[1]代俊峰,李增华,许德如.2021.煤型关键金属矿产研究进展.大地构造与成矿学,45(5):963-982.doi:10.16539/j.ddgzyckx.2021.05.008
 DAI Junfeng,LI Zenghua,XU Deru.2021.Coal-hosted Critical Metal Deposits: A Review.Geotectonica et Metallogenia,45(5):963-982.doi:10.16539/j.ddgzyckx.2021.05.008
点击复制

煤型关键金属矿产研究进展
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2021年45卷05期
页码:
963-982
栏目:
构造地质与成矿学
出版日期:
2021-10-25

文章信息/Info

Title:
Coal-hosted Critical Metal Deposits: A Review
文章编号:
1001-1552(2021)05-0963-020
作者:
代俊峰1、2 李增华1、2* 许德如1、2 邓 腾1、2 赵 磊3 张 鑫1、2 王水龙1、2 张 健1、2 孔令涛1、2 尚 培1、2
1.东华理工大学 核资源与环境国家重点实验室, 江西 南昌 330013; 2.东华理工大学 地球科学学院, 江西 南昌 330013; 3.中国冶金地质总局 山东正元地质勘查院, 山东 济南 250014
Author(s):
DAI Junfeng1、2 LI Zenghua1、2* XU Deru1、2 Deng Teng1、2 ZHAO Lei3 ZHANG Xin1、2 WANG Shuilong1、2 ZHANG Jian1、2 KONG Lingtao1、2 and SHANG Pei1、2
1. State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China; 2. School of Earth Sciences, East China University of Technology, Nanchang 330013, Jiangxi, China; 3. Geology Exploration Institute of Shandong Zhengyuan, China Metallurgical Geology Bureau, Jinan 250014, Shandong, China
关键词:
关键金属矿床 地质特征 成因类型 成矿规律 研究进展 含煤盆地
Keywords:
Critical metal deposits geological characteristics genetic type ore-forming process research progress coal-bearing basin
分类号:
P617
DOI:
10.16539/j.ddgzyckx.2021.05.008
文献标志码:
A
摘要:
关键金属是全球高科技产业发展所必需的战略性矿产资源, 包括稀有金属、稀土金属、稀散金属以及稀贵金属。煤及其燃烧后的飞灰中能够富集关键金属元素, 含量可以达到甚至超过传统的矿床类型, 有望成为未来关键金属的主要来源。煤型关键金属矿床指在一定的地质作用下, 含煤盆地中富集关键金属且在当前经济技术条件下可被开发利用的煤层、夹矸和围岩。本文通过对煤型关键金属矿床的地质特征、成矿金属元素来源和赋存状态、富集机制以及成矿规律进行系统论述, 认为煤型关键金属矿床有宇宙成因、陆源碎屑成因、火山碎屑成因、热液成因、外部流体渗滤成因以及叠加复合成因6种类型, SEM-EDS和BSE技术结合ICP-MS、ICP-AES和EMPA是煤中关键金属元素重要的分析测试方法; 总结煤型关键金属矿床的时空分布规律和研究趋势, 提出岩浆活动与煤中关键金属元素富集的关系、煤中关键金属元素赋存状态的影响因素、合适的分析测试方法以及开发和选冶技术创新等研究方向。文章强调煤型关键金属矿床潜在的工业经济价值, 加强我国煤型关键金属矿产的科学研究和综合利用, 不仅能为关键金属矿产的成矿理论研究、找矿突破以及开发利用提供科学依据, 还有助于促进我国煤炭经济的绿色循环发展。
Abstract:
Critical metals, including rare metals, rare earth elements, rare scattered metals and rare noble metals, are global strategic mineral resources and are essential to high-tech industries all around the world. Critical metals could be strongly enriched in coal as well as coal combusted products, especially fly ash. The concentrations of critical metal elements in coal and coal combusted fly ash are comparable to, or even higher than, those found in conventional ore deposits, which made the coal-hosted deposits a promising source for critical metals in the foreseeable future. In this paper, we synthesized the geological characteristics, source and occurrence of critical metals, enrichment mechanism and ore-forming process of the coal-hosted critical metal deposits. To do so, we proposed six genetic types of coal-hosted critical metal deposits, i.e., cosmic type, terrigenous type, pyraclastic type, external fluid infiltration type, hydrothermal type and superimposed type, pointed out that combined SEM-EDS and BSE with ICP-MS, ICP-AES and EMPA are the primary analysis methods, and summarized ore genesis and research trendency. Furthermore, we raised several scientifc questions, such as the relationship between magmatism and critical metal mineralization, the factors that influence critical metal occurrence, applicable analysis methods, and technical innovation on exploiting, dressing and smelting coal-hosted critical metal deposits. This paper highlighted the potential industrial economy and enhanced an urgent scientific research and integrated utilization of the coal-hosted critical metal deposits, which not only can provide scientific evidence for the metallogenic theoretical research, exploration and exploitation of critical metal deposits, but also would facilitate beneficial utilization of coal mines in a green and sustainbale way.

