[1]黄沁怡,李增华,许德如.2021.多过程耦合动力学数值模拟在热液矿床研究中的应用及发展前景.大地构造与成矿学,45(6):1146-1160.doi:10.16539/j.ddgzyckx.2021.06.002
 HUANG Qinyi,LI Zenghua,Xu Deru.2021.Application and Prospect of Numerical Simulation of Dynamics on Coupled Multi-processes in Hydrothermal Deposit Research.Geotectonica et Metallogenia,45(6):1146-1160.doi:10.16539/j.ddgzyckx.2021.06.002
点击复制

多过程耦合动力学数值模拟在热液矿床研究中的应用及发展前景
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2021年45卷06期
页码:
1146-1160
栏目:
构造地质与成矿学
出版日期:
2021-12-25

文章信息/Info

Title:
Application and Prospect of Numerical Simulation of Dynamics on Coupled Multi-processes in Hydrothermal Deposit Research
文章编号:
1001-1552(2021)06-1146-015
作者:
黄沁怡1、2 李增华3、4 许德如1、4 池国祥5 邓 腾4 赵朝霞1、2 于得水1、2
1.中国科学院 广州地球化学研究所 矿物学与成矿学重点实验室, 广东 广州 510640; 2.中国科学院大学, 北京 100049; 3.东华理工大学 江西省放射性地学大数据技术工程实验室, 江西 南昌 330013; 4.东华理工大学 核资源与环境国家重点实验室, 江西 南昌 330013; 5.Department of Geology, University of Regina, Regina S4S 0A2, Canada
Author(s):
HUANG Qinyi1、2 LI Zenghua3、4 Xu Deru1、4 CHI Guoxiang5 DENG Teng4 ZHAO Zhaoxia1、2 and YU Deshui1、2
1. CAS Key Laboratory of Mineral and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Jiangxi Engineering Laboratory on Radioactive Geoscience and Big Data Technology, East China University of Technology, Nanchang 330013, Jiangxi, China; 4. State Key Laboratory for Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China; 5. Department of Geology, University of Regina, Regina S4S 0A2, Canada
关键词:
数值模拟 数值模拟软件 成矿作用 耦合动力学
Keywords:
numerical simulation numerical simulation software mineralization coupled dynamics
分类号:
P611, P628+.3
DOI:
10.16539/j.ddgzyckx.2021.06.002
文献标志码:
A
摘要:
热液矿床的形成是一个复杂的多因素耦合过程, 包括传热、流体运移以及物质的传输和沉淀。近年来, 随着计算机技术和计算数学的发展, 多过程耦合动力学数值模拟在成矿研究中的应用越来越深入, 主要模拟成矿系统中的热传递、流体流动、构造变形和化学反应过程以及它们之间的相互作用。本文首先介绍了数值模拟的基本方法、常用的数值模拟软件及其应用范围, 其次总结了多过程耦合动力学数值模拟在热液成矿理论研究和成矿预测中的应用, 最后总结了数值模拟的优缺点并讨论其发展趋势。数值模拟是解决一些成矿问题的有效分析工具, 将会推动矿床研究从定性、半定量往定量的方向转变。
Abstract:
Formation of hydrothermal deposit is a complex multi-coupled process, which involves heat transfer, fluid flow and solute transport. With the development of computer technology and computational mathematics, numerical simulation of dynamics on coupled multi-processes has been applied more and more widely in researches of mineralization in recent years, mainly simulating the thermal (T), hydraulic (H), mechanical (M) and chemical (C) processes in the mineralization system as well as their interactions. In this paper, we review the application of numerical simulation methods in the study of ore deposits, including (1) a brief introduction of general theories and the commonly used numerical simulation software; (2) the application of numerical simulation of dynamics on coupled multi-processes in the studies of the Mississippi Valley-type Pb-Zn, unconformity-related uranium, porphyry, skarn deposits and the metallogenetic prediction; and (3) a discussion of the significance and limitations of numerical simulation for the study of metallogenic processes and its future directions. Numerical simulation is an effective analytical tool to solve some complicated geological problems, which will promote the transformation of ore deposit research from qualitative and semi-quantitative to quantitative.

参考文献/References:

陈亮, 陈良波, 唐振平, 胡杨, 刘江, 王正庆, 刘珊, 黄伟, 韩世礼. 2018. 湖南金狮岭地区成矿动力学数值模拟与成矿预测. 南华大学学报(自然科学版), 32(2): 62-69.
戴文强. 2020. 安庆铜矿床热液蚀变及成矿过程数值模拟研究. 合肥: 合肥工业大学硕士学位论文: 41-57.
邓军, 高帮飞, 王庆飞, 杨立强. 2005. 成矿流体系统的形成与演化. 地质科技情报, 24(1): 49-54.
