[1]胡国辉,张琪琪,王 伟.2021.辽东地区古元古代变基性岩床的成因和构造意义.大地构造与成矿学,45(5):1023-1043.doi:10.16539/j.ddgzyckx.2021.05.011
 HU Guohui,ZHANG Qiqi,WANG Wei.2021.Petrogenesis and Tectonic Implications of the Paleoproterozoic Metamorphic Mafic Sills in Liaodong Area.Geotectonica et Metallogenia,45(5):1023-1043.doi:10.16539/j.ddgzyckx.2021.05.011
点击复制

辽东地区古元古代变基性岩床的成因和构造意义
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2021年45卷05期
页码:
1023-1043
栏目:
岩石大地构造与地球化学
出版日期:
2021-10-25

文章信息/Info

Title:
Petrogenesis and Tectonic Implications of the Paleoproterozoic Metamorphic Mafic Sills in Liaodong Area
文章编号:
1001-1552(2021)05-1023-021
作者:
胡国辉1、2 张琪琪1 王 伟1、2 张拴宏1、2 李建锋1、2
1. 中国地质科学院 地质力学研究所, 北京 100081; 2. 自然资源部古地磁与古构造重建重点实验室, 北京 100081
Author(s):
HU Guohui1、2 ZHANG Qiqi1 WANG Wei1、2 ZHANG Shuanhong1、2 and LI Jianfeng1、2
1. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China; 2. Key Laboratory of Paleomagnetism and Tectonic Reconstruction, Ministry of Natural Resources, Beijing 100081, China
关键词:
古元古代 基性岩床 锆石U-Pb定年 辽东地区 华北克拉通
Keywords:
Paleoproterozoic mafic sills zircon U-Pb dating Liaodong area North China Craton
分类号:
P581; P595; P597
DOI:
10.16539/j.ddgzyckx.2021.05.011
文献标志码:
A
摘要:
辽东地区胶-辽-吉造山带发育大量的变基性岩墙/床, 这些岩墙/床对研究造山带古元古代构造演化过程具有重要意义。本文通过对辽东地区辽河群中的变基性岩床进行岩石学、岩石地球化学和锆石LA-ICP-MS U-Pb年代学研究, 探讨其成因和形成的构造背景, 有助于深入认识胶-辽-吉造山带古元古代地质演化过程。辽东地区变基性岩床顺层侵入于辽河群大石桥组大理岩中, 发生角闪岩相变质作用, 岩石类型以斜长角闪岩和石榴斜长角闪岩为主, 主要矿物为角闪石和斜长石, 其他矿物有石榴子石、石英、黑云母、磁铁矿和黄铁矿等。变基性岩床样品的锆石具特征的环带结构和较低的Th/U值(0.01~0.34), 指示锆石为变质成因, 4个样品的锆石LA-ICP-MS U-Pb定年结果(1854±11 Ma、1846±12 Ma、1847±9 Ma和1848±7 Ma)表明基性岩床发生变质作用的时间为~1.85 Ga, 与华北克拉通最终碰撞拼合的时间一致。根据基性岩床与胶-辽-吉造山带其他地区~2.1 Ga的基性岩具有相似的野外产状、岩石学和地球化学特征, 推断其侵位时代可能为~2.1 Ga。基性岩床样品的SiO2含量为47.07%~52.18%, K2O+Na2O含量为1.78%~4.70%, MgO含量为3.92%~8.59%, 属于拉斑玄武岩系列。大部分样品的稀土总量较低(47.3×10-6~109.5×10-6), 富集轻稀土元素和大离子亲石元素(如Rb、Ba、La), 亏损高场强元素(如Nb、Ta), Zr、Hf没有明显的亏损且未发生分馏作用。所有样品的Al2O3、CaO和Fe2O3T含量在主量元素相关性图解上分布规律且与MgO含量呈较好的相关性, Nb/La值(0.52~0.73)随SiO2和MgO含量的变化较小, 表明岩浆在侵位过程中受地壳混染的程度较低, 似“岛弧”型地球化学特征是富集岩石圈地幔源区遭受古俯冲组分改造的结果。结合已有的辽河群变质火山-沉积岩、辽吉花岗岩和基性岩的研究成果, 胶-辽-吉造山带在~2.1 Ga处于陆内裂谷环境。
Abstract:
The metamorphic mafic sills that widespread in the Jiao-Liao-Ji orogenic belt in Liaodong area are of great significance to study the Paleoproterozoic tectonic evolution of the orogenic belt. To reveal their petrogenesis and tectonic setting, and thus constraint the Paleoproterozoic geological evolution of the Jiao-Liao-Ji orogenic belt, a detailed petrographic observation, zircon U-Pb dating and whole-rock geochemical analyses of the metamorphic