[1]陈国楷,张 健,尹常青.2021.华夏地块东南缘放鸡岛地区花岗质岩石锆石U-Pb年代学、地球化学特征及其构造意义.大地构造与成矿学,45(5):983-1006.doi:10.16539/j.ddgzyckx.2021.05.009
 CHEN Guokai,ZHANG Jian,YIN Changqing.2021.Zircon U-Pb Dating, Geochemical Characteristics of the Fangjidao Granitic Rocks in the Southeasternmost Cathaysia Block and Their Tectonic Implications.Geotectonica et Metallogenia,45(5):983-1006.doi:10.16539/j.ddgzyckx.2021.05.009
点击复制

华夏地块东南缘放鸡岛地区花岗质岩石锆石U-Pb年代学、地球化学特征及其构造意义
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2021年45卷05期
页码:
983-1006
栏目:
岩石大地构造与地球化学
出版日期:
2021-10-25

文章信息/Info

Title:
Zircon U-Pb Dating, Geochemical Characteristics of the Fangjidao Granitic Rocks in the Southeasternmost Cathaysia Block and Their Tectonic Implications
文章编号:
1001-1552(2021)05-0983-024
作者:
陈国楷1、2 张 健1、2* 尹常青1、2 刘 锦1、2 余晨颖1、2 俞鑫源1、2 刘明飞1、2
1.广东省地球动力作用与地质灾害重点实验室, 中山大学 地球科学与工程学院, 广东 广州 510275; 2.南方海洋科学与工程广东省实验室(珠海), 广东 珠海 519082
Author(s):
CHEN Guokai1、2 ZHANG Jian1、2* YIN Changqing1、2 LIU Jin1、2 YU Chenying1、2 YU Xinyuan1、2 and LIU Mingfei1、2
1. Guangdong Provincial Key Lab of Geodynamics and Geohazards, School of Earth Sciences and Engineering, SUN Yat-sen University, Guangzhou 510275, Guangdong, China; 2. Southern Laboratory of Ocean Science and Engineering, Zhuhai 519082, Guangdong, China
关键词:
华夏地块 放鸡岛 早古生代 陆内造山 花岗质岩石 锆石U-Pb定年
Keywords:
Cathaysia Block Fangjidao area early Paleozoic intra-plate orogeny granite zircon U-Pb dating
分类号:
P581; P597
DOI:
10.16539/j.ddgzyckx.2021.05.009
文献标志码:
A
摘要:
粤西放鸡岛地区位于华夏地块东南缘, 广泛出露强烈深熔且剪切变形的花岗质岩石, 主要以眼球状花岗质片麻岩为主, 但其形成时代及成因研究十分薄弱, 其是否与邻区(如云开地区等)经历了相似的早古生代构造演化并不确定。本次通过对放鸡岛出露的花岗质岩石进行了LA-ICP-MS锆石U-Pb定年, 同时开展了全岩地球化学和锆石Hf同位素研究, 以探讨其岩石成因及其构造背景。锆石U-Pb定年结果表明, 强烈深熔且变形的花岗质片麻岩形成于早志留世(436~432 Ma), 并保留了众多中-新元古代(1183~700 Ma)的继承锆石。侵入到该花岗质片麻岩中的未变形花岗质岩脉结晶年龄为~427 Ma, 据此限定了放鸡岛地区深熔变形时代为436~427 Ma。同时, 两种岩性样品都显示出相似的地球化学和Hf同位素特征。花岗质片麻岩与未变形的花岗质岩脉样品的铝饱和指数A/CNK比值为1.10~1.24, 均显示出过铝质特征。LREE/HREE值为2.07~3.98, (La/Yb)N值为5.93~22.27, 富集轻稀土元素, 并具有强烈的Eu负异常。锆石εHf(t)值显示强烈负值(-22.8~-4.3), tDM2为2820~1688 Ma, 平均值为2028 Ma, 表明该区花岗质岩石来源于华夏地块古老地壳物质的部分熔融。综合研究显示放鸡岛花岗质岩体与邻区(如云开地区)花岗质岩石具有相同的岩石成因, 属华南早古生代陆内造山作用伸展构造背景下深熔作用的产物。
Abstract:
Early Paleozoic granites are widely distributed in the Fangjidao area, the western Guangdong province, i.e., the southeastern Cathaysia Block. They experienced intensive shearing zone deformation and metamorphism, and now occur as mylonized granitic gneiss. The later undeformed monzogranitic veins intruded and truncated the major foliation of the granitic gneiss. However, the crystallization age, petrogenesis and deformation characteristics of these granites are poorly constrained, which hinder our understanding of the tectonic evolution of the region and its relation to the Cathaysia Block. LA-ICP-MS zircon U-Pb dating results show that the granitic gneisses contain abundant inherited zircon of ca. 1183-700 Ma, and have crystallization age of 436-432 Ma. In contrast, the undeformed monzogranitic veins have a younger crystallization age of ~427 Ma. This can well bracket the timing of regional anatexis and regional deformation in 436-427 Ma. The granitic gneisses and monzogranite samples are characterized by a peraluminous signature with A/CNK values varying from 1.10 to 1.24. The rocks are enriched in LREE, with LREE/HREE ratios ranging from 2.07 to 3.98, and (La/Yb)N from 5.93 to 22.27 (mean value is 10.36). All the samples exhibit distinct negative Eu anomalies. Zircon crystals from the granitic rocks have negative εHf(t) values mainly ranging from -22.8 to -4.3, with two stage model ages of 2820-1688 Ma. New data of this study reveal that the Early Paleozoic granitic rocks in the Fangjidao area were generated by partial melting of the Paleoproterozoic crustal components. Combined with the previously published data, we infer that the granitic rocks in the Fangjidao area have a similar origin with the coeval granites in the adjacent areas (e.g. the Yunkai area). They were most likely derived from partial melting of the crustal materials during the extension stage of the intra-plate orogeny.

参考文献/References:

陈洪德, 侯明才, 许效松, 田景春. 2006. 加里东期华南的盆地演化与层序格架. 成都理工大学学报(自然科学版), 33(1): 1-8.
陈旭, 樊隽轩, 陈清, 唐兰, 侯旭东. 2014. 论广西运动的阶段性. 中国科学: 地球科学, 44(5): 842-850.
陈旭, 张元动, 樊隽轩, 成俊峰, 李启剑. 2010. 赣南奥陶纪笔石地层序列与广西运动. 中国科学: 地球科学, 40(12): 1621-1631.
广东省地质矿产局. 1988. 广东省区域地质. 北京: 地质出版社: 1-941
韩坤英, 许可娟, 高林志, 丁孝忠, 任留东, 刘燕学, 庞健峰. 2017. 云开地区变质沉积岩碎屑锆石U-Pb年龄、Lu-Hf同位素特征及其地质意义. 岩石学报, 33(9): 2939-2956.
贾小辉, 王强, 唐功建. 2009. A型花岗岩的研究进展及意义. 大地构造与成矿学, 33(3): 465-480.
柯贤忠, 周岱, 龙文国, 王晶, 徐德明, 田洋, 金巍. 2018. 云开地块印支期变质-深熔作用: 混合岩、片麻岩锆石U-Pb年代学和Hf同位素证据. 地球科学, 43(7): 2249-2275.
李建华, 张岳桥, 董树文, 马之力, 李勇. 2015. 湘东宏夏桥和板杉铺岩体LA-MC-ICPMS锆石U-Pb年龄及地质意义. 地球学报, 36(2): 187-196.
彭松柏, 金振民, 刘云华, 付建明, 何龙清, 蔡明海, 王彦斌. 2006. 云开造山带强过铝深熔花岗岩地球化学、年代学及构造背景. 地球科学, 31(1): 110-120.
彭松柏, 刘松峰, 林木森, 吴长峰, 韩庆森. 2016a. 华夏早古生代俯冲作用(Ⅰ): 来自糯垌蛇绿岩的新证据. 地球科学, 41(5): 765-778.
彭松柏, 刘松峰, 林木森, 吴长峰, 韩庆森. 2016b. 华夏早古生代俯冲作用(Ⅱ): 大爽高镁-镁质安山岩新证据. 地球科学, 41(6): 931-947.
