[1]徐 恒,周家喜,豆 松.2021.云南宾川小龙潭矿区花岗斑岩年代学、地球化学及成因.大地构造与成矿学,45(5):934-950.doi:10.16539/j.ddgzyckx.2021.05.007
 XU Heng,ZHOU Jiaxi,DOU Song.2021.Geochronology, Geochemistry and Genesis of Granite Porphyries from the Xiaolongtan Mining Area in Binchuan, Yunnan Province, SW China.Geotectonica et Metallogenia,45(5):934-950.doi:10.16539/j.ddgzyckx.2021.05.007
点击复制

云南宾川小龙潭矿区花岗斑岩年代学、地球化学及成因
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2021年45卷05期
页码:
934-950
栏目:
构造地质与成矿学
出版日期:
2021-10-25

文章信息/Info

Title:
Geochronology, Geochemistry and Genesis of Granite Porphyries from the Xiaolongtan Mining Area in Binchuan, Yunnan Province, SW China
文章编号:
1001-1552(2021)05-0934-017
作者:
徐 恒1 周家喜2 豆 松1 姜永果1 刘文佳1 郑晓军3 曾 敏4
1.云南省有色地质局, 云南 昆明 650051; 2.云南大学 地球科学学院, 云南 昆明 650500; 3.云南省有色地质局勘测设计院, 云南 昆明 650106; 4.云南铜业矿产资源勘查开发有限公司, 云南 昆明650051
Author(s):
XU Heng1 ZHOU Jiaxi2 DOU Song1 JIANG Yongguo1 LIU Wenjia1 ZHENG Xiaojun3 and ZENG Min4
1. Yunnan Nonferrous Metals Geological Bureau, Kunming 650051, Yunnan, China; 2. School of Earth Sciences, Yunnan University, Kunming 650500, Yunnan, China; 3. Survey and Design Institute, Yunnan Province Nonferrous Geological Bureau, Kunming 650106, Yunnan, China; 4. Yunnan Copper Mining and Mineral Resources Exploration and Development Co., Ltd., Kunming 650051, Yunnan, China
关键词:
花岗斑岩 锆石U-Pb年龄 地球化学 岩石成因 小龙潭矿区 宾川
Keywords:
granite porphyry zircon U-Pb dating geochemistry petrogenesis Xiaolongtan mining area Binchuan city
分类号:
P588; P597
DOI:
10.16539/j.ddgzyckx.2021.05.007
文献标志码:
A
摘要:
云南宾川小龙潭矿区斑岩体位于扬子板块西缘程海断裂带东侧, 属金沙江-红河富碱侵入岩带组成部分。本文对矿区内与成矿密切相关的花岗斑岩进行了岩石学、年代学及地球化学研究。结果显示: 花岗斑岩由二长花岗斑岩(MGP)和钾长花岗斑岩(KGP)组成, 二者岩相学特征相似, 空间上无明显分带关系, 呈过渡渐变关系, 具典型斑状结构。二长花岗斑岩和钾长花岗斑岩均具富碱、低钛和准铝质-弱过铝质特征, 属准铝质-弱过铝质钾玄岩系列富碱斑岩; 二者富集轻稀土元素(LREE)和大离子亲石元素(Rb、Ba、U), 亏损重稀土元素(HREE)和高场强元素(Ta、Nb、Ti, Zr, Hf), 具有较高Sr含量和Sr/Y值, 中等负Eu异常(δEu=0.39~0.78), 表现出C型埃达克质岩地球化学特征。二长花岗斑岩和钾长花岗斑岩具相似的地球化学特征, 表明它们属同源岩浆演化产物。二长花岗斑岩锆石U-Pb年龄为34.7±0.3 Ma, 反映其形成于古近纪始新世, 与金沙江-红河富碱侵入岩活动高峰期(45~30 Ma)吻合。综合研究表明, 小龙潭矿区花岗斑岩属具C型埃达克质岩地球化学特征的花岗岩, 起源于底侵作用带来的幔源岩浆与石榴角闪岩相加厚下地壳部分熔融的混合岩浆, 是印度-欧亚板块晚碰撞期力学性质由挤压向伸展转化动力学背景下的产物, 具备成矿作用发生的物质基础, 有较好的成矿潜力。
Abstract:
The granite porphyries in the Xiaolongtan mining area, located to the east of the Chinghai fault belt, are an important part of the Jinshajiang-Red River alkali-rich intrusive rock belt in the western Yangtze Block. This paper reports petrological, chronological and whole-rock geochemical results of the ore-related granite porphyries in the mining area. The results show that the granite porphyries consist of monzonitic granite porphyry (MGP) and K-feldspar granite porphyry (KGP). They are petrographically similar, showing