mafic sills were carried out. The metamorphic mafic sills in the Liaodong area emplaced into the thick marble of the Dashiqiao Formation of the Liaohe Group and underwent amphibolite facies metamorphism. They consist of amphibolite and garnet amphibolite, mainly composed of hornblende and plagioclase, and minor garnet, quartz, biotite, magnetite and pyrite. The characteristic zoning structures and low Th/U ratios (0.01-0.34) of the zircon grains from the metamorphic mafic sills suggest a metamorphic origin. LA-ICP-MS dating of zircons from four mafic sills yielded U-Pb ages of 1854±11 Ma, 1846±12 Ma, 1847±9 Ma, and 1848±7 Ma, respectively, suggesting a metamorphic age of ~1.85 Ga, which is synchronous with the final amalgamation of the North China Craton. Based on the similar field occurrence, petrographic and geochemical features with those of the ca. 2.1 Ga mafic intrusions in the Jiao-Liao-Ji orogenic belt and elsewhere, their emplacement age may be also ca. 2.1 Ga. Whole-rock geochemistry shows that the metamorphic mafic sills are tholeiitic in composition (SiO2: 47.07%-52.18%, K2O+Na2O: 1.78%-4.70%, MgO: 3.92%-8.59%), and enriched in light rare earth elements and large ion lithophile elements (i.e., Rb, Ba and La), but depleted in high field strength elements (i.e., Nb and Ta). In addition, there is not significant Zr and Hf depletions and fractionation effect. All mafic samples show regular distributions in Al2O3, CaO and Fe2O3T contents and good correlations with MgO contents in major element covariant plots, and Nb/La ratios (0.52-0.73) do not change with SiO2 and MgO contents. These geochemical characteristics indicate that crustal contamination during their emplacement is unlikely, and the arc-like features could be the result of the enriched lithospheric mantle source metasomatized by ancient subduction materials. These metamorphic mafic sills, as well as the other metamorphic volcano-sedimentary rocks, Liao-Ji granites and mafic rocks elsewhere, may have formed in an intra-continental rift at ~2.1 Ga.

参考文献/References:

白瑾. 1993. 华北陆台北缘前寒武纪地质及铅锌成矿作用. 北京: 地质出版社: 1-132.
陈斌, 李壮, 王家林, 张璐, 鄢雪龙. 2016. 辽东半岛~2.2 Ga岩浆事件及其地质意义. 吉林大学学报(地球科学版), 46(2): 303-320.
董春艳, 马铭株, 刘守偈, 颉颃强, 刘敦一, 李雪梅, 万渝生. 2012. 华北克拉通古元古代中期伸展体制新证据: 鞍山-弓长岭地区变质辉长岩的锆石SHRIMP U-Pb定年和全岩地球化学. 岩石学报, 28(9): 2785-2792.
杜利林, 杨崇辉, 任留东, 万渝生, 伍家善. 2009. 山西五台山区滹沱群变质玄武岩岩石学、地球化学特征及其成因意义. 地质通报, 28(7): 867-876.
方如恒. 1993. 论辽河群层序的有序性. 辽宁地质, (2): 97-119.
耿元生, 万渝生, 杨崇辉. 2003. 吕梁地区古元古代的裂陷型火山作用及其地质意义. 地球学报, 24(2): 97-104.