覃小锋, 王宗起, 宫江华, 赵国英, 石浩, 詹俊彦, 王震. 2017. 云开地块北缘加里东期中-基性火山岩的厘定: 钦-杭结合带南西段早古生代古洋盆存在的证据. 岩石学报, 33(3): 791-809.
任纪舜. 1990. 论中国南部的大地构造. 地质学报, 44(4): 275-288.
舒良树. 2006. 华南前泥盆纪构造演化: 从华夏地块到加里东期造山带. 高校地质学报, 12(4): 418-431.
舒良树. 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053.
王江海, 涂湘林, 孙大中. 1999. 粤西云开地块内高州地区深熔混合岩的锆石U-Pb年龄. 地球化学, 28(3): 231-238.
王孝磊. 2017. 花岗岩研究的若干新进展与主要科学问题. 岩石学报, 33(5): 1445-1458.
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220.
夏金龙, 黄圭成, 丁丽雪, 陈希清, 定立. 2018. 云开地区早古生代宁潭片麻状花岗质岩体锆石U-Pb定年、岩石成因及构造背景. 地球科学, 43(7): 2276-2293.
徐畅, 王岳军, 张玉芝, 徐文景, 甘成势. 2019. 云开池垌志留纪辉长岩体的年代学、地球化学特征及构造意义. 地球科学, 44(4): 1202-1216.
徐克勤, 刘英俊, 俞受鋆, 王鹤年, 魏秀喆. 1960. 江西南部加里东期花岗岩的发现. 地质论评, 20(3): 18-20.
徐亚军, 杜远生. 2018. 从板缘碰撞到陆内造山: 华南东南缘早古生代造山作用演化. 地球科学, 43(2): 333-353.
张爱梅, 王岳军, 范蔚茗, 张菲菲, 张玉芝. 2010. 闽西南清流地区加里东期花岗岩锆石U-Pb年代学及Hf同位素组成研究. 大地构造与成矿学, 34(3): 408-418.
张国伟, 郭安林, 王岳军, 李三忠, 董云鹏, 刘少峰, 何登发, 程顺有, 鲁如魁, 姚安平. 2013. 中国华南大陆构造与问题. 中国科学: 地球科学, 43(10): 1553-1582.
赵振华. 2016. 微量元素地球化学原理(第二版). 北京: 科学出版社: 243-303.
周岱, 龙文国, 柯贤忠, 张利国, 徐德明, 王晶. 2017. 云开地块北缘构造混杂岩的岩石成因探讨. 岩石学报, 33(3): 810-830.
周雪瑶, 于津海, 王丽娟, 沈林伟, 张春晖. 2015. 粤西云开地区基底变质岩的组成和形成. 岩石学报, 31(3): 855-882.
Abdallah N, Liégeois J P, Waele B D, Fezaa N and Ouabadi A. 2007. The Temaguessine Fecordierite orbicular granite (Central Hoggar, Algeria): U-Pb SHRIMP age, petrology, origin and geodynamical consequences for the late Pan-African magmatism of the Tuareg shield. Journal of African Earth Sciences, 49(4-5): 153-178.
Bonin B. 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97(1-2): 1-29.
Castro A. 2014. The off-crust origin of granite batholiths. Geoscience Frontiers, 5(1): 63-75.
Cawood P A, Zhao G C, Yao J L, Wang W, Xu Y J and Wang Y J. 2018. Reconstructing South China in Phanerozoic and Precambrian supercontinents. Earth-Science Review, 186: 173-194.
Charvet J. 2013. The Neoproterozoic-Early Paleozoic tectonic evolution of the South China Block: An overview. Journal of Asian Earth Sciences, 74: 309-330.
Charvet J, Shu L S, Faure M, Choulet F, Wang B, Lu H F and Breton N L. 2010. Structural development of the Lower Paleozoic belt of South China: Genesis of an intracontinental orogen. Journal of Asian Earth Sciences, 39(4): 309-330.
Eby G N. 1992. Chemical subdivision of the A-type granitoids, petrogenetic and tectonic implications. Geology, 20(7): 641-644.
Foden J, Sossi P A and Wawryk C M. 2015. Fe isotopes and the contrasting petrogenesis of A-, I-and S-type granite. Lithos, 212-215(44): 32-44.