typical porphyritic structures, and exhibit transitional contact. Both MGP and KGP are rich in alkali, low in Ti, metaluminous to weak peraluminpous. These results show they belong to the metaluminous to weak peraluminous and shoshonite series. Both of them are relatively enriched in LREE, LILE (Rb, Ba, and U) and depleted in HREE and HFSE (Ta, Nb, Ti, Zr, and Hf), with relatively high Sr contents and Sr/Y ratios, and mild negative Eu anomalies (δEu=0.39-0.78), showing geochemical affinity of C-type adakitic rocks. The similar geochemical characteristics of MGP and KGP indicate that they are products of homologous magmatic evolution. The LA-ICP-MS zircon U-Pb age is 34.7±0.3 Ma, reflecting that it was formed in the Paleogene Eocene, which coincides with the peak period of the Jinshajiang-Honghe alkali-rich intrusive rock activity (45-30 Ma). Hence, we propose that the granite porphyries in the Xiaolongtan mining area are granites with C-type adakitic geochemical characteristics. They were likely derived from the mixed magma by partial melting of the pomegranate amphibolite lithofacies over-thickened lower crust and underplating mantle magma under transition from compressional to extensional setting after the collision between the India and Eurasia plates. Combined with previous studies, it can be seen that the crust-mantle mixed source characteristics of the granite porphyries may account for the promising ore mineralization potential.

参考文献/References:

毕献武, 胡瑞忠, 彭建堂, 吴开兴, 苏文超, 战新志. 2005. 姚安和马厂箐富碱侵入岩体的地球化学特征. 岩石学报, 21(1): 113-124.
陈国超. 2014. 东昆仑造山带(东段)晚古生代-早中生代花岗质岩石特征、成因及地质意义. 西安: 长安大学博士学位论文: 1-193.
陈衍景, 秦善, 李欣. 1997. 中国矽卡岩型金矿的成矿时间、空间、地球动力学背景和成矿模式. 北京大学学报(自然科学版), 33(4): 456-466.
崔银亮, 陈贤胜, 张映旭, 和浪涛. 2002. 滇西新生代与富碱斑岩有关的金矿床成矿特征和成矿条件. 大地构造与成矿学, 26(4): 404-408.
刀艳, 李峰, 王蓉, 吴静, 范柱国. 2015. 云南九顶山正长斑岩年代学、岩石地球化学及Sr-Nd-Hf 同位素特征. 大地构造与成矿学, 39(3): 497-509.
董旭舟, 周振华, 王润和, 李进文, 何姝. 2014. 内蒙古敖包吐铅锌矿床花岗岩类年代学及其地球化学特征. 矿床地质, 33(2): 323-338.
豆松. 2013. 云南鹤庆炉坪铅多金属矿床成矿作用与成矿预测. 长沙: 中南大学博士学位论文: 1-173.
郭晓东, 葛良胜, 王梁, 王治华, 史小翠. 2012. 云南马厂箐岩体中深源包体特征及其锆石LA-ICP-MS U-Pb年龄. 岩石学报, 28(5): 1413-1424.
郭晓东, 王治华, 张勇, 周晓锋, 王绍明, 和正中. 2008. 云南省宝兴厂铜、钼、金多金属矿床矿化类型及成因探讨. 矿床地质, 27(S1): 23-32.
国显正, 贾群子, 李金超, 孔会磊, 姚学钢, 栗亚芝. 2019. 东昆仑扎玛休玛正长花岗岩年代学、地球化学特征及其构造意义. 地质学报, 93(4): 1055-1067.
何明勤, 杨世瑜, 陈昌勇, 马德云, 钟昆明. 2004. 滇西小龙潭-马厂箐地区铜金多金属矿床地质地球化学及成因研究. 北京: 地质出版社: 1-120.
和文言. 2014. 滇西北衙超大型金多金属矿床岩浆作用与成矿模式. 北京: 中国地质大学博士学位论文: 1-166.
侯增谦, 莫宣学, 杨志明, 王安建, 潘桂棠, 曲晓明, 聂凤军. 2006a. 青藏高原碰撞造山带成矿作用: 构造背景、时空分布和主要类型. 中国地质, 33(2): 340-351.
侯增谦, 潘桂棠, 王安建, 莫宣学, 田世洪, 孙晓明, 丁林, 王二七, 高永丰, 谢玉玲, 曾普胜, 秦克章, 许继峰, 曲晓明, 杨志明, 杨竹森, 费红彩, 孟祥金, 李振清. 2006b. 青藏高原碰撞造山带: Ⅱ. 晚碰撞转换成矿作用. 矿床地质, 25(5): 521-543.