参考文献/References:

DZ/T 0203-2002. 2003. 稀有金属矿产地质勘查规范. 中华人民共和国地质矿产行业标准. 北京: 地质出版社: 1-43.
陈毓川, 王瑞江. 2019. 从三稀资源调查扩大到关键矿产调查是战略性新兴产业发展的必然需要——推荐阅读《地质学报》“关键矿产”专辑. 地质论评, 65(4): 915-916.
代世峰, 任德贻, 李生盛. 2002. 煤及顶板中稀土元素赋存状态及逐级化学提取. 中国矿业大学学报, 31(5): 12-16.
代世峰, 任德贻, 李生盛. 2006. 内蒙古准格尔超大型镓矿床的发现. 科学通报, 51(2): 177-185.
代世峰, 任德贻, 孙玉壮, 唐跃刚. 2004. 鄂尔多斯盆地晚古生代煤中铀和钍的含量与逐级化学提取. 煤炭学报, 29(10): 56-60.
代世峰, 任德贻, 周义平, Chou C L, 王西勃, 赵蕾, 朱兴伟. 2008. 煤中微量元素和矿物富集的同沉积火山灰与海底喷流复合成因. 科学通报, 53(24): 3120-3126.
代世峰, 任徳贻, 周义平, Seredin V V, 李大华, 张名泉, Hower J C, Ward C R, 王西勃, 赵蕾, 宋晓林. 2014. 煤型稀有金属矿床: 成因类型、赋存状态和利用评价. 煤炭学报, 39(8): 1707-1715.
代世峰, 赵蕾, 魏强, 宋晓林, 王文峰, 刘晶晶, 段飘飘. 2020. 中国煤系中关键金属资源: 富集类型与分布. 科学通报, 65(33): 3715-3729.
代世峰, 周义平, 任德贻, 王西勃, 李丹, 赵蕾. 2007. 重庆松藻矿区晚二叠世煤的地球化学和矿物学特征及其成因. 中国科学(D辑), 37(3): 353-362.
高永宝, 金谋顺, 赵民, 滕家欣, 赵慧博, 李侃, 燕洲泉. 2018. 稀有金属揭秘. 武汉: 中国地质大学出版社: 1-82.
蒋少涌, 温汉捷, 许成, 王焰, 苏慧敏, 孙卫东. 2019. 关键金属元素的多圈层循环与富集机理: 主要科学问题及未来研究方向. 中国科学基金, 33(2): 10-16.
毛景文, 杨宗喜, 谢桂青, 袁顺达, 周振华. 2019a. 关键矿产——国际动向与思考. 矿床地质, 38(4): 689-698.
毛景文, 袁顺达, 谢桂青, 宋世伟, 周琦, 高永宝, 刘翔, 付小方, 曹晶, 曾载淋, 李通国, 樊锡银. 2019b. 21世纪以来中国关键金属矿产找矿勘查与研究新进展. 矿床地质, 38(5): 935-969.
宁树正, 邓小利, 李聪聪, 秦国红, 张建强, 朱士飞, 乔军伟, 陈磊, 章伟. 2017. 中国煤中金属元素矿产资源研究现状与展望. 煤炭学报, 42(9): 2214-2225.
宁树正, 黄少青, 朱士飞, 章伟, 邓小利, 李聪聪, 乔军伟, 张建强, 张宁. 2019. 中国煤中金属元素成矿区带. 科学通报, 64(24): 2501-2513.
彭小桂. 2015. 湖北省恩施市硒资源开发利用潜力浅析. 资源环境与工程, 29(4): 436-441.
秦勇, 王文峰, 程爱国, 刘新花, 赵建岭. 2009. 首批煤炭国家规划矿区煤中镓的成矿前景. 中国煤炭地质, 21(1): 32-37.
屈文俊, 王登红, 朱云, 樊兴涛, 李超, 温宏利. 2019. 稀土稀有稀散元素现代仪器测试全新方法的建立. 地质学报, 93(6): 1514-1522.
任德贻, 赵峰华, 代世峰, 张军营, 雒昆利. 2006. 煤的微量元素地球化学. 北京: 科学出版社: 1-509.
孙升林, 吴国强, 曹代勇, 宁树正, 乔军伟, 朱华雄, 韩亮, 朱世飞, 苗琦, 周兢, 刘亢, 李聪聪, 陈寒勇, 蔡旭梅. 2014. 煤系矿产资源及其发展趋势. 中国煤炭地质, 26(11): 5-15.
