[1]杨 炯,张跃峰,丘志力.2021.绿岩带型泰山蛇纹石质玉石地球化学特征及其成因指示.大地构造与成矿学,45(5):1044-1059.doi:10.16539/j.ddgzyckx.2021.05.012
 YANG Jiong,ZHANG Yuefeng,QIU Zhili.2021.Geochemistry and Petrogenesis of Greenstone Belt Type Serpentine Jade from Taishan, Shandong.Geotectonica et Metallogenia,45(5):1044-1059.doi:10.16539/j.ddgzyckx.2021.05.012
点击复制

绿岩带型泰山蛇纹石质玉石地球化学特征及其成因指示
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2021年45卷05期
页码:
1044-1059
栏目:
岩石大地构造与地球化学
出版日期:
2021-10-25

文章信息/Info

Title:
Geochemistry and Petrogenesis of Greenstone Belt Type Serpentine Jade from Taishan, Shandong
文章编号:
1001-1552(2021)05-1044-016
作者:
杨 炯1、2 张跃峰1 丘志力1、3* 贾东亮4 郑昕雨1
1.中山大学 地球科学与工程学院, 广东省地球动力作用与地质灾害重点实验室, 广东省地质过程与矿产资源探查重点实验室, 广东 广州 510275; 2.泰山学院 旅游学院, 山东 泰安 271000; 3.桂林理工大学 地球科学学院, 广西隐伏金属矿产勘查重点实验室, 广西 桂林 541006; 4.泰安市自然资源和规划局, 山东 泰安 271000
Author(s):
YANG Jiong1、2 ZHANG Yuefeng1 QIU Zhili1、3* JIA Dongliang4 and ZHENG Xinyu1
1. Guangdong Key Laboratory of Geodynamic and Geological Hazards // Guangdong Key Laboratory of Geological Process and Mineral Resources Exploration // School of Earth Sciences and Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, China; 2. School of Tourism, Taishan University, Tai’an 271000, Shandong, China; 3. Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration // College of Earth Sciences, Guilin University of Technology, Guilin 541004, Guangxi, China; 4. Tai’an City natural resources and planning bureau, Tai’an 271000, Shandong, China
关键词:
绿岩带 蛇纹石玉 地球化学 成因 泰山
Keywords:
greenstone belt serpentine jade geochemistry provenance features Taishan Mountain
分类号:
P595
DOI:
10.16539/j.ddgzyckx.2021.05.012
文献标志码:
A
摘要:
蛇纹石化与壳幔演化乃至地球上生命的起源过程密切相关。泰山蛇纹石质玉石产于华北克拉通鲁西雁翎关绿岩带内, 是绿岩带型蛇纹石质玉石的典型代表, 玉料可分为泰山墨玉、泰山碧玉和泰山翠斑玉(泰山花斑玉)三大类。虽然前人对泰山超基性岩型蛇纹石质玉石进行过研究, 但对其玉石地球化学特征及其成因研究仍然薄弱。本文利用偏光显微镜、X射线粉末衍射(XRD)、傅里叶变换红外光谱(FTIR)、X射线荧光光谱(XRF)、电感耦合等离子质谱(ICP-MS)等分析测试手段, 对泰山玉进行了分析。结果显示, 泰山墨玉主要矿物组成为叶蛇纹石和利蛇纹石, 而泰山碧玉和翠斑玉主要矿物均为叶蛇纹石; 三类玉料均富集Cr、Co、Ni等相容元素; 与其他产地蛇纹石玉相比, 泰山蛇纹石玉更富Ni而贫Cr; Cr/Ni和Ni/Co值变化范围分别为0.25~0.42、27.43~42.77; 亏损部分大离子亲石元素(如Rb、Sr、Ba)和高场强元素(Nb、Ta、Zr、Hf)。玉石具有稀土元素总量低(ΣREE=0.57~3.02 μg/g), 轻重稀土元素分异不明显, Eu负异常较为明显(δEu=0.18~0.45)等特征。早期形成的泰山墨玉主量元素更加贫Si、富Mg、Fe, 泰山碧玉和翠斑玉则相对富Si和富集U、Pb等亲流体元素。结合野外产状特点, 可以认为, ①泰山玉原岩为华北克拉通新太古代鲁西绿岩带上残余亏损地幔部分熔融产生的超基性火山岩, 其原岩具有岛弧火山岩的某些特征; ②低Cr含量和Cr/Ni值, 低稀土元素总量、轻重稀土元素分馏不明显等是绿岩带型泰山蛇纹石质玉石重要特征; ③泰山碧玉和翠斑玉的成玉过程可能受到后期热液流体的叠加改造。
Abstract:
Serpentinization is commonly considered as an important clue to investigate the process of the evolution of crust and mantle and even the origin of life on the Earth. Taishan serpentine jade, produced in the Yanlingguan greenstone belt, the east of the North China Craton, is a typical greenstone belt type. The jade materials can be divided into three categories: black jade, green jade and patchy jade. Although numerous studies on the ultrabasic serpentine jade from the Taishan Mountain have been carried out in last decade, its geochemical characteristics and genesis are still unclear. In this study, 12 typical jade samples were selected for petrological and geochemical analysis using polarizing microscope, X-ray powder diffraction (XRD), Fourier Translation Infrared spectroscopy (FTIR), X-ray fluorescence spectrometry (XRF) and inductively coupled plasma mass spectrometry (ICP-MS). The results show that the Taishan black jade mainly consists of antigorite and lizardite, while the Taishan green jade and patchy jade consist of predominantly antigorite. Compatible elements such as Cr, Co and Ni are enriched in the overall jade materials, with Cr/Ni and Ni/Co ratios varying in the ranges of 0.25-0.42 and 27.43-42.77, respectively. Some incompatible elements such as large ion lithophile elements (Rb, Sr, Ba) and high field strength elements (Nb, Ta, Zr, Hf) are depleted. The total rare earth elements (REE) contents are relatively low (ΣREE=0.57-3.02 μg/g), with relatively flat REE patterns and obvious negative Eu anomalies (δEu=0.18-0.45). The earliest formed Taishan black jade samples have relatively low Si and high Mg contents, while green jade and patchy jade samples are relatively rich in hydrophilic elements such as U and Pb. Based on the above results and field observations, it can be concluded that: (1) The protolith of the Taishan jade are the ultrabasic volcanic rocks in the Archean greenstone belt of Western Shandong, North China Craton, which was derived from partial melting of depleted mantle and has geochemical characteristics similar to those of island arc volcanic rocks. (2) The relative low Cr contents, low Cr/Ni ratios, low total REE contents and insignificant fractionation of light and heavy rare earth elements can be regarded as the important genetic features of the greenstone belt type Taishan serpentine jade. (3) The Taishan black jade is the product of self-metamorphism of ultrabasic rocks, while the green jade and patchy jade were obviously altered by hydrothermal fluid in the later stages.