侯增谦, 王二七, 莫宣学, 丁林, 潘桂堂, 张中杰. 2008. 青藏高原碰撞造山与成矿作用. 北京: 地质出版社: 1-980.
侯增谦, 钟大赉, 邓万明. 2004. 青藏高原东缘斑岩铜钼金成矿带的构造模式. 中国地质, 31(1): 1-14.
黄河, 王涛, 秦切, 童英, 郭磊, 张磊, 侯继尧, 宋鹏. 2015. 南天山西段巴雷公花岗岩体的地质年代学及锆石Hf同位素特征-岩石成因及对构造演化的约束. 岩石矿物学杂志, 34(6): 971-990.
李建军, 杨飞, 何志芳, 陈梁, 刘利超, 张贵平. 2013. 云南省永胜县分水岭铜矿找矿模型初探. 矿物学报, 33(4): 606-612.
李勇, 莫宣学, 喻学惠, 黄行凯, 和文言. 2011. 金沙江-哀牢山断裂带几个富碱斑岩体的锆石U-Pb定年及地质意义. 现代地质, 25(2): 189-200.
刘燊, 胡瑞忠, 赵军红, 冯彩霞, 钟宏, 曹建劲, 史丹妮. 2005. 胶北晚中生代煌斑岩的岩石地球化学特征及其成因研究. 岩石学报, 21(3): 947-958.
刘显凡, 菜永文, 卢秋霞, 陶专, 赵甫峰, 蔡飞跃, 李春辉, 宋祥峰. 2010. 滇西地区富碱斑岩中地幔流体作用踪迹及成矿作用意义. 地学前缘, 17(1): 104-136.
孟健寅. 2014. 滇西中甸矿集区晚白垩世斑岩铜多金属成矿系统. 北京: 中国地质大学博士学位论文: 1-106.
莫宣学, 潘桂棠. 2006. 从特提斯到青藏高原形成: 构造-岩浆事件的约束. 地学前缘, 13(6): 43-51.
莫宣学, 赵志丹, 邓晋福, 董国臣, 周肃, 郭铁鹰, 张双全, 王亮亮. 2003. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3): 135-148.
潘桂棠, 刘宇平, 郑来林, 耿全如, 王立全, 尹福光, 李光明, 廖忠礼, 朱弟成. 2013. 青藏高原碰撞构造与效应. 广州: 广东科技出版社: 1-466.
秦江锋. 2010. 秦岭造山带晚三叠世花岗岩类成因机制及深部动力学背景. 西安: 西北大学博士学位论文: 1-266.
邱检生, 刘亮, 李真. 2011. 浙江黄岩望海岗石英正长岩的锆石U-Pb 年代学与Sr-Nd-Hf 同位素地球化学及其对岩石成因的制约. 岩石学报, 27(6): 1557-1572.
史长义, 鄢明才, 迟清华. 2008. 中国花岗岩类化学元素丰度. 北京: 地质出版社: 15-20.
孙明道. 2013. 中国东北佳木斯地块及邻区晚中生代岩浆作用和构造意义. 杭州: 浙江大学博士学位论文: 1-218.
唐渊, 刘俊来. 2010. 川滇西部上新世以来构造地貌: 断裂控制的盆地发育及对于远程陆内构造过程的约束. 岩石学报, 26(6): 1925-1937.
王椿镛, Mooney W D, 王溪莉, 吴建平, 楼海, 王飞. 2002. 川滇地区地壳上地幔三维速度结构研究. 地震学报, 24(1): 1-16.
王立社, 张巍, 段星星, 龙晓平, 马中平, 宋忠宝, 孙吉明. 2015. 阿尔金环形山花岗片麻岩同位素年龄及成因研究. 岩石学报, 21(1): 119-132.
王治华, 郭晓东, 陈祥, 葛良胜, 邹依琳. 2010. 云南祥云马厂箐富碱斑岩体的地球化学特征及其形成的构造环境. 地质论评, 56(1): 125-135.
吴发富. 2013. 中秦岭山阳-柞水地区岩浆岩及其成矿构造环境研究. 北京: 中国地质科学院博士学位论文: 1-183.
徐恒, 崔银亮, 豆松, 刘文佳, 姜永果, 王艳. 2018. 程海断裂带与喜马拉雅期富碱斑岩有关矿床不同矿化类型成矿模式. 矿产与地质, 32(1): 8-17.