涂光炽. 2004. 分散元素地球化学及成矿机制. 北京: 地质出版社: 1-424.
王登红. 2019. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向. 地质学报, 93(6): 1189-1209.
王登红, 王瑞江, 李建康, 赵芝, 于扬, 代晶晶, 陈郑辉, 李德先, 屈文俊, 邓茂春, 付小方, 孙艳, 郑国栋. 2013. 中国三稀矿产资源战略调查研究进展综述. 中国地质, 40(2): 361-370.
王芳, 鲁力, 康健, 魏均启, 朱丹, 周亮亮. 2016. 恩施渔塘坝硒矿床中硒的赋存状态研究. 资源环境与工程, 30(2): 244-247.
王文峰, 秦勇, 刘新花, 赵建岭, 王钧漪, 吴国代, 刘炯天. 2011. 内蒙古准格尔煤田煤中镓的分布赋存与富集成因. 中国科学: 地球科学, 41(2): 45-60.
许德如, 王智琳, 聂逢君, 邹少浩, 邓腾, 李增华. 2019. 中国钴矿资源现状与关键科学问题. 中国科学基金, 33(2): 125-132.
翟明国, 吴福元, 胡瑞忠, 蒋少涌, 李文昌, 王汝成, 王登红, 齐涛, 秦克章, 温汉捷. 2019. 战略性关键金属矿产资源: 现状与问题. 中国科学基金, 33(2): 4-9.
邹建华, 李大华, 刘东. 2012. 内蒙古阿刀亥矿晚古生代煤中矿物的赋存状态及成因. 矿物岩石地球化学通报, 31(2): 135-138.
Arbuzov S I and Mashen’kin V S. 2007. Oxidation zone of coalfields as a promising source of noble and rare metals: A case of coalfields in Central Asia // Problems and Outlook of Development of Mineral Resources and Fuel-Energetic Enterprises of Siberia. Tomsk: Tomsk Polytechnic University: 26-31.
Bonnett R. 1996. Porphyrins in coal. International Journal of Coal Geology, 32(1-4): 137-149.
Bou?ka V, Pe?ek J and Sykorova I. 2000. Probable modes of occurrence of chemical elements in coal. Acta Montana Series B, 10(117): 1-81.
Chyi L L. 1982. The distribution of gold and platinum in bituminous coal. Economic Geology, 77(6): 1592-1597.
Clarke L B and Sloss L L. 1992. Trace Elements Emissions from Coal Combustion and Gasification. London: IEA Coal Research: 1-111.
Dai S F, Chekryzhov I Y, Seredin V V, Nechaev V P, Graham I T, Hower J C, Ward C R, Ren D Y and Wang X B. 2016a. Metalliferous coal deposits in East Asia (Primorye of Russia and South China): A review of geodynamic controls and styles of mineralization. Gondwana Research, 29(1): 60-82.
Dai S F and Finkelman R B. 2018. Coal as a promising source of critical elements: Progress and future prospects. International Journal of Coal Geology, 186: 155-164.
Dai S F, Graham I T and Ward C R. 2016b. A review of anomalous rare earth elements and yttrium in coal. International Journal of Coal Geology, 159: 82-95.
Dai S F, Jiang Y F, Ward C R, Gu L D, Seredin V V, Liu H D, Zhou D, Wang X B, Sun Y Z, Zou J H and Ren D Y. 2012a. Mineralogical and geochemical compositions of the coal in the Guanbanwusu mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar coalfield. International Journal of Coal Geology, 98: 10-40.
Dai S F, Li D, Chou C L, Zhao L Z, Y, Ren D Y, Ma Y W and Su Y Y. 2008a. Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. International Journal of Coal Geology, 74(3): 185-202.
Dai S F, Li D H, Ren D Y, Tang Y G, Shao L Y and Song H B. 2004. Geochemistry of the Late Permian No.30 coal seam, Zhijin Coalfield of Southwest China: Influence of the siliceous lowtemperature hydrothermal fluid. Applied Geochemistry, 19(8): 1315-1330.
Dai S F, Liu J J, Ward C R, Hower J C, French D, Jia S H, Hood M M and Garrison T M. 2016c. Mineralogical and geochemical compositions of Late Permian coals and host rocks from the Guxu Coalfield, Sichuan Province, China, with emphasis on enrichment of rare metals. International Journal of Coal Geology, 166: 71-95.
Dai S F, Luo Y B, Seredin V V, Ward C R, Hower J C, Zhao L, Liu S D, Zhao C L, Tian H M and Zou J H. 2014a. Revisiting the late Permian coal from the Huayingshan, Sichuan, southwestern China: Enrichment and occurrence modes of minerals and trace elements. International Journal of Coal Geology, 122: 110-128.