邓军, 孙忠实, 王建平, 杨立强, 王庆飞. 2001. 动力系统转换与金成矿作用. 矿床地质, 20(1): 71-77.
胡训宇. 2020. 南陵-宣城矿集区成矿过程数值模拟与三维成矿预测. 合肥: 合肥工业大学博士学位论文: 55-94.
黄松. 2020. 山博赛金矿床地质统计学模型构建与三维成矿预测. 北京: 北京科技大学博士学位论文: 93-121.
贾蔡, 袁峰, 张明明, 李晓晖, 周涛发, 邵尉, 郑通科, 高道明. 2014. 宁芜盆地白象山铁矿床成矿作用过程数值模拟. 岩石学报, 30(4): 1031-1040.
贾跃明. 1996. 流体成矿系统与成矿作用研究. 地学前缘, 3(3-4): 94-99.
鞠明辉. 2011. 广西大厂矿田非线性成矿动力耦合过程数值模拟研究. 长沙: 中南大学博士学位论文: 62-108.
李晓晖, 戴文强, 袁峰, 张明明, 胡训宇, 周涛发, 李建设, 陆三明. 2018. 三维成矿预测数据整合过程不确定性研究——以宁芜盆地钟姑矿田为例. 岩石学报, 34(11): 3235-3243.
李增华, 池国祥, 邓腾, 许德如. 2019. 活化断层对加拿大阿萨巴斯卡盆地不整合型铀矿的控制. 大地构造与成矿学, 43(3): 518-527.
刘波, 韩彦辉. 2005. FLAC原理、实例与应用指南. 北京: 人民交通出版社: 1-5.
刘静, 陈建平. 2017. 我国三维成矿预测的研究现状及发展趋势. 地质学刊, 41(3): 441-447.
刘亮明, 疏志明, 赵崇斌, 万昌林, 蔡爱良, 赵义来. 2008. 矽卡岩矿床的汇流扩容空间控矿机制及其对深部找矿的意义: 以铜陵-安庆地区为例. 岩石学报, 24(8): 1848-1856.
闵令帅, 程惠红, 石耀霖. 2020. 区域岩浆热液成矿的数值模拟——以熊耳山前河地区金矿为例. 中国科学院大学学报, 37(3): 324-335.
任梦依. 2016. 海底多金属硫化物定量预测理论与实践. 北京: 中国地质大学(北京)博士学位论文: 58-160.
王仁. 1994. 有限单元等数值方法在我国地球科学中的应用和发展. 地球物理学报, 37(S1): 128-139.
王勖成, 邵敏. 1988. 有限单元法基本原理与数值方法. 北京: 清华大学出版社: 482-507.
席先武, 杨立强, 王岳军, 邓军, 林舸, 王建平, 雷小青. 2003. 构造体制转换的温度场效应及其耦合成矿动力学数值模拟. 地学前缘, 10(1): 47-55.
徐传福, 车永刚, 李大力, 王勇献, 王正华. 2020. 天河超级计算机上超大规模高精度计算流体力学并行计算研究进展. 计算机工程与科学, 42(10): 1815-1826.
袁峰, 李晓晖, 张明明, 贾蔡, 胡训宇. 2018. 三维成矿预测研究进展. 甘肃地质, 27(1): 32-36.
袁峰, 张明明, 李晓晖, 葛粲, 陆三明, 李建设, 周宇章, 兰学毅. 2019. 成矿预测: 从二维到三维. 岩石学报, 35(12): 3863-3874.
张嵩松. 2011. 岩浆热液成矿系统的数值模拟——以云南个旧锡多金属矿区为例. 北京: 中国地质大学(北京)硕士学位论文: 26-45.
张婉秋, 邹艳红. 2020. 基于TOUGHREACT的成矿过程化学反应数值模拟——以虎头崖铅锌多金属矿床为例. 地质找矿论丛, 35(3): 354-362.
赵鹏大. 2007. 成矿定量预测与深部找矿. 地学前缘, 14(5): 1-10.
赵鹏飞, 王功文, 韩小梦, 牛仲行, 王兵. 2017. 基于FLAC3D成矿过程数值模拟: 以南泥湖钼矿床为例. 中国矿业, 26(S1): 286-290+297.
赵义来, 刘亮明. 2011. 复杂形态岩体接触带成矿耦合动力学三维数值模拟: 以安庆铜矿为例. 大地构造与成矿学, 35(1): 128-136.
周叶. 2007. 挤压应力作用下的构造变形数值模拟研究. 广州: 中国科学院研究生院(广州地球化学研究所)博士学位论文: 45-69.
周永章, 左仁广, 刘刚, 袁峰, 毛先成, 郭艳军, 肖凡, 廖杰, 刘艳鹏. 2021. 数学地球科学跨越发展的十年: 大数据、人工智能算法正在改变地质学. 矿物岩石地球化学通报, 40(3): 556-573+777.