胡古月, 李延河, 范润龙, 王天慧, 范昌福, 王彦斌. 2014. 辽东宽甸地区硼酸盐矿床成矿时代的限定: 来自SHRIMP锆石U-Pb年代学和硼同位素地球化学的制约. 地质学报, 88(10): 1932-1943.
李江海, 何文渊, 钱祥麟. 1997. 元古代基性岩墙群的成因机制、构造背景及其古板块再造意义. 高校地质学报, 3(3): 272-281.
李三忠, 韩宗珠, 刘永江, 杨振升, 马瑞. 2001. 辽河群区域变质特征及其大陆动力学意义. 地质论评, 47(1): 9-18.
李三忠, 郝德峰, 韩宗珠, 赵国春, 孙敏. 2003. 胶辽地块古元古代构造-热演化与深部过程. 地质学报, 77(3): 328-340.
李三忠, 郝德峰, 赵国春, 孙敏, 韩宗珠, 郭晓玉. 2004. 丹东花岗岩的地球化学特征及其成因. 岩石学报, 20(6): 1417-1423.
李三忠, 刘永江. 1997. 胶辽地块古元古代沉积组合: 年代与层序. 西北地质, 18(3): 13-20.
李壮, 陈斌, 刘经纬, 张璐, 杨川. 2015. 辽东半岛南辽河群锆石U-Pb年代学及其地质意义. 岩石学报, 31(6): 1589-1605.
辽宁省地质矿产局. 1989. 辽宁省区域地质志. 北京: 地质出版社: 1-856.
辽宁省有色地质局勘查总院. 2008. 1∶5万青城子矿田区域地质图.
刘福来, 刘平华, 王舫, 刘超辉, 蔡佳. 2015. 胶-辽-吉古元古代造山/活动带巨量变沉积岩系的研究进展. 岩石学报, 31(10): 2816-2846.
刘平华, 蔡佳, 邹雷. 2017. 辽东半岛北部三家子石榴斜长角闪岩变质演化P-T-t轨迹及其地质意义: 来自相平衡模拟与锆石U-Pb定年的约束. 岩石学报, 33(9): 2649-2674.
刘平华, 刘福来, 王舫, 刘建辉. 2010. 山东半岛基性高压麻粒岩的成因矿物学及变质演化. 岩石学报, 26(7): 2039-2056.
刘平华, 刘福来, 王舫, 刘建辉, 蔡佳. 2013. 胶北西留古元古代~2.1 Ga变辉长岩岩石学与年代学初步研究. 岩石学报, 29(7): 2371-2390.
刘文军, 翟明国, 李永刚. 1998. 胶东莱西地区基性高压麻粒岩的变质作用. 岩石学报, 14(4): 449-459.
刘永达, 邴志波, 董景超. 1989. 辽东半岛早元古宙海相拉斑玄武岩特征及其意义. 辽宁地质, (4): 289-297.
路孝平, 吴福元, 张艳斌, 赵成弼, 郭春丽. 2004. 吉林南部通化地区古元古代辽吉花岗岩的侵位年代与形成构造背景. 岩石学报, 20(3): 381-392.
马立杰, 崔迎春, 刘俊来, 张俊波. 2007. 辽东北辽河群斜长角闪岩的地球化学特征及构造背景. 山西大学学报(自然科学版), 30(4): 515-524.
孟恩, 刘福来, 施建荣, 蔡佳. 2013. 辽宁省丹东地区“前震旦纪”侵入岩的锆石U-Pb年代学、地球化学及其构造意义. 岩石学报, 29(2): 421-436.
沈其韩, 徐惠芬, 张宗清, 高吉凤, 伍家善, 吉成林. 1992. 中国早前寒武纪麻粒岩. 北京: 地质出版社: 1-245.
万渝生, 宋彪, 耿元生, 刘敦一. 2005a. 辽北抚顺-清原地区太古宙基底地球化学组成特征及其地质意义. 地质论评, 51(2): 128-137.
万渝生, 宋彪, 杨淳, 刘敦一. 2005b. 辽宁抚顺-清原地区太古宙岩石SHRIMP锆石U-Pb年代学及其地质意义. 地质学报, 79(1): 78-87.
