deloule E, Su B X, Ying J F, Santosh M and Xiao Y. 2014. Abnormal lithium isotope composition from the ancient lithospheric mantle beneath the North China Craton. Scientific Reports, 4, 4274.
Tomascak P B, Langmuir C H, Le Roux P J and Shirey S B. 2008. Lithium isotopes in global mid-ocean ridge basalts. Geochimica et Cosmochimica Acta, 72(6): 1626-1637.
Tomascak P B, Widom E, Benton L D, Goldstein S L and Ryan J G. 2002. The control of lithium budgets in island arcs. Earth and Planetary Science Letters, 196(3): 227-238.
Wang Z R and Gaetani G A. 2008. Partitioning of Ni between olivine and siliceous eclogite partial melt: Experimental constraints on the mantle source of Hawaiian basalts. Contributions to Mineralogy and Petrology, 156(5): 661-678.
Wei B, Wang C Y, Li C S and Sun Y L. 2013. Origin of PGE-depleted Ni-Cu sulfide mineralization in the Triassic Hongqiling No.7 orthopyroxenite intrusion, Central Asian Orogenic Belt, Northeastern China. Economic Geology, 108(8): 1813-1831.
Windley B F, Alexeiev D, Xiao W, Kr?ner A and Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47.
Xiao W J, Kr?ner A and Windley B. 2009. Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic. International Journal of Earth Sciences, 98(6): 1185- 1188.
Xiao W J, Pirajno F and Seltmann R. 2008. Geodynamics and metallogeny of the Altaid orogen. Journal of Asian Earth Sciences, 32(2-4): 77-81.
Xiao W J, Windley B F, Hao J and Zhai M G. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics, 22(6): 1-21.
Xie W, Song X Y, Deng Y F, Wang Y S, Ba D H, Zheng W Q and Li X B. 2012. Geochemistry and petrogenetic implications of a Late Devonian mafic-ultramafic intrusion at the southern margin of the Central Asian Orogenic Belt. Lithos, 144-145: 209-230.
Yaxley G and Green D. 1998. Reactions between eclogite and peridotite: Mantle refertilisation by subduction of oceanic crust. Schweizerische Mineralogische Und Petrographische Mitteilungen, 78(2): 243-255.
Zhou M F, Michael Lesher C, Yang Z X, Li J W and Sun M. 2004. Geochemistry and petrogenesis of 270 Ma Ni-Cu- PGE sulfide-bearing mafic intrusions in the Huangshan district, eastern Xinjiang, Northwest China: Implications for the tectonic evolution of the Central Asian orogenic belt. Chemical Geology, 209(3-4): 233-257.

相似文献/References:

[1]李国华,王大伟,张术根.甘肃龙首山超基性岩带含矿岩体主造岩矿物化学特征研究.大地构造与成矿学,2000.24(2):170.
 Li Guo-hua,WANG Da-wei,ZHANG Shu-gen.STUDY ON MINERAL-CHEMISTRY FEATURES OF THE MAINROCK-FORMING MINERALS OF MINERALIZED ROCKBODIES IN THE LONGSHOUSHAN ULTRABASIC ROCK BELT.Geotectonica et Metallogenia,2000.45(6):170.
[2]李建峰,夏斌,王冉.洞错地幔橄榄岩、均质辉长岩矿物化学特征及其构造意义.大地构造与成矿学,2013.37(2):308.
 LI Jianfeng,XIA Bin,WANG Ran and LIU Weiliang.Mineralogical Characteristics of the Dong Tso Ophiolite and its Tectonic Implications.Geotectonica et Metallogenia,2013.45(6):308.
[3]刘建强,任钟元.玄武岩源区母岩的多样性和识别特征:以海南岛玄武岩为例.大地构造与成矿学,2013.37(3):471.
 LIU Jianqiang,and REN Zhongyuan.Diversity of Source Lithology and its Identification for Basalts: A Case Study of the Hainan Basalts.Geotectonica et Metallogenia,2013.45(6):471.
[4]任秋兵,李明超,李玉琼.基于全球橄榄石数据的玄武岩构造环境智能判别方法及其验证.大地构造与成矿学,2020.44(2):212.doi:10.16539/j.ddgzyckx.2020.02.005
 REN Qiubing,LI Mingchao,LI Yuqiong.An Intelligent Method for Geochemical Discrimination of Tectonic Settings of Basalt Based on Olivine Composition: GWO-SVM Method and its Verification.Geotectonica et Metallogenia,2020.45(6):212.doi:10.16539/j.ddgzyckx.2020.02.005

备注/Memo

备注/Memo:
收稿日期: 2020-08-29; 改回日期: 2020-10-14
项目资助: 国家自然科学基金项目(41730423、41902077)资助。
第一作者简介: 暴宏天(1994-), 男, 博士研究生, 矿物学岩石学矿床学专业。Email: hongtian_b@outlook.com
通信作者: 王焰(1969-), 女, 研究员, 从事岩浆作用与成矿研究。Email: wang_yan@gig.ac.cn
更新日期/Last Update: 2021-12-20