Dai S F, Nechaev V P, Chekryzhov I Y, Zhao L X, Vysotskiy S V, Graham I, Ward C R, Ignatiev A V, Velivetskaya T A, Zhao L, French D and Hower J C. 2018. A model for Nb-Zr-REE-Ga enrichment in Lopingian altered alkaline volcanic ashes: Key evidence of H-O isotopes. Lithos, 302-303: 359-369.
Dai S F and Ren D Y. 2007. Effects of magmatic intrusion on mineralogy and geochemistry of coals from the Fengfeng-Handan Coalfield, Hebei, China. Energy and Fuels, 21(3): 1663-1673.
Dai S F, Ren D Y, Chou C L, Finkelman R B, Seredin V V and Zhou Y P. 2012b. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. International Journal of Coal Geology, 94: 3-21.
Dai S F, Ren D Y, Chou C L, Li S S and Jiang Y F. 2006. Mineralogy and geochemistry of No. 6 coal (Pennsylvanian) in the Junger coalfield, Ordos basin, China. International Journal of Coal Geology, 66(4): 253-270.
Dai S F, Ren D Y, Tang Y G, Shao L Y and Hao L M. 2002. Influences of low-temperature hydrothermal fluids on the re-distributions and occurrences of associated elements in coal — A case study from the Late Permian coals in the Zhijin Coalfield, Guizhou Province, Southern China. Acta Geologica Sinica, 76(4): 437-445.
Dai S F, Ren D Y, Tang Y G, Yue M and Hao L M. 2005. Concentration and distribution of elements in late Permian coals from western Guizhou province, China. International Journal of Coal Geology, 61(1-2): 119-137.
Dai S F, Ren D Y, Zhang J Y and Hou X Q. 2003. Concentrations and origins of platinum group elements in Late Paleozoic coals of China. International Journal of Coal Geology, 55(1): 59-70.
Dai S F, Ren D Y, Zhou Y P, Chou C L, Wang X B, Zhao L and Zhu X W. 2008b. Mineralogy and geochemistry of a superhigh-organic-sulfur coal, Yanshan coalfield, Yunnan, China: Evidence for a volcanic ash component and influence by submarine exhalation. Chemical Geology, 255(1-2): 182-194.
Dai S F, Seredin V V, Ward C R, Hower J C, Xing Y W, Zhang W G, Song W J and Wang P P. 2015a. Enrichment of U-Se-Mo-Re-V in coals preserved within marine carbonate successions: Geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Mineral Deposita, 50(2): 159-186.
Dai S F, Seredin V V, Ward C R, Jiang J, Hower J C, Song X L, Jiang Y F, Wang X B, Gornostaeva T, Li X, Liu H D, Zhao L and Zhao C L. 2014b. Composition and modes of occurrence of minerals and elements in coal combustion products derived from high-Ge coals. International Journal of Coal Geology, 121: 79-97.
Dai S F, Wang P P, Ward C R, Tang Y G, Song X L, Jiang J H, Hower J C, Li T, Seredin V V, Wagner N J, Jiang Y F, Wang X B and Liu J J. 2015b. Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang, Yunnan, southwestern China: Key role of N2-CO2-mixed hydrothermal solutions. International Journal of Coal Geology, 152: 19-46.
Dai S F, Wang X B, Seredin V V, Hower J C, Ward C R, O’Keefe J M K, Huang W H, Li T, Li X, Liu H D, Xue W F and Zhao L X. 2012d. Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications. International Journal of Coal Geology, 90-91: 72-99.
Dai S F, Xie P P, Jia S H, Ward C R, Hower H C, Yan X Y and French D. 2017a. Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo Coalfield, Chongqing, China: Genetic implications from geochemical and mineralogical data. Ore Geology Reviews, 80: 1-17.
Dai S F, Xie P P, Ward C R, Yan X Y, Guo W M, French D and Graham I T. 2017b. Anomalies of rare metals in Lopingian super-high-organic-sulfur coals from the Yishan Coalfield, Guangxi, China. Ore Geology Reviews, 88: 235-250.
Dai S F, Yan X Y, Ward C R, Hower J C, Zhao L, Wang X B, Zhao L X, Ren D Y and Finkelman R B. 2016d. Valuable elements in Chinese coals: A review. International Journal of Coal Geology, 60(5-6): 590-620.
Dai S F, Yang J Y, Ward C R, Hower J C, Liu H D, Garrison T M, French D and O’Keefe J M K. 2015c. Geochemical and mineralogical evidence for a coal-hosted uranium deposit in the Yili Basin, Xinjiang, northwestern China. Ore Geology Reviews, 70: 1-30.