Aavatsmark I. 2002. An introduction to multipoint flux approximations for quadrilateral grids. Computational Geosciences, 6(3-4): 405-432.
Aghbelagh Y B and Yang J. 2014. Effect of graphite zone in the formation of unconformity-related uranium deposits: Insights from reactive mass transport modeling. Journal of Geochemical Exploration, 144: 12-27.
Ague J J and Brimhall G H. 1989. Geochemical modeling of steady state fluid flow and chemical reaction during supergene enrichment of porphyry copper deposits. Economic Geology, 84(3): 506-528.
Andersen C and Weis P. 2020. Heat transfer from convecting magma reservoirs to hydrothermal fluid flow systems constrained by coupled numerical modelling. Geophysical Research Letters, 47(23): e2020GL089463.
Appold M S and Nunn J A. 2005. Hydrology of the Western Arkoma basin and Ozark platform during the Ouachita orogeny: Implications for Mississippi Valley-type ore formation in the Tri-State Zn-Pb district. Geofluids, 5(4): 308-325.
Bethke C M. 1985. A numerical model of compaction-driven groundwater flow and heat transfer and its application to the paleohydrology of intracratonic sedimentary basins. Journal of Geophysical Research: Solid Earth, 90(B8): 6817-6828.
Bethke C M. 1986. Hydrologic constraints on the genesis of the Upper Mississippi Valley mineral district from Illinois basin brines. Economic Geology, 81(2): 233-249.
Bethke C M, Lee M K and Park J. 2007. Basin Modeling with Basin 2, a Guide to Using the Basin 2 Software Package, Release 5. 0. 1. Hydrogeology Program. University of Illinois.
Bethke C M, Lee M K, Quinodoz H and Kreiling W N. 1993. Basin modeling with Basin2: A guide to using Basin 2, B2plot, B2video, and B2view. University of Illinois Hydrogeology Program: 1-225.
Chi G X. 2001. BsnMod: A WindowsTM program for simulating basin-scale fluid flow and heat transfer processes related to sediment compaction and tectonic uplifting in two dimensions. Natural Resources Canada, Geological Survey of Canada: 1-14.
Chi G X, Bosman S and Card C. 2013. Numerical modeling of fluid pressure regime in the Athabasca basin and implications for fluid flow models related to the unconformity-type uranium mineralization. Journal of Geochemical Exploration Journal, 125: 8-19.
Chi G X, Lavoie D, Bertrand R and Lee M K. 2010. Downward hydrocarbon migration predicted from numerical modeling of fluid overpressure in the Paleozoic Anticosti Basin, eastern Canada. Geofluids, 10(3): 334-350.
Chi G X, Li Z H and Bethune K. 2014. Numerical modeling of hydrocarbon generation in the Douglas Formation of the Athabasca basin (Canada) and implications for unconformity-related uranium mineralization. Journal of Geochemical Exploration, 144: 37-48.
Chi G X, Qing H R, Xue C J and Zeng R. 2006. Modeling of fluid pressure evolution related to sediment loading and thrust faulting in the Lanping basin: Implications for the formation of the Jinding Zn-Pb deposit, Yunnan, China. Journal of Geochemical Exploration, 89(1-3): 57-60.
Chi G X and Savard M M. 1998. Basinal fluid flow models related to Zn-Pb mineralization in the southern margin of the Maritimes Basin, eastern Canada. Economic Geology, 93: 896-910.
Chi G X and Xue C J. 2011. An overview of hydrodynamic studies of mineralization. Geoscience Frontiers, 2(3): 423-438.
Cline J S, Bodnar R J and Rimstidt J D. 1992. Numerical simulation of fluid flow and silica transport and deposition in boiling hydrothermal solutions: Application to epithermal gold deposits. Journal of Geophysical Research: Solid Earth, 97(B6): 9085-9103.
Cooke D R and McPhail D C. 2001. Epithermal Au-Ag-Te mineralization, Acupan, Baguio district, Philippines: Numerical simulations of mineral deposition. Economic Geology, 96(1): 109-131.
Cox S F. 2005. Coupling between deformation, fluid pressures, and fluid flow in ore-producing hydrothermal systems at depth in the crust. Economic Geology, 100: 39-75.
Cui T, Yang J W and Samson I M. 2010. Numerical modeling of hydrothermal fluid flow in the Paleoproterozoic Thelon Basin, Nunavut, Canada. Journal of Geochemical Exploration, 106(1-3): 69-76.
Cui T, Yang J W and Samson I M. 2012. Tectonic deformation and fluid flow: Implications for the formation of unconformity-related uranium deposits. Economic Geology, 107(1): 147-163.
Diersch H J G. 2002. FEFLOW Finite Element Subsurface Flow and Transport Simulation System: User’s Manual/ Reference Manual/White Papers. WASY Ltd, Berlin Release: 5.