Guan Y L, Yuan C, Sun M, Wilde S, Long X P, Huang X L and Wang Q. 2014. I-type granitoids in the eastern Yangtze Block: Implications for the Early Paleozoic intracontinental orogeny in South China. Lithos, 206(1): 34-51.
Guo L Z, Shi Y S, Lu H F, Ma R S, Dong H G and Yang S F. 1989. The pre-Devonian tectonic patterns and evolution of South China. Journal of Southeast Asian Earth Sciences, 3(1): 87-93.
Hsü K J, Li J L, Chen H H, Wang Q C, Sun S and ?eng?r A M C. 1990. Tectonics of South China: Key to understanding west Pacific geology. Tectonophysics, 183(1): 9-39.
Hu Z C, Liu Y S, Chen L, Zhou L, Li M, Zong K Q, Zhu L Y and Gao S. 2011. Contrasting matrix induced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution. Journal of Analytical Atomic Spectrometry, 26(2): 425-430.
Huang D L and Wang X L. 2019. Reviews of geochronology, geochemistry, and geodynamic processes of Ordovician-Devonian granitic rocks in southeast China. Journal of Asian Earth Sciences, 184(1): 104001.
Huang X L, Yu Y, Li J, Tong L X and Chen L L. 2013. Geochronology and petrogenesis of the early Paleozoic I-type granite in the Taishan area, South China: Middle-lower crustal melting during orogenic collapse. Lithos, 177(3): 268-284.
Jackson S E, Pearson N J, Griffin W L and Belousova E A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geo-chronology. Chemical Geology, 211(1-2): 47-69.
Li J H, Zhang Y Q, Zhao G C, Johnston S T, Dong S W, Koppers A, Miggins D P, Sun H S, Wang W B and Xin Y J. 2017. New insights into Phanerozoic tectonics of South China: Early Paleozoic sinistral and Triassic dextral transpression in the east Wuyishan and Chencai domains, NE Cathaysia. Tectonics, 36(5): 819-853.
Li L M, Sun M, Wang Y J, Xing G F, Zhao G C, Cai K D and Zhang Y Z. 2011a. Geochronological and Geochemical study of Palaeoproterozoic gneissic granites and clinopyroxenite xenoliths from NW Fujian, SE China: Implications for the crustal evolution of the Cathaysia Block. Journal of Asian Earth Sciences, 41(2): 204-212.
Li L M, Sun M, Wang Y J, Xing G F, Zhao G C, Xia X P, Chan L S, Zhang F F and Wong J. 2011b. U-Pb and Hf isotopic study of zircons from migmatised amphibolites in the Cathaysia Block: Implications for the early Paleozoic peak tectonothermal event in Southeastern China. Gond-wana Research, 19(1): 191-201.
Li W X, Li X H and Li Z X. 2005. Neoproterozoic bimodal magmatism in the Cathaysia block of South China and its tectonic significance. Precambrian Research, 136(1): 51-66.
Li Z, Qiu J S and Zhou J C. 2010a. Geochronology, geochemistry, and Nd-Hf isotopes of early Palaeozoic-early Mesozoic I-type granites from the Hufang composite pluton, Fujian, South China: Crust-mantle interactions and tectonic implications. International Geology Review, 54(1): 15-32.
Li Z X, Li X H, Wartho J A, Clark C, Li W X and Zhang C L. 2010b. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions. Geological Society of America Bulletin, 122(5-6): 772-793.
Lin S F, Xing G F, Davis D W, Yin C Q, Wu M L, Li L M, Jiang Y and Chen Z H. 2018. Appalachian-style multi-terrane Wilson cycle model for the assembly of South China. Geology, 46(4): 319-322.
Liu R, Zhou H W, Zhang L, Zhong Z Q, Zeng W, Xiang H, Jin S, Lu X Q and Li C Z. 2010a. Zircon U-Pb ages and Hf isotope compositions of the Mayuan migmatite complex, NW Fujian Province, Southeast China: Constraints on the timing and nature of a regional tectonothermal event associated with the Caledonian orogeny. Lithos, 119(3): 163-180.
Liu S F, Peng S B, Kusty T, Polat A and Han Q S. 2018. Origin and tectonic implications of an early Paleozoic (460~440 Ma) subduction-accretion shear zone in the northwestern Yunkai Domain, South China. Lithos, 322: 104-128.
Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q and Wang D B. 2010b. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571.
Liu Y S, Hu Z C, Zong K Q, Gao C G, Gao S, Xu J and Chen H H. 2010c. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546.
Ludwig K R. 2003. User’s Manual for Isoplot 3.6: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, special publications, (4): 47-93.
Maniar P D and Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635-643.
Miller C F, McDowell S M and Mapes R W. 2003. Hot and cold granite? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31(6): 529-532.
Pearce J A. 1996. Sources and setting of granitic rocks. Episodes, 19(4): 120-125.
Pearce J A, Harris N W and Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25: 956-983.
Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247-263.
Shu L S, Faure M, Jiang S Y, Yang Q and Wang Y J. 2006. SHRIMP zircon U-Pb age, litho-and biostratigraphic analyses of the Huaiyu domain in South China — Evidence for a Neoproterozoic orogen, not late Paleozoic-early Mesozoic collision. Episodes, 29(4): 244-252.
Shu L S, Faure M, Yu J H and Jahn B M. 2011. Geochro-nological and geochemical features of the Cathaysia block (South China): New evidence for the Neoproterozoic breakup of Rodinia. Precambrian Research, 187(3-4): 263-276.
Shu L S, Wang B, Cawood P A, Santosh M and Xu Z Q. 2015. Early Paleozoic and Early Mesozoic intraplate tectonic and magmatic events in the Cathaysia Block, South China. Tectonics, 34(8), doi: 10.1002/2015TC003835.
Song M J, Shu L S, Santosh M and Li J Y. 2015. Late early Paleozoic and early Mesozoic intracontinental orogeny in the South China Craton: Geochronological and geochemical evidence. Lithos, 232: 360-374.
Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society London Special Publications, 42(1): 313-345.
Ting W K. 1929. The orogenic movement in China. Bullet Geological Society of China, 8(1): 151-170.
Vigneresse J L. 2014. Textures and melt-crystal-gas interactions in granites. Geoscience Frontiers, 6(5): 635-663.
Wan Y S, Liu D Y, Wilde S A, Cao J J, Chen B, Dong C Y, Song B and Du L L. 2010. Evolution of the Yunkai Terrane, South China: Evidence from SHRIMP zircon U-Pb dating, geochemistry and Nd isotope. Journal of Asian Earth Sciences, 37(2): 140-153.
Wang D, Zheng J P, Ma Q, Griffin W L, Zhao H and Wong J. 2013a. Early Paleozoic crustal anatexis in the intraplate Wuyi-Yunkai orogen, South China. Lithos, 175(5): 124-145.
Wang H Z and Mo X X. 1995. An outline if the tectonic evolution of China. Episodes, 18(1-2): 6-16.
Wang Y J, Fan W M, Zhang G W and Zhang Y H. 2013b. Phanerozoic tectonics of the South China block: Key observations and controversies. Gondwana Research, 23(4): 1273-1305.
Wang Y J, Fan W M, Zhao G C, Ji S C and Peng T P. 2007. Zircon U-Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China block. Gondwana Research, 12(4): 404-416.
Wang Y J, He H Y, Gan C S and Zhang Y Z. 2018. Petrogenesis of the early Silurian Dashuang high-Mg basalt-andesite-dacite in eastern South China: Origin from a palaeosubduction-modified mantle. Journal of the Geological Society, 175(6): 949-966.
Wang Y J, Zhang A M, Fan W M, Zhang Y H and Zhang Y Z. 2013c. Origin of paleosubduction-modified mantle for Silurian gabbro in the Cathaysia Block: Geochronological and geochemical evidence. Lithos, 160(1): 37-54.
Wang Y J, Zhang A M, Fan W M, Zhao G C, Zhang G W, Zhang Y Z, Zhang F F and Li S Z. 2011. Kwangsian crustal anatexis within the eastern South China Block: Geochemical, zircon U-Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi-Yunkai Domains. Lithos, 127(1-2): 239-260.
Wang Y J, Zhang F F, Fan W M, Zhang G W, Chen S Y, Cawood P A and Zhang A M. 2010. Tectonic setting of the South China Block in the early Paleozoic: Resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology. Tectonics, 29(6), doi: 10.1029/2010TC002750.