参考文献/References:

曹国权. 1995. 鲁西山区早前寒武纪地壳演化再探讨. 山东地质, 11(2): 1-14.
陈德潜, 陈刚. 1990. 实用稀土元素地球化学. 北京: 冶金工业出版社: 10-22.
程佑法, 李建军, 范春丽, 张志刚. 2011. “泰山玉”的宝石学特征. 宝石和宝石学杂志, 13(1): 29-32.
程佑法, 李建军, 祝培明, 范春丽, 山广祺. 2014. 泰山玉的产地特征及命名. 人工晶体学报, 43(9): 2324-2328.
程裕琪, 徐惠芬. 1991. 对山东新泰晚太古代雁翎关组中科马提岩类的一些认识. 中国地质, 18(4): 31-32.
丁兴, 刘志锋, 黄瑞芳, 孙卫东, 陈多福. 2016. 大洋俯冲带的水岩作用——蛇纹石化. 工程研究-跨学科视野中的工程, 8(3): 258-268.
范桂珍, 王时麒, 刘岩. 2011. 河北小寺沟蛇纹石玉的矿物成分和化学成分研究. 岩石矿物学杂志, 30(S1): 133-143.
干福熹, 曹锦炎, 承焕生, 顾冬红, 芮国耀, 方向明, 董俊卿, 赵虹霞. 2011. 浙江余杭良渚遗址群出土玉器的无损分析研究. 中国科学: 技术科学, 41(1): 1-15.
葛云龙, 王时麒, 于洸, 郭炬, 武桐, 范桂珍, 刘岩, 何丽伟. 2011. 甘肃省武山县鸳鸯玉的地球化学和宝石学特征. 岩石矿物学杂志, 30(S1): 151-161.
侯旭. 2012. 泰山玉的宝石矿物与地球化学特征研究. 北京: 中国地质大学(北京)硕士学位论文: 20-31.
黄瑞芳, 孙卫东, 丁兴, 王玉荣. 2013. 基性和超基性岩蛇纹石化的机理及成矿潜力. 岩石学报, 29(12): 4336-4348.
贾东亮, 高宗军. 2013. 泰山玉的基本特征及分类研究. 山东国土资源, 29(3): 21-25.
江绍英. 1987. 蛇纹石矿物学及性能测试. 北京: 地质出版社: 45-63.
赖绍聪, 张国伟, 杨永成, 陈家义. 1998. 南秦岭勉县-略阳结合带蛇绿岩与岛弧火山岩地球化学及其大地构造意义. 地球化学, 27(3): 283-293.
李宗成. 2018. 山东泰山玉矿的发现及矿床和玉石特征. 山东国土资源, 34(10): 74-80.
李宗成, 邱伟, 张念朋, 赵静安. 2012. 山东泰山玉矿地质特征. 山东国土资源, 28(9): 14-17.
刘刚, 苏山立. 1986. 蛇纹石族矿物X射线衍射谱鉴定特征及区别. 建材地质, (2): 36-42.
刘志勇, 干福熹, 承焕生, 马波, 顾冬红. 2008. 蛇纹石质古玉器的无损分析研究. 自然科学史研究, 27(3): 370-377.
吕军. 2003. 从考古学上谈岫岩玉在中国玉文化起源中的地位与作用. 鞍山师范学院学报, 5(5): 55-59.
任鹏, 颉颃强, 王世进, 董春艳, 马铭株, 刘敦一, 万渝生. 2015. 鲁西2.5~2.7Ga构造岩浆热事件: 泰山黄前水库TTG侵入岩的野外地质和锆石SHRIMP定年. 地质评论, 61(5): 1068-1078.
桑隆康, 马昌前. 2012. 岩石学(第二版). 北京: 地质出版社: 72-93.
沈保丰, 李俊建, 毛德宝. 1997. 华北地台绿岩带地质特征类型和演化. 前寒武纪研究进展, 20(1): 2-11.
汪小妹, 曾志刚, 欧阳荷根, 殷学博, 王晓媛, 陈帅, 张国良, 武力. 2010. 大洋橄榄岩的蛇纹岩石化研究进展评述. 地球科学进展, 25(6): 605-612.
王强. 2008. 海岱地区新石器时代玉料来源及琢玉工艺初探. 华夏考古, 84(2): 76-83.
王时麒, 赵朝洪, 于洸. 2007. 中国岫岩玉. 北京: 科学出版社: 18-21.
王世进, 万喻生, 张成基, 杨恩秀, 宋志勇, 王立法, 张富中. 2008. 鲁西地区早前寒武纪地质研究新进展. 山东国土资源, 24(1): 10-20.
万渝生, 董春艳, 颉颃强, 刘守偈, 马铭株, 谢士稳, 任鹏, 孙会一, 刘敦一. 2015. 华北克拉通太古宙研究若干进展. 地球学报, 36(6): 685-700.
万渝生, 刘敦一, 王世进, 焦秀美, 王伟, 董春艳, 颉颃强, 马铭株. 2012. 华北克拉通鲁西地区早前寒武纪表壳岩系重新划分和Bif形成时代. 岩石学报, 28(11): 3457-3475.
王希斌, 鲍佩生, 戎合. 1996. 中国蛇绿岩中变质橄榄岩胡稀土元素地球化学. 岩石学报, 11(S1): 25-41.
王希斌, 杨经绥, 李天福, 陈松永, 任玉峰. 2009. 东海地区高压-超高压变质带中变质橄榄岩及其原岩和成因类型的判别——以PP1孔和PP3孔为例. 地质学报, 83(7): 946-963.
肖玲玲, 刘福来, 张健. 2019. 华北克拉通新太古代早期构造热事件的响应: 来自左权地区ca. 2.7Ga TTG片麻岩的证据. 岩石学报, 35(2): 325-348.
谢鸿森, 周文戈, 李玉文, 郭捷, 许祖鸣. 2000. 高温高压下蛇纹岩脱水的弹性特征及其意义. 地球物理学报, 43(6): 634-641.
徐惠芬. 1992. 鲁西花岗岩-绿岩带研究新进展. 中国地质科学院地质研究所所刊, 25: 67-68.
杨恩秀, 陶有兵, 张新平, 朱继托, 万渝生, 王世进. 2008. 鲁西地区新太古界雁翎关组中花岗质“砾石”SHRIMP锆石U-Pb定年及地质意义. 地球化学, 37(5): 481-487.
杨炯, 丘志力, 彭淑贞, 孙波, 贾东亮, 张跃峰, 周永哲. 2013. 从大汶口文化出土玉器管窥“泰山玉”开发历史 // 2013中国珠宝首饰学术交流会论文集. 北京: 地质出版社: 231-236.
杨炯, 丘志力, 张跃峰, 陈国科, 孙媛, 郑昕雨. 2020. R型与P型蛇纹石质玉的材料学特征及古玉器判别案例分析 // 2019丝绸之路与秦汉文明: 丝绸之路与秦汉文明国际学术研讨会论文集. 北京: 文物出版社: 311-321.
杨树锋, 陈汉林, 董传万, 沈晓华, 齐德文, 赵冬冬, 贾承造, 魏国齐. 1999. 西昆仑山库地蛇绿岩的特征及其构造意义. 地质科学, 34(3): 281-288.
余日东, 金振民. 2006. 蛇纹石脱水与大洋俯冲带中源地震(70~300km)的关系. 地学前缘, 13(2): 191-204.
余星, 初凤友, 陈汉林, 董彦辉, 李小虎. 2011. 深海橄榄岩蛇纹石化作用的研究进展. 海洋学研究, 29(1): 96-103.
岳超龙, 朱剑. 2017. 中国古代玉器科技研究述评. 中国科技史杂志, 38(1): 111-122.
翟明国. 2010. 华北克拉通的形成演化与成矿作用. 矿床地质, 29(1): 24-36.
