[1]刘 安,蔡全升,陈孝红.2021.雪峰隆起西缘页岩气构造保存条件的古流体评价.大地构造与成矿学,45(6):1161-1173.doi:10.16539/j.ddgzyckx.2021.06.003
 LIU An,CAI Quansheng,CHEN Xiaohong.2021.Paleofluid as Indicator of Shale Gas Tectonic Preservation in the Western Margin of Xuefeng Uplift.Geotectonica et Metallogenia,45(6):1161-1173.doi:10.16539/j.ddgzyckx.2021.06.003
点击复制

雪峰隆起西缘页岩气构造保存条件的古流体评价
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2021年45卷06期
页码:
1161-1173
栏目:
构造地质与成矿学
出版日期:
2021-12-25

文章信息/Info

Title:
Paleofluid as Indicator of Shale Gas Tectonic Preservation in the Western Margin of Xuefeng Uplift
文章编号:
1001-1552(2021)06-1161-013
作者:
刘 安1 蔡全升1、2 陈孝红1 肖七林2 李 海1 彭中勤1 苗凤彬1 李培军1 黄惠兰1
1.中国地质调查局 武汉地质调查中心, 湖北 武汉 430205; 2.长江大学 资源与环境学院, 湖北 武汉 430100
Author(s):
LIU An1 CAI Quansheng1、2 CHEN Xiaohong1 XIAO Qilin2 LI Hai1 PENG Zhongqin1 MIAO Fengbin1 LI Peijun1 and HUANG Huilan1
1. Wuhan Center of Geological Survey, China Geological Survey, Wuhan 430205, Hubei, China; 2. College of Resources and Environment, Yangtze University, Wuhan 430100, Hubei, China
关键词:
雪峰古隆起 页岩气 构造保存 古流体 包裹体 含气饱和度
Keywords:
Xuefeng uplift shale gas tectonic preservation paleofluid inclusions gas saturation
分类号:
TE121, P59
DOI:
10.16539/j.ddgzyckx.2021.06.003
文献标志码:
A
摘要:
古隆起周缘页岩生烃时间晚、热演化程度低, 已成为中扬子地区油气勘探的重要领域。本文对雪峰古隆起西缘典型井JD1井寒武系页岩脉体系统采样并开展流体地球化学与包裹体分析, 从构造保存的角度探讨了影响研究区页岩气富集的主控因素。研究结果认为(1)牛蹄塘组页岩方解石脉FeO、MnO组分自下而上增高, 方解石脉δEu也整体具有向上增加的趋势, 与牛蹄塘组页岩Fe、Mn元素含量、δEu值自下而上呈降低的趋势刚好相反, 表明下部古流体的还原性弱于上部。(2)包裹体群组分中CH4含量、包裹体类型比例中甲烷包裹体比例都指示牛蹄塘组上部页岩的含气饱和度高于下部, 显示下部裂缝系统是页岩与外界气水交换的通道。(3)以包裹体类型、均一温度和纯CH4包裹体压力计算为基础, 揭示了牛蹄塘组在中侏罗世处于超压状态, 压力系数最大为1.4; 中-晚侏罗世牛蹄塘组下部水溶液沿破碎带侵入页岩时的埋深为4~4.8 km, 致使页岩含气饱和度明显降低、含水饱和度明显上升。雪峰古隆起形成时间早, 但是在缺少刚性基底保护的条件下, 印支期以来构造变形强度大, 大型断裂发育使之碎片化, 大型断裂与牛蹄塘组底部破碎带形成了连通的疏导体系并持续开启, 成为页岩气散失的直接通道, 导致该区构造保存条件差, 不利于页岩气的富集成藏。
Abstract:
The shales around paleo-uplifts have become the targets of petroleum exploration in the middle Yangtze region because of the late hydrocarbon generation and relatively low maturity of the source rocks. In this paper, geochemical characteristics and fluid inclusions from the hydrothermal veins in the Niutitang Formation from the Well JD1 in the Xuefeng paleouplift are reported, and the tectonic preservation and main control factors of shale gas enrichment are discussed. The following results were obtained: (1) FeO, MnO contents and δEu values of calcite veins in the Niutitang Formation increase from bottom to top, which is quite contrary to the trend of the shales, indicating the paleo-fluid in the upper strata is more reducing. (2) Both the CH4 contents and the proportions of methane inclusions indicate that the gas saturation in the upper part of the Niutitang Formation is high, and the fractures in the lower part are the exchanging pathway for gas and water. (3) Based on the inclusion types, homogenization temperatures and the trapping pressures calculated with the state equation of CH4 system, several important geological events are rebuilt. The shale reservoirs were over pressured in the Middle Jurassic, with the max pressure coefficient of 1.4. During the Middle-Late Jurassic, water from the lower part of the Niutitang Formation (with depth of 4 to 4.8 km) penetrated the shales along the fractures, which lowered the gas saturation and elevated the water saturation. We conclude that without the protection of a rigid basement, the early-formed Xuefeng uplift was fragmented by numerous faults and intense tectonic deformation during Indosinian, thus the shale gas in the lower part of the Niutitang Formation dispersed in an open and permeable zone. Therefore, the poor tectonic preservation in the western margin of the Xuefeng uplift makes it an unfavorable area for Cambrian shale gas reservoirs.