Dai S F, Zhang W G, Seredin V V, Ward C R, Hower J C, Song W J, Wang X B, Li X, Zhao L X, Kang H, Wang P P and Zhou D. 2013a. Factors controlling geochemical and mineralogical compositions of coals preserved within marine carbonate successions: A case study from the Heshan coalfield, southern China. International Journal of Coal Geology, 109-110: 77-100.
Dai S F, Zhang W G, Ward C R, Seredin V V, Hower J C, Li X, Song W J, Wang X B, Kang H, Zheng L C, Wang P P and Zhou D. 2013b. Mineralogical and geochemical anomalies of Late Permian coals from the Fusui Coalfield, Guangxi Province, southern China: Influences of terrigenous materials and hydrothermal fluids. International Journal of Coal Geology, 105: 60-84.
Dai S F, Zhou Y P, Zhang M Q, Wang X B, Wang J M, Song X L, Jiang Y F, Luo Y B, Song Z T, Yang Z and Ren D Y. 2010. A new type of Nb (Ta)-Zr(Hf)-REE-Ga polymetallic deposit in the late Permian coal-bearing strata, eastern Yunnan, southwestern China: Possible economic significance and genetic implications. International Journal of Coal Geology, 83: 55-63.
Dai S F, Zou J H, Jiang Y F, Ward C R, Wang X B, Li T, Xue W F, Liu S D, Tian H M, Sun X H and Zhou D. 2012c. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai Mine, Daqingshan Coalfield, Inner Mongolia, China: Modes of occurrence and origin of diaspore, gorceixite, and ammonian illite. International Journal of Coal Geology, 94: 250-270.
Dill H G and Wehner H. 1999. The depositional environment and mineralogical and chemical compositions of high ash brown coal resting on early Tertiary saprock (Schirnding Coal Basin, SE Germany). International Journal of Coal Geology, 39(4): 301-328.
Dissanayake C B and Kritsotakis K. 1984. The geochemistry of Au and Pt in Peat and Algal Mats: A case study from Sri Lanka. Chemical Geology, 42(S1-2): 61-76.
Etschmann B, Liu W H, Li K, Dai S F, Reith F, Falconer D, Kerr G, Paterson D, Howard D, Kappen P, Wykes J and Brugger J. 2017. Enrichment of germanium and associated arsenic and tungsten in coal and roll-front uranium deposits. Chemical Geology, 463: 29-49.
Finkelman R B and Aruscavage P J. 1981. Concentration of some platinum-group metals in coal. International Journal of Coal Geology, 1(2): 95-99.
Finkelman R B, Palmer C A and Wang P P. 2018. Quantifi-cation of the modes of occurrence of 42 elements in coal. International Journal of Coal Geology, 185: 138-160.
Flier-Keller E V D. 1991. Platinum group elements in Tulameen Coal, British Columbia. Canada Economic Geology, 86 (2): 387-395.
Folgueras M B, Alonso M and Fernandez F J. 2017. Coal and sewage sludge ashes as sources of rare earth elements. Fuel, 192: 128-139.
Gollakota A R K, Volli V and Shu C M. 2019. Progressive utilisation prospects of coal fly ash: A review. Science of the Total Environment, 672: 951-989.
Hower J C, Eble C F, Dai S F and Belkin H E. 2016. Distribution of rare earth elements in eastern Kentucky coals: Indicators of multiple modes of enrichment? International Journal of Coal Geology, 160-161: 73-81.
Hower J C, Ruppert L F and Eble C F. 1999. Lanthanide, yttrium, and zirconium anomalies in the fire clay coal bed, eastern Kentucky. International Journal of Coal Geology, 39(1-3): 141-153.
Huang Z X, Fan M H and Tiand H J. 2018. Coal and coal byproducts: A large and developable unconventional resource for critical materials — Rare earth elements. Journal of Rare Earths, 36(4): 337-338.
Ketris M P and Yudovich Y E. 2009. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78(2): 135-148.
Kislyakov Y M and Shchetochkin V N. 2000. Hydrogenic Ore Formation. Geoinformmark, Moscow: 608.
Lewińska-Preis L, Monika J, Fabiańska M J, Cmiel S and Kita A. 2009. Geochemical distribution of trace elements in Kaffioyra and Longyearbyen coals, Spitsbergen, Norway. International Journal of Coal Geology, 80(3-4): 211-223.
Li J, Zhuang X G, Querol X, Font O, Izquierdo M and Wang Z M. 2014. New data on mineralogy and geochemistry of high-Ge coals in the Yimin coalfield, Inner Mongolia, China. International Journal of Coal Geology, 125: 10-21.