汪云亮, 张成江, 修淑芝. 2001. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别. 岩石学报, 17(3): 413-421.
王惠初, 陆松年, 初航, 相振群, 张长捷, 刘欢. 2011. 辽阳河栏地区辽河群中变质基性熔岩的锆石U-Pb年龄与形成构造背景. 吉林大学学报(地球科学版), 41(5): 1322-1334, 1361.
王欣平. 2017. 华北辽东地区21~19亿年岩浆作用的岩石成因及构造背景研究. 北京: 中国科学院地质与地球物理研究所博士学位论文: 1-138.
伍家善, 耿元生, 沈其韩, 万渝生, 刘敦一, 宋彪. 1998. 中朝古大陆太古宙地质特征及构造演化. 北京: 地质出版社: 1-212
许王, 刘福来, 刘超辉. 2017. 胶-辽-吉造山带北辽河变基性岩的成因、地球化学属性及其构造意义. 岩石学报, 33(9): 2743-2757.
杨崇辉, 杜利林, 耿元生, 任留东, 路增龙, 宋会侠. 2017. 冀东古元古代基性岩墙群的年龄及地球化学: ~2.1 Ga伸展及~1.8 Ga变质. 岩石学报, 33(9): 2827-2849.
杨明春, 陈斌, 闫聪. 2015. 华北克拉通胶-辽-吉带古元古代条痕状花岗岩成因及其构造意义. 地球科学与环境学报, 37(5): 31-51.
于介江, 杨德彬, 冯虹, 兰翔. 2007. 辽南海城斜长角闪岩原岩的形成时代: 锆石LA-ICP-MS U-Pb定年证据. 世界地质, 26(4): 391-396.
翟明国, 卞爱国, 赵太平. 2000. 华北克拉通新太古代末超大陆拼合及古元古代末-中元古代裂解. 中国科学(D辑), 30(S1): 129-137.
张秋生等. 1988. 辽东半岛早期地壳与矿床. 北京: 地质出版社: 1-575.
张艳飞, 刘敬党, 肖荣阁, 王生志, 王瑾, 包德军. 2010. 辽宁后仙峪硼矿区古元古代电气石岩: 锆石特征及SHRIMP定年. 地球科学, 35(6): 985-999.
赵国春. 2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论. 岩石学报, 25(8): 1772-1792.
周喜文, 魏春景, 耿元生. 2007. 胶北地块高压与低压泥质麻粒岩的相平衡关系与P-T演化轨迹. 地学前缘, 14(1): 135-143.
周喜文, 魏春景, 耿元生, 张立飞. 2004. 胶北栖霞地区泥质高压麻粒岩的发现及其地质意义. 科学通报, 49(14) : 1424-1430.
Baker M J, Crawford A J and Withnall I W. 2010. Geochemical, Sm-Nd isotopic characteristics and petrogenesis of Paleo-proterozoic mafic rocks from the Georgetown Inlier, north Queensland: Implications for relationship with the Broken Hill and Mount Isa Eastern Succession. Precambrian Research, 177(1): 39-54.
Bali E, Audétat A and Keppler H. 2010. The mobility of U and Th in subduction zone fluids: An indicator of oxygen fugacity and fluid salinity. Contributions to Mineralogy and Petrology, 161(4): 597-613.
Belousova E A, Griffin W L, O’Reilly S Y and Fisher N I. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineral and Petrology, 143(5): 602-622.
Beswick A E. 1982. Some geochemical aspects of alteration and genetic relations in komatiitic suites // Arndt N T and Nisbet E G. Komatiites. London: George Allen & Unwin: 283-308.
Condie K C, Bobrow D J and Card K D. 1987. Geochemistry of Precambrian mafic dykes from the Southern Superior Province // Halls H C and Fahrig W F. Mafic Dyke Swarms. Newfoundland: Geological Association of Canada, 34: 95-108.
Elliott T, Plank T, Zindler A, White W and Bourdon B. 1997. Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research, 102(B7): 14991-15019.