Whalen J B, Currie K L and Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419.
Wiedenbeck M, Allé P, Corfu F, Griffin W L, Oberli F, Quadt A V, Roddick J C and Spiegel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter, 19(1): 1-23.
Xia Y, Xu X S, Zou H B and Liu L. 2014. Early Paleozoic crust-mantle interaction and lithosphere delamination in South China Block: Evidence from geochronology, geochemistry, and Sr-Nd-Hf isotopes of granites. Lithos, 184-187: 416-435.
Xie Y X, Ma L Y, Zhao G C, Xie C F, Han Y G, Li J H, Liu Q, Yao J L, Zhang Y Y and Lu Y F. 2020. Origin of the Heping granodiorite pluton: Implications for syn-convergent extension and asthenosphere upwelling accompanying the early Paleozoic orogeny in South China. Gondwana Research, 85: 149-168.
Xin Y J, Li J H, Ratschbacher L, Zhao G C, Zhang Y Q, Dong S W, Xia X P and Yu Y Q. 2020. Early Devonian (415-400 Ma) A-type granitoids and diabases in the Wuyishan, eastern Cathaysia: A signal of crustal extension coeval with the separation of South China from Gondwana. Geological Society of America Bulletin, 132(11-12), doi.org/10.1130/B35412.1.
Xu B, Jiang S Y, Hofmann A W, Wang R, Yang S Y and Zhao K D. 2016. Geochronology and geochemical constraints on petrogenesis of Early Paleozoic granites from the Laojunshan district in Yunnan Province of South China. Gondwana Research, 29(1): 248-263.
Xu X S, O’Reilly S Y, Griffin W L, Deng P and Pearson N J. 2005. Relict Proterozoic basement in the Nanling Mountains (SE China) and its tectonothermal overprinting. Tectonics, 24(2), doi: 10.1029/2004TC001652.
Yan C L, Shu L S, Michel F, Chen Y and Cheng L. 2017. Early Paleozoic intracontinental orogeny in the Yunkai domain, South China Block: New insights from field observations, zircon U-Pb geochronological and geoche-mical investigations. Lithos, 268-271: 320-333.
Yang S C, Hu W X, Wang X L, Jiang B Y, Yao S P, Sun F N, Huang Z C and Zhu F. 2019. Duration, evolution, and implications of volcanic activity across the Ordovician-Silurian transition in the Lower Yangtze region, South China. Earth and Planetary Science Letters, 518: 13-25.
Yao J L, Cawood P A, Shu L S and Zhao G C. 2019. Jiangnan Orogen, South China: A ~970-820 Ma Rodinia margin accretionary belt. Earth-Science Reviews, 196: 102872. doi: 10.1016/j.earscirev.2019.05.016.
Yao W H and Li Z X. 2016. Tectonostratigraphic history of the Ediacaran-Silurian Nanhua foreland basin in South China. Tectonophysics, 674: 31-51.
Yao W H, Li Z X and Li W X. 2015. Was there a Cambrian ocean in South China? -Insight from detrial provenance analyses. Geological Magazine, 152(1): 184-191.
Yao W H, Li Z X, Li W X, Wang X C, Li X H and Yang J H. 2012. Post-kinematic lithospheric delamination of the Wuyi-Yunkai orogen in South China: Evidence from ca. 435 Ma high-Mg basalts. Lithos, 154: 115-129.
Yu J H, O’Reilly S Y, Zhou M F, Griffin W L and Wang L J. 2012a. U-Pb geochronology and Hf-Nd isotopic geoche-mistry of the Badu Complex, Southeastern China: Implications for the Precambrian crustal evolution and paleogeography of the Cathaysia Block. Precambrian Research, 222-223: 424-449.
Yu J H, Wang L J, O’Reilly S Y, Griffin W L, Zhang M, Li C Z and Shu L S. 2009. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China. Precambrian Research, 174(3): 347-363.
Yu X Q, Wu G G, Zhao X X, Zhang D, Di Y J, Qiu J T, Dai Y P and Li C L. 2012b. New geochronological data from the Paleozoic and Mesozoic nappe structures, igneous rocks, and molybdenite in the North Wuyi area, Southeast China. Gondwana Research, 22(2): 519-533
Yu Y, Huang X L, Sun M and He L P. 2018. Petrogenesis of granitoids and associated xenoliths in the early Paleozoic Baoxu and Enping plutons, South China: Implication for the evolution of the Wuyi-Yunkai intracontinental orogen. Journal of Asian Earth Sciences, 156: 59-74.