翟明国. 2011. 克拉通化与华北陆块的形成. 中国科学: 地球科学, 41(8): 1037-1046.
翟明国. 2013. 华北前寒武纪成矿系统与重大地质事件的联系. 岩石学报, 29(5), 1759-1773.
翟明国. 2019. 华北克拉通构造演化. 地质力学学报, 25(5): 722-745.
张厚生, 张希雨. 1989. 泰山玉地质特征及其工艺加工性研究. 山东地质, 5(1): 63-72.
张琰. 2015. 2014年泰山文化研究综述. 泰山学院学报, 37(5): 25-30.
张跃峰, 杨炯, 丘志力, 贾东亮. 2015. 蛇纹石质“泰山玉”岩石矿物地球化学特征及产地来源分析. 吉林大学学报(地球科学版), 45(S1): 1510-30.
张增奇. 1991. 鲁西早前寒武纪花岗岩-绿岩地体稀土元素地球化学. 山东国土资源, (2): 79-91.
赵振华. 2016. 微量元素地球化学原理(第二版). 北京: 科学出版社: 392-412.
赵振华, 增田彰正, M B 夏巴尼. 1992. 稀有金属花岗岩的稀土元素四分组效应. 地球化学, 21(3): 221-233.
郑新华, 白文吉. 1988. 绿岩套和蛇绿岩套的区分标志. 岩石矿物学杂志, 7(3): 193-202.
Arndt N T, Lesher C M and Barnes S J. 2008. Komatiite. Cambridge University Press, London: 141-166.
Binns R A, Hallberg J A and Taplin J H. 1982. Komatiites in the Yilgarn block, Western Australia // Arndt N T and Nisbet E G. Komatiites. Allen and Unwin, London: 117-130
Debret B, Andreani M, Mu?oz M, Bolfan-Casanova M, Carlut J, Nicollet C, Schwartz S and Trcera N. 2014. Evolution of Fe redox state in serpentine during subdu-ction. Earth and Planetary Science Letters, 400: 206-218.
Dilek Y and Furnes H. 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin, 123(3-4): 387-411.
Elliott T. 2003. Tracers of the slab. Geophysical Monograph Series // Eiler J. Inside the Subduction Factory. Geophy-sical Monograph, American Geophysical Union, 138: 23-45.
Evans B W, Hattori K and Baronnet A. 2013. Serpentinite: What, why, where? Elements, 9(2): 99-106.
Frost B R, Evans K A, Swapp S M, Beard J S and Mothersole F E. 2013. The process of serpentinization in dunite from New Caledonia. Lithos, 178(9): 24-39.
Guillot S and Hattori K. 2013. Serpentinites: Essential roles in geodynamics, arc volcanism, sustainable development and the origin of life. Elements, 9(2): 95-98.
Hirth G and Guillot S. 2013. Rheology and tectonic significance of serpentinite. Elements, 9(2): 107-113.
Kr?ner A, Wilde S A, Li J H and Wang K Y. 2005. Age and evolution of a Late Archean to Early Palaeoproterozoic upper to lower crustal section in the Wutaishan / Hengshan / Fuping terrain of northern China. Journal of Asian Earth Sciences, 24(5): 577-595.
Lafay R, Deschamps F, Schwartz S, Guillot S, Godard M, Debret B and Nicollet C. 2013. High-pressure serpentinites, a trap-and-release system controlled by metamorphic conditions: Example from the Piedmont zone of the western Alps. Chemical Geology, 343: 38-54.
Leeman W P. 1976. Petrogenesis of McKinney (Snake River) olivine tholeiite in light of rare-earth element and Cr/Ni distributions. Geological Society of America Bulletin, 87(11): 1582-1586.
Li X H. 1997. Geochemistry of the Longsheng Ophiolite from the southern margin of Yangtze Craton, SE China. Geochemical Journal, 31(5): 323-337.
Lyubetskaya T and Korenaga J. 2007. Chemical composition of Earth’s primitive mantle and its variance: 1. Method and results. Journal of Geophysical Research Solid Earth, 112, B0321.