Diersch H J G and Kolditz O. 1998. Coupled groundwater flow and transport: 2. Thermohaline and 3D convection systems. Advances in Water Resources, 21(5): 401-425.
Driesner T and Geiger S. 2007. Numerical simulation of multiphase fluid flow in hydrothermal systems. Reviews in Mineralogy and Geochemistry, 65(1): 187-212.
Driesner T, Weis P and Scott S. 2015. A new generation of numerical simulation tools for studying the hydrology of geothermal systems to “supercritical” and magmatic conditions. World Geothermal Congress: 1-4.
Elder J W. 1967. Steady free convection in a porous medium heated from below. Journal of Fluid Mechanics, 27(1): 29-48.
Eldursi K, Branquet Y, Guillou-Frottier L and Marcoux E. 2009. Numerical investigation of transient hydrothermal processes around intrusions: Heat-transfer and fluid-circulation controlled mineralization patterns. Earth and Planetary Science Letters, 288(1-2): 70-83.
Emmanuel S and Berkowitz B. 2006. An experimental analogue for convection and phase separation in hydrothermal systems. Journal of Geophysical Research: Solid Earth, 111(B9).
Emmanuel S and Berkowitz B. 2007. Phase separation and convection in heterogeneous porous media: Implications for seafloor hydrothermal systems. Journal of Geophysical Research: Solid Earth, 112(B5).
Garven G and Freeze R A. 1984. Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits: 1, Mathematical and numerical model. American Journal of Science, 284(10): 1085-1124.
Geiger S, Haggerty R, Dilles J H, Reed M H and Matthai S K. 2002. New insights from reactive solute transport modeling: The formation of sericitic vein envelopes during early hydrothermal alteration at Butte, Montana. Geofluids, 2: 185-201.
Griebel M, Dornseifer T and Neunhoeffer T. 1998. Numerical simulation in fluid dynamics: A practical introduction. Society for Industrial and Applied Mathematics: 1-17.
Harbaugh A W. 2005. MODFLOW-2005, The U. G. Geological Survey Modular Groundwater Model: The Groundwater Flow Process. U. S. G. S. Techniques and Methods 6-A16: 253.
Hobbs B E, Means W D and Williams P F. 1976. An outline of structural geology. New York, Wiley: 571.
Hobbs B E, Zhang Y, Ord A and Zhao C. 2000. Application of coupled deformation, fluid flow, thermal and chemical modelling to predictive mineral exploration. Journal of Geochemical Exploration, 69: 505-509.
Hu X Y, Li X H, Yuan F, Ord A, Jowitt S M, Li Y, Dai W Q and Zhou T F. 2020. Numerical modeling of ore-forming processes within the Chating Cu-Au porphyry-type deposit, China: Implications for the longevity of hydrothermal systems and potential uses in mineral exploration. Ore Geology Reviews, 116: 103230.
Ingebritsen S E and Appold M S. 2012. The Physical Hydrogeology of Ore Deposits. Economic Geology, 107(4): 559-584.
Ingebritsen S E, Geiger S, Hurwitz S and Driesner T. 2010. Numerical simulation of magmatic hydrothermal systems. Reviews of Geophysics, 48(1).
Itasca. 2002. PFC2D, Particle Flow Code in 2 Dimensions. User Manual, Version 3.0. Itasca Consulting Group, Inc., Minneapolis.
Jaeger J C and Cook N G W. 1979. Fundamentals of rock mechanics. Chapman and Hall, London: 593.
Jing L R and Feng X T. 2003. Numerical Modeling for Coupled Thermal-Hydro-Mechanical and Chemical Processes (THMC) of Geological Media—International and Chinese Experiences. Chinese Journal of Rock Mechanics and Engineering, (10): 1704-1715.
Joshua T, Derek E and Min K B. 2009. Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable, fractured porous media. International Journal of Rock Mechanics and Mining Sciences, 46(5): 842-854.
Ju M H, Zhao C, Dai T G and Yang J W. 2011. Finite element modeling of pore-fluid flow in the Dachang ore district, Guangxi, China: Implications for hydrothermal mineralization. Geoscience Frontiers, 2(3): 463-474.
Kipp K L, Hsieh P A and Charlton S R. 2008. Guide to the Revised Ground-Water Flow and Heat Transport Simulator: HYDROTHERM-Version 3. US Department of the Interior, US Geological Survey.
Leach D L and Sangster D F. 1993. Mississippi Valley-type lead-zinc deposits. Geological Association of Canada Special Paper, 40(3): 108-117.
Lee S H, Jenny P and Tchelepi H A. 2002. A finite-volume method with hexahedral multiblock grids for modeling flow in porous media. Computational Geosciences, 6(3-4): 353-379.
Lewis K C. 2007. Numerical modeling of two-phase flow in the sodium chloride-water system with applications to seafloor hydrothermal systems. Georgia Institute of Technology: 1-178.