Liu J J, Song H J, Dai S F, Nechaev V P, Graham I T, Frenche D and Nechaeva E V. 2019. Mineralization of REE-Y-Nb-Ta-Zr-Hf in Wuchiapingian coals from the Liupanshui Coalfield, Guizhou, southwestern China: Geochemical evidence for terrigenous input. Ore Geology Reviews, 115: 103190.
Lyons P C, Morelli J J, Hercules D M, Lineman D, Thompson-Rizer C L and Dulong F T. 1990. The laser microprobe mass analyser for determining partitioning of minor and trace elements among intimately associated macerals: An example from the Swallow Wood coal bed, Yorkshire, UK. Fuel, 69: 771-775.
Mardon S M and Hower J C. 2004. Impact of coal properties on coal combustion byproduct quality: Examples from a Kentucky power plant. International Journal of Coal Geology, 59(3-4): 153-169.
Mastalerz M and Drobniak A. 2012. Gallium and germanium in selected Indiana coals. International Journal of Coal Geology, 94: 302-313.
Nassar N, Xun S, Fortier S and Schoeberlein D. 2016. Assessment of Critical Minerals: Screening Methodology and Initial Applicaion. Washington D. C., National Science and Technology Council: 1-18.
Oman C L, Finkelman R B and Tewlot S J. 1997. Concentrations of Platinum Group Elements in 122 US Coal Samples. US Geology Survey Open-File Report: 97-53.
Pazand K. 2015. Rare earth element geochemistry of coals from the Mazino Coal Mine, Tabas Coalfield, Iran. Arabian Journal of Geoscience, 8: 10859-10869.
Qi L and Gao J F. 2008. Revisiting platinum group elements of late Permian coals from western Guizhou province, SW China. International Journal of Coal Geology, 75(3): 189-193.
Qin S J, Sun Y Z, Li Y H, Wang J X, Zhao C L and Gao K. 2015. Coal deposits as promising alternative sources for gallium. Earth-Science Reviews, 150: 95-101.
Ramage H. 1927. Gallium in flue dust. Nature, 119(3004): 783.
Riley K W, French D H, Farrell O P, Wood R A and Huggins F E. 2012. Modes of occurrence of trace and minor elements in some Australian coals. International Journal of Coal Geology, 94: 214-224.
Rudnick R L and Gao S. 2003. Composition of the continental crust // Treatise on Geochemistry, (3). Elsevier, Amsterdam: 1-64.
Schulz K J, DeYoung J H, Jr Seal R R and Bradley D C. 2017. Critical mineral resources of the United States — Economic and environmental geology and prospects for future supply. U.S. Department of the Interior and U.S. Geological Survey. USGS Professional Paper, 1802: 1-862.
Seredin V V. 1996. Rare earth element-bearing coals from the Russian Far East deposits. International Journal of Coal Geology, 30(1-2): 101-129.
Seredin V V. 2004. Au-PGE mineralization on the Pavlovka Brown Coal Field, Primorye. Geology of Ore Deposits, 46 (1): 36-63.
Seredin V V. 2007. Distribution and formation conditions of noble metal mineralization in coal-bearing basins. Geology of Ore Deposit, 49: 3-36.
Seredin V V. 2012. From coal science to metal production and environmental protection: A new story of success. International Journal of Coal Geology, 90-91: 1-3.
Seredin V V and Dai S F. 2012. Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology, 94: 67-93.
Seredin V V and Dai S F. 2014. The occurrence of gold in fly ash derived from high-Ge coal. Mineral Deposita, 49: 1-6.
Seredin V V, Dai S F, Sun Y Z and Chekryzhov I Y. 2013. Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Applied Geochemistry, 31: 1-11.
Seredin V V, Danilcheva Y A, Magazina L O and Sharova I G. 2006. Ge-bearing coals of the Luzanovka Graben, Pavlovka brown coal deposit, Southern Primorye. Lithology and Mineral Resource, 41: 280-301.
Seredin V V and Finkelman R B. 2008. Metalliferous coals: A review of the main genetic and geochemical types. International Journal of Coal Geology, 76(4): 253-289.
Seredin V V, Kremenetskii A A, Trach G N and Tomson I N. 2009. New data on the REY hydrothermal ores with extraordinarily high concentrations of rare earth elements. Doklady Earth Science, 425: 403-408.
Seredin V V and Tomson I N. 2008. Metallogeny of Primorski Krai connected with Cenozoic rifting processes // Khanchuk V I. the Pasific Ore Belt: Data of New Investigations. Dalnauka, Vladivostok: 192-209.