McCollom T M and Seewald J S. 2013. Serpentinites, Hydrogen, and Life. Elements, 9(2): 129-134.
McDonough W F and Sun S S. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253.
Mével C. 2003. Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus Geoscience, 335(10-11): 825-852.
Mysen B O and Kushiro I. 1977. Compositional variations of coexisting phases with degree of melting of peridotite in the upper mantle. American Mineralogist, 62(9-10): 843-865.
Rudnick R L, Barth M, Horn I and Mcdonough W F. 2000. Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle. Science, 287(5451), 278-281.
Scambelluri M, Fiebig J, Malaspina N, Müntener O and Pettke T. 2004. Serpentinite subduction: Implications for fluid processes and trace-element recycling. Interna-tional Geology Review, 46(7): 595-613.
Scambelluri M, Rampone E and Piccardo G B. 2001. Fluid and element cycling in subducted serpentinite: A trace-element study of the Erro-Tobbio high-pressure ultra-ma-fites (western Alps, NW Italy). Journal of Petrology, 42(1): 55-67.
Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313-345.
Wang Y Y, Gan F X and Zhao H X. 2012. Nondestructive analysis of Lantian jade from Shaanxi Province, China. Applied Clay Science, 70(1): 79-83.
Wilde S A, Cawood P A, Wang K Y and Nemchin A A. 2005. Granitoid evolution in the Late Archean Wutai Complex, North China Craton. Journal of Asian Earth Sciences, 24(5): 597-613.
Yang W B, Niu H C, Shan Q, Luo Y, Sun W D, Li C Y , Li N B and Yu X Y. 2012. Late Paleozoic calc-alkaline to shoshonitic magmatism and its geodynamic implica-tions, Yuximolegai area, western Tianshan, Xinjiang. Gondwana Research, 22(1): 325-340.
Zhao G C, Sun M, Wilde S A and Li S Z. 2005. Neoarchaean to Palaeoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2): 177-202.
Zhao G C, Wilde S A, Cawood P A and Lu L Z. 1998. Thermal evolution of the Archaean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. International Geology Review, 40(8): 706-721.
Zheng J P, Griffin W L, O’Reilly S Y, Lu F X and Yu C M. 2004. U-Pb and Hf isotope analysis of zircons in mafic xenoliths from Fuxian kimberlites: Evolution of the lower crust beneath the North China Craton. Contribu-tions to Mineralogy and Petrology, 148(1): 79-103.
Zhu Y F. 2008. K-and Si-rich glasses in harzburgite from Damaping, north China. Island Arc, 17(4): 560-576.

相似文献/References:

[1]李江海,牛向龙,钱祥麟.五台山区太古宙/元古宙界线划分及其地球演化意义.大地构造与成矿学,2006.3(4):409.
 LI Jianghai,NIU Xianglong,QIAN Xianglin and TIAN Yongqing.DIVISION OF ARCHEAN/PROTEROZOIC BOUNDARY AND ITS IMPLICATION FOR GEOLOGICAL EVOLUTION IN WUTAI MOUNTAIN AREA, NORTH CHINA.Geotectonica et Metallogenia,2006.45(5):409.

备注/Memo

备注/Memo:
收稿日期: 2020-10-09; 改回日期: 2020-11-26 项目资助: 国家自然科学基金面上项目(41673032)和山东省自然科学基金面上项目(ZR2015DM008)联合资助。 第一作者简介: 杨炯(1970-), 女, 博士研究生, 副教授, 从事宝玉石成矿、资源可持续利用及玉石文化演化的研究。Email: tsxyyj@163.com 通信作者: 丘志力(1963-), 男, 教授, 博导, 从事宝玉石成矿对重大地质作用过程响应及古玉文化演化的研究。Email: qiuzhili@mail.sysu.edu.cn
更新日期/Last Update: 2021-09-20