Li X H, Yuan F, Zhang M M, Jia C, Jowitt S M, Ord A, Zheng T K, Hu X Y and Li Y. 2015. Three-dimensional mineral prospectivity modeling for targeting of concealed mineralization within the Zhonggu iron orefield, Ningwu Basin, China. Ore Geology Reviews, 71: 633-654.
Li X H, Yuan F, Zhang M M, Jowitt S M, Ord A, Zhou T F and Dai W Q. 2019. 3D computational simulation- based mineral prospectivity modeling for exploration for concealed Fe-Cu skarn-type mineralization within the Yueshan orefield, Anqing district, Anhui Province, China. Ore Geology Reviews, 105: 1-17.
Li Z H, Chi G X and Bethune K M. 2016. The effects of basement faults on thermal convection and implications for the formation of unconformity-related uranium deposits in the Athabasca Basin, Canada. Geofluids, 16: 729-751.
Li Z H, Chi G X, Bethune K M, Eldursi K, Quirt D, Ledru P and Gudmundson G. 2018a. Numerical simulation of strain localization and its relationship to formation of the Sue unconformity-related uranium deposits, eastern Athabasca Basin, Canada. Ore Geology Reviews, 101(July): 17-31.
Li Z H, Chi G X, Bethune K M, Eldursi K, Quirt D, Ledru P and Thomas D. 2020. Interplay between thermal convection and compressional fault reactivation in the formation of unconformity-related uranium deposits. Mineralium Deposita: 1-16. https: //doi.org/10.1007/s00126-020- 01011-6.
Li Z H, Chi G X, Bethune K M, Eldursi K, Thomas D, Quirt D and Ledru P. 2018b. Synchronous egress and ingress fluid flow related to compressional reactivation of basement faults: The Phoenix and Gryphon uranium deposits, southeastern Athabasca Basin, Saskatchewan, Canada. Mineralium Deposita, 53(2): 277-292.
Li Z H, Chi G X, Bethune K M, Thomas D and Zaluski G. 2017. Structural controls on fluid flow during compressional reactivation of basement faults: Insights from numerical modeling for the formation of unconformity-related uranium deposits in the athabasca Basin, Canada. Economic Geology, 112(2): 451-466.
Lin G, Zhou Y, Wei X R and Zhao C B. 2006. Structural controls on fluid flow and related mineralization in the Xiangshan uranium deposit, Southern China. Journal of Geochemical Exploration, 89(1-3): 231-234.
Liu L M, Li J F, Zhou R C and Sun T. 2016. 3D modeling of the porphyry-related Dawangding gold deposit in south China: Implications for ore genesis and resources evaluation. Journal of Geochemical Exploration, 164: 164-185.
Liu L M, Wan C L, Zhao C B and Zhao Y L. 2011. Geodynamic constraints on orebody localization in the Anqing orefield, China: Computational modeling and facilitating predictive exploration of deep deposits. Ore Geology Reviews, 43(1): 249-263.
Liu L M, Yang G Y, Peng S L and Zhao C. 2005. Numerical modeling of coupled geodynamical processes and its role in facilitating predictive ore discovery: An example from Tongling, China. Resource Geology, 55(1): 21-31.
Liu L M, Zhao Y L and Sun T. 2012. 3D computational shape- and cooling process-modeling of magmatic intrusion and its implication for genesis and exploration of intrusion-related ore deposits: An example from the Yueshan intrusion in Anqing, China. Tectonophysics, 526: 110-123.
Liu L M, Zhao Y L and Zhao C B. 2010. Coupled geodynamics in the formation of Cu skarn deposits in the Tongling- Anqing district, China: Computational modeling and implications for exploration. Journal of Geochemical Exploration, 106(1-3): 146-155.
Liu Y and Dai T G. 2014. Numerical modeling of pore-fluid flow and heat transfer in the Fushan iron ore district, Hebei, China: Implications for hydrothermal mineralization. Journal of Geochemical Exploration, 144: 115-127.
Mandl G. 1988. Mechanics of tectonic faulting. Amsterdam, Elsevier: 704.
Mannington W, O’ Sullivan M and Bullivant D. 2004. Computer modeling of the Wairakei-Tauhara geothermal system, New Zealand. Geothermics, 33: 401-419.
McDonald M G and Harbaugh A W. 1984. A modular three-dimensional finite-difference groundwater flow model (Open-file report 83-875). US Department of the Interior. US Geological Survey, Reston, VA: 528.
McLellan J G, Oliver N H S and Schaubs P M. 2004. Fluid flow in extensional environments; numerical modelling with an application to Hamersley iron ores. Journal of Structural Geology, 26(6-7): 1157-1171.
Menand T, Raw A and Woods A W. 2003. Thermal inertia and reversing buoyancy in flow in porous media. Geophysical Research Letters, 30(6): 24.