Ernst R E, Buchan K L and Palmer H C. 1995. Giant dyke swarms: Characteristics, distribution and geotectonic application // Heimann B G. Physics and Chemistry of Dykes. Balkema, Rotterdan: 3-21.
Faure M, Lin W, Monie P and Bruguier O. 2004. Paleoproterozoic arc magmatism and collision in Liaodong Peninsula (north-east China). Terra Nova, 16(2): 75-80.
Gao L, Liu S W, Hu Y L, Sun G Z, Guo R R and Bao H. 2020. Late Neoarchean geodynamic evolution: Evidence from the metavolcanic rocks of the Western Shandong Terrane, North China Craton. Gondwana Research, 80: 303-320.
Ghatak A and Basu A R. 2013. Isotopic and trace element geochemistry of alkali-mafic-ultramafic-carbonatitic complexes and flood basalts in NE India: Origin in a heterogeneous Kerguelen plume. Geochimica et Cosmo-chimica Acta, 115: 46-72.
Green T H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology, 120(3): 347-359.
Guo R R, Liu S W, Gong E P, Wang W, Wang M J, Fu J H and Qin T. 2017. Arc-generated metavolcanic rocks in the Anshan-Benxi greenstone belt, North China Craton: Constraints from geochemistry and zircon U-Pb-Hf isotopic systematics. Precambrian Research, 303: 228-250.
Halls H C, Li J H, Davis D, Hou G T, Zhang B X and Qian X L. 2000. A precisely dated Proterozoic paleomagnetic pole from the North China Craton, and its relevance to paleocontinental construction. Geophysical Journal International, 143(1): 185-203.
Hawkesworth C, Turner S, McDermott F, Peate D and Van Calsteren P. 1997. U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust. Science, 276(5312): 551-555.
Headman L M. 1997. Global mafic magmatism at 2.45 Ga: Remnants of an ancient large igneous province? Geology, 25(4): 299-302.
Hofmann A W. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust and oceanic crust. Earth and Planetary Science Letters, 90(3): 297-314.
Hoskin P W O and Black L P. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4): 423-439.
Hoskin P W O and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62.
Hu G Y, Li Y H, Fan C F, Hou K J, Zhao Y and Zeng L S. 2015. In situ LA-MC-ICP-MS boron isotope and zircon U-Pb age determinations of Paleoproterozoic borate deposits in Liaoning Province, northeastern China. Ore Geology Reviews, 65: 1127-1141.
Irvine T N and Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523-548.
LaFlèche M R, Camire G and Jenner G A. 1998. Geo-chemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes basin, Magdalen islands, Quebec, Canada. Chemical Geology, 148(3-4): 115-136.
Li S Z and Zhao G C. 2007. SHRIMP U-Pb zircon geochronology of the Liaoji granitoids: Constraints on the evolution of the Paleoproterozoic Jiao-Liao-Ji belt in the Eastern Block of the North Chin Craton. Precam-brian Research, 158(1-6): 1-16.
Li S Z, Zhao G C, Santosh M, Liu X, Dai L M, Suo Y H, Tam P Y, Song M C and Wang P C. 2012. Paleoproterozoic structural evolution of the southern segment of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 200: 59-73.
Li S Z, Zhao G C, Sun M, Han Z Z, Zhao G T and Hao D F. 2006. Are the south and north Liaohe Groups of North China Craton different exotic terranes? Nd isotope constraints. Gondwana Research, 9(1): 198-208.
Li Z and Chen B. 2014. Geochronology and geochemistry of the Paleoproterozoic meta-basalts from the Jiao-Liao-Ji Belt, North China Craton: Implications for petrogenesis and tectonic setting. Precambrian Research, 255: 653-667.
Liu P H, Liu F L, Liu C H, Wang F, Liu J H, Yang H, Cai J and Shi J R. 2013. Petrogenesis, P-T-t path, and tectonic significance of high-pressure mafic granulites from the Jiaobei terrane, North China Craton. Precambrian Research, 233: 237-258.
Liu P H, Liu F L, Yang H, Wang F and Liu J H. 2012. Protolith ages and timing of peak and retrograde metamorphism of the high-pressure granulites in the Shandong Peninsula, eastern North China Craton. Geoscience Frontiers, 3(6): 923-943.
Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q and Wang D B. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571.
Liu Y S, Hu Z C, Gao S, Gu?nther D, Xu J, Gao C G and Chen H H. 2008a. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43.
Liu Y S, Zong K Q, Kelemen P B and Gao S. 2008b. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology, 247(1-2): 133-153.
Lu X P, Wu F Y, Guo J H, Wilde S A, Yang J H, Liu X M and Zhang X O. 2006. Zircon U-Pb geochronological constraints on the Paleoproterozoic crustal evolution of the Eastern block in the North China Craton. Precambrian Research, 146(3): 138-164.
Ludwig K R. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. California: Berkeley Geo-chronology Center: 1-70.
Luo Y, Sun M, Zhao G C, Li S Z, Ayers J C, Xia X P and Zhang J H. 2008. A comparison of U-Pb and Hf isotopic compositions of detrital zircons from the North and South Liaohe groups: Constraints on the evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 163(3-4): 279-306.
Luo Y, Sun M, Zhao G C, Li S Z, Xu P, Ye K and Xia X P. 2004. LA-ICP-MS U-Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: Constraints on the evolution of the Jiao-Liao-Ji Belt. Precambrian Research, 134(3-4): 349-371.
Meng E, Liu F L, Liu P H, Liu C H, Yang H, Wang F, Shi J R and Cai J. 2014. Petrogenesis and tectonic significance of Paleoproterozoic meta-mafic rocks from central Liaodong Peninsula, northeast China: Evidence from zircon U-Pb dating and in situ Lu-Hf isotopes, and whole-rock geochemistry. Precambrian Research, 247: 92-109.
Middelburg J J, van der Weijden C H and Woittiez J R W. 1988. Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chemical Geology, 68(3-4): 253-273.
Muecke G K, Pride C and Sarkar P. 1979. Rare-earth element geochemistry of regional metamorphic rocks. Physics and Chemistry of the Earth, 11: 449-464.
Peng P. 2010. Reconstruction and interpretation of giant mafic dyke swarms: A case study of 1.78Ga magmatism in the North China craton // Kusky T M, Zhai M G and Xiao W J. The evolving continents: Understanding Processes of Continental Growth. Geological Society, London, Special Publications, 338: 163-178.
Peng P. 2015a. Precambrian mafic dyke swarms in the North China Craton and their geological implications. Science in China (Earth Science), 58(5): 649-675.
Peng P. 2015b. Late Paleoproterozoic-Neoproterozoic (1800~ 541 Ma) mafic dyke swarms and rifts in North China. // Zhai M G. Precambrian Geology of China. Berlin Heidelberg, Springer: 171-204.
Peng P, Bleeker W, Ernst R E, S?derlund U and McNicoll V. 2011. U-Pb baddeleyite ages, distribution and geochemistry of 925 Ma mafic dykes and 900 Ma sills in the North China craton: Evidence for a Neoproterozoic mantle plume. Lithos, 127(1-2): 210-221.
Peng P, Liu F, Zhai M G and Guo J H. 2012. Age of the Miyun dyke swarm: Constraints on the maximum depositional age of the Changcheng System. Chinese Science Bulletin, 57(1): 105-110.
Peng P, Zhai M G, Zhang H F and Guo J H. 2005. Geochronological constraints on the Paleoproterozoic evolution of the North China Craton: SHRIMP zircon ages of different types of mafic dikes. International Geology Review, 47(5): 492-508.
Peng T P, Wilde S A, Fan W M, Peng B X and Mao Y S. 2013. Mesoproterozoic high Fe-Ti mafic magmatism in western Shandong, North China Craton: Petrogenesis and implications for the final breakup of the Columbia supercontinent. Precambrian Research, 235: 190-207.
Qian X L and Chen Y P. 1987. Late Precambrian mafic dyke swarms of the North China craton // Halls H C and Fahrig W F. Mafic Dykes Swarms. Geology Association of Canada Special Paper, 34: 385-391.