徐恒, 崔银亮, 张苗红, 周家喜, 刘利超, 陈梁, 梁庭祥, 荣惠锋. 2015a. 云南大理笔架山矿区煌斑岩地球化学、年代学及其对源区和成岩环境的指示. 矿物岩石, 35(3): 41-51.
徐恒, 崔银亮, 周家喜, 荣惠锋, 姜永果. 2019. 云南宝丰寺岩体锆石微量元素特征及地质意义. 地质找矿论丛, 34(1): 132-139.
徐恒, 崔银亮, 周家喜, 张苗红, 姜永果, 王根厚, 梁庭祥. 2015b. 云南大理笔架山铜矿区斑岩成因与动力学背景: 年代学和地球化学制约. 矿物学报, 35(4): 439-446.
徐恒, 崔银亮, 周家喜, 张苗红, 梁庭祥, 姜永果. 2016. 云南永胜分水岭矿区富碱斑岩地球化学、U-Pb年龄及其地质意义. 大地构造与成矿学, 40(3): 614-624.
徐受民, 莫宣学, 曾普胜, 张文洪 赵海滨, 赵寒冬. 2006. 滇西北衙富碱斑岩的特征及成因. 现代地质, 20(4): 527-535.
徐兴旺, 蔡新平, 宋宝昌, 张宝林, 应汉龙, 肖骑彬, 王杰. 2006. 滇西北衙金矿区碱性斑岩岩石学、年代学和地球化学特征及其成因机制. 岩石学报, 22(3): 631-642.
杨钢, 肖龙, 王国灿, 高睿, 贺新星, 张雷, 周佩. 2015. 准噶尔别鲁阿嘎希花岗闪长岩年代学、地球化学特征及岩石成因. 地球科学, 40(5): 810-823.
余海军, 李文昌, 尹光候, 王建华, 姜文涛, 吴松, 唐忠. 2015. 滇西北铜厂沟Mo-Cu矿床岩体年代学、地球化学及其地质意义. 岩石学报, 31(11): 3217-3233.
喻学惠, 肖晓牛, 杨贵来, 莫宣学, 曾普胜, 王晋璐. 2008. 滇西“三江”南段几个花岗岩的锆石SHIRMP U-Pb定年及其地质意义. 岩石学报, 24(2): 377-383.
云南省有色地质局310队. 2013. 云南省宾川县小龙潭斑岩铜矿普查成果报告: 1-180.
张超, 马昌前. 2008. 大别山晚中生代巨量岩浆活动的启动: 花岗岩锆石U-Pb年龄和Hf同位素制约. 矿物岩石, 28(4): 71-79.
张宏飞, 王婧, 徐旺春, 袁洪林. 2007. 俯冲陆壳部分熔融形成埃达克质岩浆. 高校地质学报, 13(2): 224-234.
张金学, 刘利超, 陈梁, 郭桂林, 罗洪昌, 戚林坤. 2013. 宾川小龙潭斑岩铜钼矿找矿新思路的讨论及前景分析. 地球学报, 34(S1): 95-100.
张旗, 金惟俊, 李承东, 王元龙. 2010a. 再论花岗岩按照Sr-Yb的分类: 标志. 岩石学报, 26(4): 985-1015.
张旗, 金惟俊, 王焰, 李承东, 王元龙. 2010b. 花岗岩与金铜及钨锡成矿的关系. 矿床地质, 29(5): 729-759.
张旗, 王焰, 李承东, 王元龙, 金惟俊, 贾秀琴. 2006. 花岗岩的Sr-Yb及其地质意义. 岩石学报, 22(9): 2249-2269.
张旗, 王焰, 刘伟, 王元龙. 2002a. 埃达克岩的特征及其意义. 地质通报, 21(7): 431-435.
张旗, 王焰, 钱青, 杨进辉, 王元龙, 赵太平, 郭光军. 2001. 中国东部燕山期埃达克岩的特征及其构造-成矿意义. 岩石学报, 17(2): 236-244.
张旗, 王元龙, 张福勤, 王强, 王焰. 2002b. 埃达克岩与斑岩铜矿. 华南地质与矿产, (3): 85-90.
张旗, 许继峰, 王焰, 肖龙, 刘红涛, 王元龙. 2004. 埃达克岩的多样性. 地质通报, 23(9-10): 959-965.
赵欣, 喻学惠, 莫宣学, 张瑾, 吕伯西. 2004. 滇西新生代富碱斑岩及其深源包体的岩石学和地球化学特征. 现代地质, 18(2): 217-228.