Misra K C. 2000. Skarn deposits // Understanding mineral deposits. Springer, Dordrecht: 414-449.
Narasimhan T N and Witherspoon P A. 1976. An integrated finite difference method for analyzing fluid flow in porous media. Water Resources Research, 12(1): 57-64.
Oliver N H, McLellan J G, Hobbs B E, Cleverly J S, Ord A and Feltrin L. 2006. Numerical models of extensional deformation, heat transfer, and fluid flow across basement- cover interfaces during basin-related mineralization. Economic Geology, 101(1): 1-31.
Ord A. 1991. Deformation of rock: A pressure-sensitive, dilatant material. Pure and Applied Geophysics, 137(4): 337-366.
Ord A and Oliver N H S. 1997. Mechanical controls on fluid flow during regional metamorphism: Some numerical models. Journal of Metamorphic Geology, 15(3): 345-359.
Poulet T, Karrech A, Regenaur-Lieb K, Gross L, Cleverley J S and Georgiev D. 2010. Thermal-mechanical-hydrological- chemical simulations using escript, Abaqus and WinGibbs // Abstract for the GeoMod 2010 Conference, 27e29 September.
Pruess K. 1991. TOUGH2: A General-Purpose numerical Simulator for Multiphase Fluid and Heat Flow. Report LBL-20700, Berkeley, California: Lawrence Berkeley Laboratory.
Qin Y Z, Liu L M and Wu W C. 2021. Machine Learning- Based 3D Modeling of Mineral Prospectivity Mapping in the Anqing Orefield, Eastern China. Natural Resources Research: 1-22. https: //doi.org/10.1007/s11053-021- 09893-7.
Regenauer-Lieb K, Karrech A, Chua H T, Horowitz F G and Yuen D. 2010. Time-dependent, irreversible entropy production and geodynamics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1910): 285-300.
Sanford R F. 1994. A quantitative model of groundwater flow during formation of tabular sandstone uranium deposit. Economic Geology, 89: 341-360.
Schaubs P M, Rawling T J, Dugdale L J and Wilson C J L. 2006. Factors controlling the location of gold mineralisation around basalt domes in the Stawell corridor: Insights from coupled 3D deformation-fluid-flow numerical models. Australian Journal of Earth Sciences, 53(5): 841-862.
Scott S, Driesner T and Weis P. 2015. Geologic controls on supercritical geothermal resources above magmatic intrusions. Nature Communications, 6(1): 1-6.
Scott S, Driesner T and Weis P. 2016. The thermal structure and temporal evolution of high-enthalpy geothermal systems. Geothermics, 62: 33-47.
Scott S, Driesner T and Weis P. 2017. Boiling and condensation of saline geothermal fluids above magmatic intrusions. Geophysical Research Letters, 44(4): 1696-1705.
Sharp J M. 1978. Energy and momentum transport model of the Ouachita basin and its possible impact on formation of economic mineral deposits. Economic Geology, 73(6): 1057-1068.
Shvarov Y V and Bastrakov E. 1999. HCh: A software package for geochemical equilibrium modeling // User’s guide. Australian Geological Survey Organisation, Department of Industry. Science and Resources.
Sillitoe R H. 2010. Porphyry copper systems. Economic Geology, 105(1): 3-41.
Siret D, Poulet T, Regenauer-Lieb K and Connolly J A D. 2009. PreMDB, a thermodynamically consistent material database as a key to geodynamic modelling. Acta Geotechnica, 4(2): 107-115.
Sondergeld C H and Turcotte D L. 1977. An experimental study of two-phase convection in a porous medium with applications to geological problems. Journal of Geophysical Research, 82(14): 2045-2053.
Sorjonen-Ward P, Zhang Y and Zhao C. 2002. Numerical modelling of orogenic processes and gold mineralisation in the southeastern part of the Yilgarn Craton, Western Australia. Australian Journal of Earth Sciences, 49(6): 935-964.
Takahashi H, Tomita S A, Koike K and Yoshiyama H. 2020. A cold-water trap as an essential process for the generation of low-sulfidation epithermal deposits: Geological and numerical studies of the Hosokura deposit, northern Japan. Ore Geology Reviews, 128: 103780.
Taron J and Elsworth D. 2009. Thermal-hydrologic-mechanical- chemical processes in the evolution of engineered geothermal reservoirs. International Journal of Rock Mechanics and Mining Sciences, 46(5): 855-864.
Taron J, Elsworth D and Min K B. 2009. Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable, fractured porous media. International Journal of Rock Mechanics and Mining Sciences, 46(5): 842-854.
Todesco M, Chiodini G and Macedonio G. 2003. Monitoring and modeling hydrothermal fluid emission at La Solfatara (Phlegrean Fields, Italy): An interdisciplinary approach to the study of diffuse degassing. Journal of Volcanology and Geothermal Research, 125: 57-79.