Rock N M S. 1991. Lamprophyres. New York: Van Nostrand-Reinhold: 1-285.
Rudnick R L and Fountain D M. 1995. Nature and composition of the continental crust: A lower crustal perspective. Review Geophysics, 33(3): 267-309.
Rudnick R L and Gao S. 2003. Composition of the continental crust. Treatise on Geochemistry, 3: 1-64.
Staudigel H and Hart S R. 1983. Alteration of basaltic glass: Mechanisms and significance for the oceanic crust-seawater budget. Geochimica et Cosmochimica Acta, 47(3): 337-350.
Stepanova A, Samsonov A, Salnikova E, Puchtel I, Larionova Y O, Larionov A, Stepanov V, Shapovalov Y and Egorova S. 2014. Paleoproterozoic Continental MORB-type tholeiites in the Karelian Craton: Petrology, Geochronology, and Tectonic Setting. Journal of Petrology, 55(9): 1719-1751.
Sun G Z, Liu S W, Wang M J, Bao H and Teng G X. 2020. Complex Neoarchean mantle metasomatism: Evidence from sanukitoid diorites-monzodiorites-granodiorites in the northeastern North China Craton. Precambrian Research, 342: 105692.
Sun M, Armstrong R L, Lambert R S J, Jiang C C and Wu J H. 1993. Petrochemistry and Sr, Pb and Nd isotopic geochemistry of the Paleoproterozoic Kuandian complex, the eastern Liaoning Province, China. Precambrian Research, 62(1-2): 171-190.
Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313-345.
Taylor S R and McLennan S. 1985. The continental crust: Composition and evolution. Blackwell Scientific Publications, 54: 209-372.
Wang C, Peng P, Li Z X, Pisarevsky S, Denyszyn S, Liu Y B, Dien H G E and Su X D. 2020. The 1.24-1.21 Ga Licheng large igneous province in the North China Craton: Implications for paleogeographic reconstruction. Journal of Geophysical Research: Solid Earth, 125(4), e2019JB019005.
Wang W, Liu S W, Santosh M, Zhang L F, Bai X, Zhao Y, Zhang S H and Guo R R. 2015. 1.23 Ga mafic dykes in the North China Craton and their implications for the reconstruction of the Columbia supercontinent. Gondwana Research, 27(4): 1407-1418.
Wang W, Liu S W, Wilde S A, Li Q G, Zhang J, Bai X, Yang P T and Guo R R. 2012. Petrogenesis and geochronology of Precambrian granitoid gneisses in Western Liaoning Province: Constraints on Neoarchean to early Paleoproterozoic crustal evolution of the North China Craton. Precambrian Research, 222-223: 290-311.
Wang X P, Peng P, Wang C and Yang S Y. 2016. Petrogenesis of the 2115 Ma Haicheng mafic sills from the Eastern North China Craton: Implications for an intra-continental rifting. Gondwana Research, 39: 347-364.
Weaver B L. 1991. The origin of oceanic basalt end-member compositions: Trace element and isotopic constrains. Earth and Planetary Science Letters, 104(2-4): 381-397.
Willbold M and Stracke A. 2006. Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust. Geochemistry, Geophysics, Geosystems, 7(4), doi: 10.1029/2005gc001005.
Winchester J A and Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20(4): 325-343.
Wu F Y, Zhao G C, Wilde S A and Sun D Y. 2005. Nd isotopic constraints on crustal formation in the North China Craton. Journal of Asian Earth Sciences, 24(5): 523-545.
Xie L W, Yang J H, Wu F Y, Yang Y H and Wilde S A. 2011. PbSL dating of garnet and staurolite: Constraints on the Paleoproterozoic crustal evolution of the Eastern Block, North China Craton. Journal of Asian Earth Sciences, 42(1-2): 142-154.
Yin A and Nie S. 1996. A Phanerozoic palinspastic recons-truction of China and its neighboring regions // Yin A and Harrison T M. The Tectonic Evolution of Asia. New York: Cambridge University Press: 285-442.