Shao P, Wang W F, Chen L, Duan P P, Qian F C and Ma M Y. 2018. Distribution, occurrence, and enrichment of gallium in the middle Jurassic coals of the Muli coalfield, Qinghai, China. Journal of Geochemical Exploration, 185: 116-129.
Stone R W. 1912. Coal near the black hills Wyoming-South Dakota: US Geological Survey Bulletin, 499: 1-66.
Sun Y Z, Li Y H, Zhao C L, Lin M Y, Wang J X and Qin S J. 2010. Concentrations of lithium in Chinese coals. Energy Exploration and Exploition, 28(2): 97-104.
Sun Y Z, Zhao C L, Li Y H, Wang J X and Liu S M. 2012. Li distribution and mode of occurrences in Li-bearing coal seam #6 from the Guanbanwusu mine, Inner Mongolia, northern China. Energy Exploration and Exploition, 30(1): 109-130.
Sun Y Z, Zhao C L, Qin S J, Xiao L, Li Z S and Lin M Y. 2016. Occurrence of some valuable elements in the unique ‘high-aluminium coals’ from the Jungar coalfield, China. Ore Geology Reviews, 72(1): 659-668.
Sun Y Z, Zhao C L, Zhang J Y, Yang J J, Zhang Y Z, Yuan Y, Xu J and Duan D J. 2013. Concentrations of valuable elements of the coals from the Pingshuo Mining District, Ningwu Coalfield, northern China. Energy Exploration and Exploition, 31(5): 727-744.
Swaine D J. 1990. Trace Elements in Coal. London: Butterworth & Co. Ltd: 1-278.
Wang X B. 2009. Geochemistry of Late Triassic coals in the Changhe Mine, Sichuan basin, southwestern China: Evidence for authigenic lanthanide enrichment. Inter-na-tional Journal of Coal Geology, 80(3-4): 167-174.
Wei Q and Rimmer S. 2017. Acid solubility and affinities of trace elements in the high-Ge coals from Wulantuga (Inner Mongolia) and Lincang (Yunnan Province), China. International Journal of Coal Geology, 178: 39-55.
Wood S A and Samson I M. 2006. The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geology Reviews, 28(1): 57-102.
Yang J Y. 2006. Modes of occurrence and origins of noble metals in the Late Permian coals from the Puan Coalfield, Guizhou, Southwest China. Fuel, 85(12-13): 1679-1684.
Yudovich Y E and Ketris M P. 2006. Selenium in coal: A review. International Journal of Coal Geology, 67(1-2): 112-126.
Zhao C L, Qin S J, Yang Y C, Li Y H and Lin M Y. 2009. Concentration of gallium in the Permo-Carboniferous coals of China. Energy Exploration and Exploition, 27(5): 333-343.
Zhao L, Dai S F, Nechaev V P, Nechaeva E V, Graham I T and David F D. 2019. Enrichment origin of critical elements (Li and rare earth elements) and a Mo-U-Se-Re assemblage in Pennsylvanian anthracite from the Jincheng Coalfield, southeastern Qinshui Basin, northern China. Ore Geology Reviews, 115, 103184.
Zhao L, Ward C R, French D, Graham I T, Dai S F, Yang C, Xie P P and Zhang S Y. 2018. Origin of a kaolinite-NH4-illite-pyrophyllite-chlorite assemblage in a marine-influenced anthracite and associated strata from the Jincheng Coalfield, Qinshui Basin, northern China. International Journal of Coal Geology, 185: 61-78.
Zhao L X, Dai S F, Graham I T, Li X, Liu H D, Song X L, Hower J C and Zhou Y P. 2017. Cryptic sediment-hosted critical element mineralization from eastern Yunnan Province, southwestern China: Mineralogy, geochemistry, relationship to Emeishan alkaline magmatism and possible origin. Ore Geology Reviews, 80: 116-140.
Zhao L X and Graham I T. 2016. Origin of the alkali tonsteins from southwest China: Implications for alkaline magmatism associated with the waning stages of the Emeishan Large Igneous Province. Australian Journal of Earth Sciences, 63(1): 123-128.
Zhao L X, Ward C R, French D and Graham I T. 2013. Mineralogical composition of Late Permian coal seams in the Songzao Coalfield, southwestern China. International Journal of Coal Geology, 116-117: 208-226.
Zhao L X, Ward C R, French D and Graham I T. 2015. Major and trace element geochemistry of coals and intra-seam claystones from the Songzao Coalfield, SW China. Minerals, 5(4): 870-893.
Zhu J M, Johnson T M, Finkelman R B, Zheng B S, Ivana S and Jiri P. 2012. The occurrence and origin of selenium minerals in Se-rich stone coals, spoils and their adjacent soils in Yutangba, China. Chemical Geology, 330-331: 27-38.