参考文献/References:

柏道远, 姜文, 钟响, 熊雄. 2015. 湘西沅麻盆地中新生代构造变形特征及区域地质背景. 中国地质, 42(6): 1851-1875.
高泽远, 王甘露, 金宗玮, 王帅. 2019. 黔北凤冈地区牛蹄塘组黑色岩系及方解石脉地化特征及环境意义. 东北石油大学学报, 43(5): 76-87.
胡文瑄, 陈琪, 王小林, 曹剑. 2010. 白云岩储层形成演化过程中不同流体作用的稀土元素判别模式. 石油与天然气地质, 31(6): 810-818.
李海, 刘安, 罗胜元, 陈孝红, 陈林. 2019. 鄂西宜昌斜坡区寒武系页岩储层发育特征——以鄂宜页1井为例. 石油实验地质, 41(1): 76-82.
李智文, 郭建华, 秦明阳, 黄俨然, 曹铮. 2020. 复杂地质条件区页岩气聚集差异性及其意义: 以湘西北古生界为例. 中南大学学报(自然科学版), 51(2): 385-398.
梁峰, 朱炎铭, 漆麟, 王红岩, 拜文华, 马超, 张琴, 崔会英, 武瑾. 2016. 湖南常德地区牛蹄塘组富有机质页岩成藏条件及含气性控制因素. 天然气地球科学, 27(1): 180-188.
刘安, 陈孝红, 李培军, 周鹏, 李海, 蔡全升, 罗胜元. 2020. 宜昌天阳坪断裂两侧页岩气保存条件对比研究. 地质科技通报, 39(2): 10-19.
刘安, 李旭兵, 王传尚, 危凯, 王保忠. 2013. 湘鄂西寒武系烃源岩地球化学特征与沉积环境分析. 沉积学报, 31(6): 1122-1132.
刘安, 欧文佳, 危凯, 李芳, 李旭兵. 2017. 张家界大坪镇灯影组古油藏特征及天然气勘探意义. 地质学报, 91(8): 1848-1859.
刘斌, 沈昆. 1999. 流体包裹体热力学. 北京: 地质出版社: 27-83.
刘德汉, 肖贤明, 田辉, 王一刚, 汪泽成, 闵育顺. 2013. 论川东北地区发现的高密度甲烷包裹体类型与油裂解气和页岩气勘探评价. 地学前缘, 20(1): 64-71.
刘洪林, 王红岩. 2013. 中国南方海相页岩超低含水饱和度特征及超压核心区选择指标. 天然气工业, 33(7): 1-5.
刘力, 何生, 翟刚毅, 陈科, 刘早学, 王亿, 韩元佳, 董田. 2019. 黄陵背斜南翼牛蹄塘组二段页岩岩心裂缝脉体成岩环境演化与页岩气保存. 地球科学, 44(11): 3583-3597.
梅廉夫, 邓大飞, 沈传波, 刘昭茜. 2012. 江南-雪峰隆起构造动力学与海相油气成藏演化. 地质科技情报, 31(5): 85-93.
梅廉夫, 刘昭茜, 汤济广, 沈传波, 凡元芳. 2010. 湘鄂西-川东中生代陆内递进扩展变形: 来自裂变径迹和平衡剖面的证据. 地球科学, 35(2): 161-174.
彭中勤, 田巍, 苗凤彬, 王保忠, 王传尚. 2019. 雪峰古隆起边缘下寒武统牛蹄塘组页岩气成藏地质特征及有利区预测. 地球科学, 44(10): 3512-3528.
王加昇, 韩振春, 李超, 高振华, 杨毅, 周国超. 2018. 黔西南板其卡林型金矿床方解石REE、Fe、Mn元素特征及其对找矿的指示意义. 大地构造与成矿学, 42(3): 494-504.
魏祥峰, 李宇平, 魏志红, 刘若冰, 余光春, 王庆波. 2017. 保存条件对四川盆地及周缘海相页岩气富集高产的影响机制. 石油实验地质, 39(2): 147-153.
席斌斌, 腾格尔, 俞凌杰, 蒋宏, 申宝剑, 邓模. 2016. 川东南页岩气储层脉体中包裹体古压力特征及其地质意义. 石油实验地质, 38(4): 473-479.
颜丹平, 邱亮, 陈峰, 李林, 赵磊, 杨文心, 张翼西. 2018. 华南地块雪峰山中生代板内造山带构造样式及其形成机制. 地学前缘, 25(1): 1-13.
杨绍祥. 1998. 湘西花垣-张家界逆冲断裂带地质特征及其控矿意义. 湖南地质, 17(2): 96-100.
赵彦彦, 李三忠, 李达, 郭玲莉, 戴黎明, 陶建丽. 2019. 碳酸盐(岩)的稀土元素特征及其古环境指示意义. 大地构造与成矿学, 43(1): 141-167.
赵宗举, 朱琰, 邓红婴, 徐云俊. 2003. 中国南方古隆起对中、古生界原生油气藏的控制作用. 石油实验地质, 25(1): 10-18.
周家喜, 黄智龙, 周国富, 曾乔松. 2012. 黔西北天桥铅锌矿床热液方解石C、O同位素和REE地球化学. 大地构造与成矿学, 36(1): 93-101.
Duan Z, M?ller N and Weare J H. 1992. An equation of state for the CH4-CO2-H2O system: Ⅱ. Mixtures from 50 to 1000 ℃ and 0 to 1000 bar. Geochimica et Cosmochimica Acta, 56(7): 2619-2631.
Eadington P J, Lisk M and Krieger F W. 1996. Identifying oil well sites. United States Patent No. 5543616.
Gao J, Zhang J K, He S, Zhao J X, He Z L, Wo Y J, Feng Y X and Li W. 2019. Overpressure generation and evolution in Lower Paleozoic gas shales of the Jiaoshiba region, China: Implications for shale gas accumulation. Marine and Petroleum Geology, 102: 844-859.
Hao F, Zou H Y and Lu Y C.2013. Mechanisms of shale gas storage: Implications for shale gas exploration in China. AAPG Bulletin, 97(8): 1325-1346.