Vermeer P A and DeBorst R. 1984. Non-associated plasticity for soils, concrete and rock. Heron, 29(3): 1-64.
Vigneresse J L. 2019. Addressing ore formation and exploration. Geoscience Frontiers, 10(4): 1613-1622.
Vigneresse J L and Truche L. 2020. Modeling ore generation in a magmatic context. Ore Geology Reviews, 116: 103223.
Vigneresse J L, Truche L and Richard A. 2019. How do metals escape from magmas to form porphyry-type ore deposits? Ore Geology Reviews, 105: 310-336.
Weis P. 2014. The physical hydrology of ore-forming magmatic-hydrothermal systems // Building Exploration Capability for the 21st Century. Society of Economic Geologists, 18: 59-75.
Weis P, Driesner T and Heinrich C A. 2012. Porphyry- copper ore shells form at stable pressure-temperature fronts with dynamic fluid plumes. Science, 338: 1613- 1616.
Xu T F, Sonnenthal E, Spycher N and Pruess K. 2004. TOUGHREACT user’s guide: A simulation program for non-isothermal multiphase reactive geochemical transport in variable saturated geologic media (No. LBNL-55460). Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States): 1-206.
Xu T F, Sonnenthal E, Spycher N and Pruess K. 2006. TOUGHREACT—A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2 geological sequestration. Computers & Geosciences, 32(2): 145-165.
Xue C J, Chi G X and Xue W. 2010. Interaction of two fluid systems in the formation of sandstone-hosted uranium deposits in the Ordos Basin: Geochemical evidence and hydrodynamic modeling. Journal of Geochemical Exploration, 106: 226-235.
Xue C J, Chi G X and Xue W. 2011. Effects of hydrocarbon generation on fluid flow in the Ordos Basin and relationship with uranium mineralization. Geoscience Frontiers, 2(3): 439-448.
Yang J, Bull S and Large R. 2004. Numerical investigation of salinity in controlling ore-forming fluid transport in sedimentary basins: Example of the HYC deposit, Northern Australia. Mineralium Deposita, 39(5-6): 622-631.
Yapparova A, Miron G D, Kulik D A, Kosakowski G and Driesne T. 2019. An advanced reactive transport simulation scheme for hydrothermal systems modelling. Geothermics, 78: 138-153.
Yuan F, Li X H, Zhang M M, Jowitt S M, Jia C, Zheng T K and Zhou T F. 2014. Three-dimensional weights of evidence-based prospectivity modeling: A case study of the Baixiangshan mining area, Ningwu Basin, Middle and Lower Yangtze Metallogenic Belt, China. Journal of Geochemical Exploration, 145: 82-97.
Zhang Y H, Robinson J and Schaubs P M. 2011. Numerical modeling of structural controls on fluid flow and mineralization. Geoscience Frontiers, 2(3): 449-462.
Zhang Y H, Sorjonen-Ward P, Ord A and Southgate P N. 2006. Fluid flow during deformation associated with structural closure of the Isa superbasin at 1575 Ma in the central and northern Lawn Hill platform, northern Australia. Economic Geology, 101(6): 1293-1312.
Zhao C B, Hobbs B E and Mühlhaus H B. 1998. Finite element modelling of temperature gradient driven rock alteration and mineralization in porous rock masses. Computer Methods in Applied Mechanics and Engineering, 165(1-4): 175-187.
Zhao C B, Hobbs B E, Mühlhaus H B, Ord A and Lin G. 2000. Numerical modelling of double diffusion driven reactive flow transport in deformable fluid-saturated porous media with particular consideration of temperature-dependent chemical reaction rates. Engineering Computations, 17: 367-385.
Zhao C B, Hobbs B E and Ord A. 2018. Modeling of mountain topography effects on hydrothermal Pb-Zn mineralization patterns: Generic model approach. Journal of Geochemical Exploration, 190: 400-410.
Zhao C B, Hobbs B E, Ord A, Kühn M, Mühlhaus H B and Peng S L. 2006. Numerical simulation of double- diffusion driven convective flow and rock alteration in three-dimensional fluid-saturated geological fault zones. Computer Methods in Applied Mechanics and Engineering, 195(19-22): 2816-2840.
Zou Y H, Yao L, Yong P, Yang K D, Dai T G, Mao X C, Lai J Q and Tian H L. 2019. Numerical simulation of hydrothermal mineralization associated with simplified chemical reactions in Kaerqueka polymetallic deposit, Qinghai, China. Transactions of Nonferrous Metals Society of China, 29(1): 165-177.

相似文献/References:

[1]桑广森.松辽盆地徐家围子三维构造应力场数值模拟研究.大地构造与成矿学,2010.34(2):196.