Zhu J M and Zheng B S. 2001. Distribution of selenium in a mini-landscape of Yutangba, Enshi, Hubei province, China. Applied Geochemistry, 16(11-12): 1333-1344.
Zhuang X G, Querol X, Alastuey A, Juan R, Plana F, Lopez-Soler A, Du G and Martynov V V. 2006. Geochemistry and mineralogy of the cretaceous Wulantuga high-germanium coal deposit in Shengli coal field, Inner Mongolia, northeastern China. International Journal of Coal Geology, 66(1-2): 119-136.
Zou J H, Liu D, Tian H M, Li T, Liu F and Tan L. 2014, Anomaly and geochemistry of rare earth elements and yttrium in the late Permian coal from the Moxinpo mine, Chongqing, southwestern China. International Journal of Coal Science and Technology, 1(1): 23-30.

相似文献/References:

[1]燕宁,李社宏,陆智平.青海省兴海县索拉沟铜多金属矿成矿地质特征与矿床成因.大地构造与成矿学,2011.35(1):161.
 YAN Ning,LI Shehong,LU Zhiping.Metallogenic Characterisitics and Genesis of Suolagou Copper Multi Metallic Deposit in Xinghai County,Qinghai Province.Geotectonica et Metallogenia,2011.45(5):161.
[2]陈文明.我国地洼型斑岩、矽卡岩铜、钼矿床的地质特征及形成机制.大地构造与成矿学,1992.16(2):145.
 CHEN Wenming.GEOLOGICAL CHARACTERISTICS AND FORMATION MECHANISM OF PORPHYRY AND SKARN Cu-Mo DEPOSITS OF DIWA TYPE IN CHINA.Geotectonica et Metallogenia,1992.45(5):145.
[3]蒋图治.吉林省红旗岭地区古地热场地质特征及对基性超基性岩侵入体前缘石墨化带地质意义的探讨.大地构造与成矿学,1992.16(2):148.
 JIANG Tuchi.GEOLOGICAL CHARACTERISTICS OF ANCIENT HONGQILIN GEOTHERMAL FIELD AND ITS GEOLOGICAL SIGNIFICANCE IN THE FORMATION OF GRAPHITIZATION ZONE AT THE LEADING EDGE OF THD BASIC-ULTRABASIC INTRUSIVES, JILIN.Geotectonica et Metallogenia,1992.45(5):148.
[4]冯昌荣.新疆塔什库尔干县赞坎铁矿地质特征及成因浅析.大地构造与成矿学,2011.35(3):404.
 FENG Changrong,WU Haicai and CHEN Yong.Geological Characteristics and Genesis of the Zankan Iron Deposit in Taxkorgan, Xinjiang.Geotectonica et Metallogenia,2011.45(5):404.
[5]李俊平.大别山北麓钼矿找矿重大进展及其矿床地质特征研究.大地构造与成矿学,2011.35(4):576.
 LI Junping,LI Yongfeng.Geological Features of Molybdenum Deposits and Ore Prospecting in Northern Slope of the Dabie Mountain, China.Geotectonica et Metallogenia,2011.45(5):576.
[6]李华亮,高成,李正汉*.西藏班公湖地区竟柱山组时代及其构造意义.大地构造与成矿学,2016.4(4):663.doi:10.16539/j.ddgzyckx.2016.04.004
 LI Hualiang,GAO Cheng,LI Zhenghan*.Age and Tectonic Significance of Jingzhushan Formation in Bangong Lake Area, Tibet.Geotectonica et Metallogenia,2016.45(5):663.doi:10.16539/j.ddgzyckx.2016.04.004
[7]杨富全,张忠利,王 蕊.新疆阿尔泰稀有金属矿地质特征及成矿作用.大地构造与成矿学,2018.42(6):1010.doi:10.16539/j.ddgzyckx.2018.06.006
 YANG Fuquan,ZHANG Zhongli,WANG Rui.Geological Characteristics and Metallogenesis of Rare Metal Deposits in Altay, Xinjiang.Geotectonica et Metallogenia,2018.45(5):1010.doi:10.16539/j.ddgzyckx.2018.06.006

备注/Memo

备注/Memo:
收稿日期: 2020-04-25; 改回日期: 2020-07-28 项目资助: 核资源与环境国家重点实验室开放基金项目(NRE1912、NRE1914和NRE1915)资助。 第一作者简介: 代俊峰(1990-), 男, 博士, 讲师, 从事岩浆热液成矿与煤型关键金属矿产研究。Email: daijf90@163.com 通信作者: 李增华(1983-), 男, 博士, 教授, 从事盆地矿产以及成矿构造与流体动力学研究。Email: lizenghua@ecut.edu.cn
更新日期/Last Update: 2021-09-20