Haskin L A, Wildemanan T R and Haskin M A. 1968. An accurate procedure for the determination of the rare earth by neutron activation. Journal of Radioanalytical Chemistry, 1(4): 337-348.
Hu D F, Zhang H R, Ni K and Yu G C. 2014. Preservation conditions for marine shale gas at the southeastern margin of the Sichuan Basin and their controlling factors. Natural Gas Industry B, 1: 178-184.
Ju Y W, Wang G C, Bu H L, Li Q G and Yan Z F. 2014. China organic-rich shale geologic features and special shale gas production issues. Journal of Rock Mechanics and Geotechnical Engineering, 6: 196-207.
Lewan M D. 1997. Experiments on the role of water in petroleum formation. Geochimica et Cosmochimica Acta, 61(17): 3691-3723.
Liu A, Ou W J, Huang H L, Wei K, Li H and Chen X H. 2018. Significance of paleo-fluid in the Ordovician- Silurian detachment zone to the preservation of shale gas in western Hunan-Hubei area. Natural Gas Industry B, 5: 565-574.
Lu W J, Chou I M, Burruss R C and Song Y C. 2007. A unified equation for calculating methane vapor pressures in the CH4-H2O system with measured Raman shifts. Geochimica et Cosmochimica Acta, 71(16): 3969-3978.
Parnell J, Honghan C, Middleton D, Haggan T and Carey P. 2000. Significance of fibrous mineral veins in hydrocarbon migration: Fluid inclusion studies. Journal of Geochemical Exploration, 69-70: 623-627.
Rivers J M, James N P and Kyser T K. 2008. Early diagenesis of carbonates on a cool-water carbonate shelf, Southern Australia. Journal of Sedimentary Research, 78: 784- 802.
Shan X Q, Zhang B M, Zhang J, Zhang L P, Jia J H and Liu J J. 2015. Paleofluid restoration and its application in studies of reservoir forming: A case study of the Ordovician in Tarim Basin, NW China. Petroleum Exploration and Development, 42(3): 301-310.
Zhang K, Song Y, Jiang S, Jiang Z X and Jia C Z. 2019. Shale gas accumulation mechanism in a syncline setting based on multiple geological factors: An example of southern Sichuan and the Xiuwu Basin in the Yangtze Region. Fuel, 241: 468-476.
Zou C N, Dong D Z, Wang Y M, Li X J, Huang J L, Wang S F, Guan Q Z, Zhang C C, Wang H H, Liu H L, Bai W H, Liang F, Liu W, Zhao Q, Liu D X, Yang Z, Liang P P, Sun S S and Qiu Z. 2015. Shale gas in China: Characteristics, challenges and prospects (I). Petroleum Exploration and Development, 42(6): 753-767.

备注/Memo

备注/Memo:
收稿日期: 2020-05-11; 改回日期: 2021-01-19
项目资助: 国家科技重大专项“中扬子高演化页岩气赋存机理与富集规律研究”(2016ZX05034001-002)、“宜昌斜坡区页岩气有利区战略调查”(DD20179615)、“雪峰古陆周缘页岩气地质调查”(DD20190558)资助。
第一作者简介: 刘安(1981-)男, 硕士, 高级工程师, 从事古流体与页岩气成藏、保存研究。Email: globstar@163.com
通信作者: 肖七林(1980-), 男, 博士, 副教授, 主要从事石油地质-地球化学研究及相关教学工作。Email: qilinxiao@cug.edu.cn
更新日期/Last Update: 2021-12-20