 SANG Guangseng,XIA Bin.Jaeger J C. 1979. Fundamentals of Rock Mechanics. London: Chapman and Hall.Numerical Modeling of 3D Tectonic Stress Field for the Xujiaweizi Fault Depression of Songliao Basin.Geotectonica et Metallogenia,2010.45(6):196.
[2]张胜利,夏斌*,胡振华.丽水-椒江凹陷新生代构造应力场数值模拟与油气运聚关系探讨.大地构造与成矿学,2007.31(2):180.
 ZHANG Shengli,XIA Bin,HU Zhenhua and Zhang Y H.NUMERICAL SIMULATION OF CENOZOIC TECTONIC STRESS FIELD AND HYDROCARBON MIGRATION AND ACCUMULATION IN LISHUI-JIAOJIANG SAG.Geotectonica et Metallogenia,2007.45(6):180.
[3]周叶.单层褶皱变形过程中最大主应力与水平应变的变化及其影响因素.大地构造与成矿学,2007.31(1):037.
 ZHOU Ye,LIN Ge.VARIATION BETWEEN THE MAXIMUM PRINCIPAL STRESS AND HORIZONTAL STRAIN DURING SINGLE FOLD DEFORMATION AND ITS CONTROLLING FACTORS.Geotectonica et Metallogenia,2007.45(6):037.
[4]徐政语.江汉叠合盆地及邻区中生代以来盆山耦合数值模拟研究.大地构造与成矿学,2006.3(3):305.
 XU Zhengyu,YAO Genshun.A NUMERICAL APPROACH OF COUPLING BETWEEN MESOZOIC SEDIMENTARY BASIN AND OROGENIC BELT IN JIANGHAN OVERLAIN BASIN AND ITS ADJACENT AREA.Geotectonica et Metallogenia,2006.45(6):305.
[5]李细光,曾佐勋,彭晓文.北淮阳及其邻接区地壳稳定性研究.大地构造与成矿学,2003.27(3):287.
 Li Xi-guang,Zeng Zun-xun,Peng Xiao-wen.THE STUDY ON THE CRUSTAL STABILITY OF BEIHUAIYANG REGION AND ITS VICINITY.Geotectonica et Metallogenia,2003.45(6):287.
[6]马德云,高振敏,杨世瑜.北衙金矿区构造应力场数值模拟.大地构造与成矿学,2003.27(2):160.
 Ma Deyun,Gao Zhenmin.DIGITAL SIMULATION OF THE STRUCTURAL STRESS FIELD OF BEIYA GOLD DEPOSIT.Geotectonica et Metallogenia,2003.45(6):160.
[7]马润勇,席先武,彭建兵.青藏高原递进式隆升的力学模式.大地构造与成矿学,2005.29(4):451.
 MA Runyong,XI Xianwu,PENG Jianbing.MECHANICS MODEL OF PROGRESSIVE UPLIFT OF QINGHAI-TIBET PLATEAU.Geotectonica et Metallogenia,2005.45(6):451.
[8]龚纪文,崔建军,席先武.FLAC数值模拟软件及其在地学中的应用.大地构造与成矿学,2002.26(3):321.
 GONG Ji-wen,CUI Jian -jun,XI Xian -wu.FLAC METHOD FOR NUMERICAL MODELING AND ITS GEOLOGICAL APPLICATION.Geotectonica et Metallogenia,2002.45(6):321.
[9]夏斌,崔学军,张宴华.南海扩张的动力学因素及其数值模拟讨论.大地构造与成矿学,2005.29(3):328.
 XIA Bin,CUI Xuejun,ZHANG Y H.DYNAMIC FACTORS FOR THE OPENING OF SOUTH CHINA SEA AND A NUMERICAL MODELING DISCUSSION.Geotectonica et Metallogenia,2005.45(6):328.
[10]崔学军,夏斌,张宴华.地幔活动在南海扩张中的作用数值模拟与讨论.大地构造与成矿学,2005.29(3):334.
 CUI Xuejun,XIA Bin,ZHANG Y H.A NUMERICAL MODELING STUDY ON THE “ASTHENOSPHERE UPWELLING” OF SOUTH CHINA SEA.Geotectonica et Metallogenia,2005.45(6):334.

备注/Memo

备注/Memo:
收稿日期: 2020-06-23; 改回日期: 2021-07-08
项目资助: 国家自然科学基金(41930428、42002090)和东华理工大学江西省放射性地学大数据技术工程实验室开放基金(JELRGBDT202006)联合资助。
第一作者简介: 黄沁怡(1996-), 女, 博士研究生, 主要从事成矿构造与矿产预测的数值模拟研究。Email: huangqinyi@gig.ac.cn
通信作者: 李增华(1983-), 男, 教授, 从事成矿流体动力学研究。Email: lizenghua@ecut.edu.cn
更新日期/Last Update: 2021-12-20