Yuan H L, Gao S, Dai M N, Zong C L, Günther D, Fontaine G H, Liu X M and Diwu C R. 2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chemical Geology, 247(1-2): 100-118.
Zhang A M, Wang Y J, Fan W M, Zhang Y Z and Yang J. 2012a. Earliest Neoproterozoic (ca.1.0 Ga) arc-back-arc basin nature along the northern Yunkai Domain of the Cathaysia Block: Geochronological and geochemical evidence from the metabasite. Precambrian Research, 220-221(8): 217-233.
Zhang F F, Wang Y J, Zhang A M, Fan W M, Zhang Y Z and Zi J W. 2012b. Geochronological and geochemical constraints on the petrogenesis of Middle Paleozoic (Kwangsian) massive granites in the eastern South China block. Lithos, 150: 188-208.
Zhang Q, Jiang Y H, Wang G C, Liu Z, Ni C Y and Qing L. 2015a. Origin of Silurian gabbros and I-type granites in central Fujian, SE China: Implications for the evolution of the early Paleozoic orogen of South China. Lithos, 216-217(6): 285-297.
Zhang S B, Wu R X and Zheng Y F. 2012c. Neoproterozoic continental accretion in South China: Geochemical evidence from the Fuchuan ophiolite in the Jiangnan orogen. Precambrian Research, 220-221: 45-64.
Zhang X C, Wang Y J, Clift P D, Yan Y, Zhang Y Z and Zhang L. 2018. Paleozoic Tectonic Setting and Paleogeo-graphic Evolution of the Qin-Fang Region, Southern South China Block: Detrital Zircon U-Pb Geochronolo-gical and Hf Isotopic Constraints. Geochemistry, Geophysics, Geosystems, 19(10): 3962-3979.
Zhang Y Z, Wang Y J, Zhang Y H and Zhang A M. 2015b. Neoproterozoic assembly of the Yangtze and Cathaysia blocks: Evidence from the Cangshuipu Group and associated rocks along the Central Jiangnan Orogen, South China. Precambrian Research, 269: 18-30.
Zhao G C. 2015. Jiangnan Orogen in South China: Developing from divergent double subduction. Gondwana Research, 27(3): 1173-1180.
Zhao G C and Cawood P A. 1999. Tectonothermal evolution of the Mayuan Assemblage in the Cathaysia Block: Implications for Neoproterozoic collision-related assembly of the South China Craton. American Journal of Science, 299(4): 309-339.
Zhao G C and Cawood P A. 2012. Precambrian geology of China. Precambrian Research, 222-223: 13-54.
Zhong Y F, Wang L X, Zhao J H, Liu L, Ma C Q, Zheng J P, Zhang Z J and Luo B J. 2016. Partial melting of an ancient sub-continental lithospheric mantle in the early Paleozoic intracontinental regime and its contribution to petrogenesis of the coeval peraluminous granites in South China. Lithos, 264: 224-238.

相似文献/References:

[1]郝义,李三忠,金宠.湘赣桂地区加里东期构造变形特征及成因分析.大地构造与成矿学,2010.34(2):166.
 HAO Yi,LI Sanzhong,JIN Chong.Caledonian Structural Characteristics and Mechanism in Hunan Jiangxi Guangxi Provinces.Geotectonica et Metallogenia,2010.45(5):166.

备注/Memo

备注/Memo:
收稿日期: 2020-07-19; 改回日期: 2020-08-23 项目资助: 广东省引进人才创新团队(2016ZT06N331)和国家级大学生创新创业训练计划项目(201810558204)联合资助。 第一作者简介: 陈国楷(1996-), 男, 硕士研究生, 构造地质学专业。Email: chengk8@mail3.sysu.edu.cn 通信作者: 张健(1978-), 男, 教授, 博士生导师, 从事造山带相关的构造地质学研究。Email: zhangjian@mail.sysu.edu.cn
更新日期/Last Update: 2021-09-20