Yuan L L, Zhang X H, Xue F H, Han C M, Chen H H and Zhai M G. 2015. Two episodes of Paleoproterozoic mafic intrusions from Liaoning province, North China Craton: Petrogenesis and tectonic implications. Precambrian Research, 264: 119-139.
Zhang S H, Liu S W, Zhao Y, Yang J H, Song B and Liu X M. 2007. The 1.75-1.68 Ga anorthosite-mangerite-alkali granitoid-rapakivi granite suite from the northern North China Craton: Magmatism related to a Paleoproterozoic orogen. Precambrian Research, 155(3): 287-312.
Zhang S H, Zhao Y and Santosh M. 2012. Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China Craton: Implications for magmatism related to breakup of the Columbia supercontinent. Precambrian Research, 222-223: 339-367.
Zhang S H, Zhao Y, Yang Z Y, He Z F and Wu H. 2009. The 1.35 Ga diabase sills from the northern North China craton: Implications for breakup of the Columbia (Nuna) supercontinent. Earth and Planetary Science Letters, 288: 588-600.
Zhao G C, Sun M, Wilde S A and Li S Z. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2): 177-202.
Zhao G C, Wilde S A, Cawood P A and Sun M. 2001. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 107(1-2): 45-73.
Zhou Y Y, Zhai M G, Zhao T P, Lan Z W and Sun Q Y. 2014. Geochronological and geochemical constraints on the petrogenesis of the early Paleoproterozoic potassic granite in the Lushan area, southern margin of the North China Craton. Journal of Asian Earth Sciences, 94: 190-204.
Zhou Y Y, Zhao T P, Zhai M G, Gao J F, Lan Z W and Sun Q Y. 2015. Petrogenesis of the 2.1 Ga Lushan garnet-bearing quartz monzonite on the southern margin of the North China Craton and its tectonic implications. Precambrian Research, 256: 241-255.
Zindler A and Hart S R. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493-571.
Zong K Q, Klemd R, Yuan Y, He Z Y, Guo J L, Shi X L, Liu Y S, Hu Z C and Zhang Z M. 2017. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48.

相似文献/References:

[1]陈志洪,邢光福,姜 杨.华夏陆块古元古代A型流纹斑岩的发现及其地质意义.大地构造与成矿学,2013.37(3):499.
 CHEN Zhihong,XING Guangfu,JIANG Yang and KUANG Fuxiang.Discovery of the Paleoproterozoic A-type Rhyolite Porphyries in the Cathaysia Block and its Geological Significance.Geotectonica et Metallogenia,2013.45(5):499.
[2]吴 迪,刘永江,王庆喜.辽东连山关地区古元古代基性岩特征及与铀矿关系探讨.大地构造与成矿学,2021.优先出版:001.doi:10.16539/j.ddgzyckx.2021.02.016
 WU Di,LIU Yongjiang,WANG Qingxi and LI Weimin.Characteristics of Paleoproterozoic Basic Rocks and Their Relationship with Uranium Mineralization in Lianshanguan Area, Eastern Liaoning Province.Geotectonica et Metallogenia,2021.45(5):001.doi:10.16539/j.ddgzyckx.2021.02.016
[3]吴 迪,刘永江,王庆喜.辽东连山关地区古元古代基性岩特征及与铀矿关系探讨.大地构造与成矿学,2021.45(4):727.doi:10.16539/j.ddgzyckx.2021.02.016
 WU Di,LIU Yongjiang,WANG Qingxi and LI Weimin.Characteristics of Paleoproterozoic Mafic Rocks and Their Relationship with Uranium Mineralization in Lianshanguan Area, Eastern Liaoning Province.Geotectonica et Metallogenia,2021.45(5):727.doi:10.16539/j.ddgzyckx.2021.02.016

备注/Memo

备注/Memo:
收稿日期: 2020-06-27; 改回日期: 2021-05-11 项目资助: 国家重点研发计划项目(2018YFC0603802)资助。 第一作者简介: 胡国辉(1984-), 男, 博士, 主要从事前寒武纪构造演化方面的研究。Email: huguohui321@126.com
更新日期/Last Update: 2021-09-20