赵振华. 2007. 关于岩石微量元素构造环境判别图解使用的有关问题. 大地构造与成矿学, 31(1): 92-103.
周洁, 王根厚, 张莉. 2017. 滇西小龙潭矿区始新世岩浆岩的成因及其地质意义. 成都理工大学学报(自然科学版), 44(3): 334-349.
Batehelor R A and Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using Multi-cationic Parameters. Chemical Geology, 48(1): 43-55.
Chipley D, Polito A P and Kyser T K. 2007. Measurement of U-Pb ages of uraninite and davidite by laser ablation-HR-ICP-MS. American Mineralogist, 92(11-12): 1925-1935.
Collin W J, Beams S D, White A J R and Chappell B W. 1982. Nature and origin of A-type granites with particular reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200.
Compston W, Williams I S and Kirschvink J L. 1992. Zircon U-Pb ages for the early Cambrian time scale. Journal of the Geological Society, 149(2): 171-184.
Cox K G, Bell J D and Pankhurst R J. 1979. The Interpretation of Igneous Rocks. London: Allen and Unwin: 1-119.
Cui Y L, Xu H, Zhou J X, Zhang M H, Jiang Y G and Zeng M. 2017. Alkaline porphyries in the Chenghai-Binchuan tectono-magmatic belt, Western Yunnan Province, SW China. Acta Geologica Sinica (English Edition), 91(S1): 74-75.
Defant M J and Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665.
Defant M J, Xu J F, Kepezhinskas P, Wang Q, Zhang Q and Xiao L. 2002. Adakites: Some variations on a theme. Acta Petrologica Sinica, 18(2): 129-142.
Deng J, Wang Q F, Li G J and Santosh M. 2014. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, 138: 268-299.
He W Y, Mo X X, Yang L Q, Xing Y L, Dong G C, Yang Z, Gao X and Bao X S. 2016. Origin of the Eocene porphyries and mafic microgranular enclaves from the Beiya porphyry Au polymetallic deposit, western Yunnan, China: Implications for magma mixing/mingling and mineralization. Gondwana Research, 40: 230-248.
Hergt J M, Chappell B W and McCulloch M T. 1989. Geochemical and isotopic constraintson the origin of the Jurassic dolorites of Tasmania. Journal of Petrology, 30(4): 841-883.
Hofmann A W. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3): 297-314.
Hou Z Q, Gao Y F, Qu X M and Rui Z Y. 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155.
Hou Z Q, Zaw K, Pan G T, Mo X X, Xu Q, Hu Y Z and Li X Z. 2007. The Sanjiang Tethyan metallogenesis in SW China: Tectonic setting, metallogenic epoch and deposit type. Ore Geology Reviews, 31(1-4): 48-87.
Irvine T N and Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523-548.
Kroner A. 2006. Evolution of the Archean continental crust. Nature, 443(7113): 811-817.
Liu Y S, Cao S, Hu Z C, Gao C G, Zong K Q and Wang D B. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace element in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571.
Lu Y J, Kerrich R, Cawood P A, McCuaig T C, Hart C J R, Li Z X, Hou Z Q and Bagas L. 2012. Zircon SHRIMP U-Pb geochronology of potassic felsic intrusions in western Yunnan, SW China: Constraints on the relationship of magmatism to the Jinsha suture. Gondwana Research, 22(2): 737-747.
Lu Y J, Robert K, Campbell M T, Li Z X, Hart C J R and Cawood P A. 2013. Geochemical, Sr-Nd-Pb, and zircon Hf-O isotopic compositions of Eocene-Oligocene shoshonitic and potassic adakite-like felsic intrusions in western Yunnan, SW China: Petrogenesis and tectonic implications. Journal of Petrology, 54(7): 1309-1348.
Mo X X, Hou Z Q, Niu Y L, Dong G C, Qu X M, Zhao Z D and Yang Z M. 2007. Mantle contribution to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 96(1): 225-242.
Pearce J A. 1996. Sources and settings of granitic rocks. Episodes, 19(4): 120-125.
Pearce J A, Harris N B and Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983.
Peccerillo R and Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81.
Perfit M R, Gust D A and Bench A E. 1980. Chemical Characteristics of Island-Arc Basalts: Implications for Mantle Sources. Chemical Geology, 30(3): 227-256.
Petford N and Atherton M. 1996. Na-Rich Partial Melts from Newly Under plated Basaltic Crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37(6): 1491-1521.
Qi L, Hu J and Gregoire D C. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51(3): 507-513.
Rapp R P, Laporte D, Martin H and Shimizu N. 2006. Experimental insights into slab-mantle interactions in subduction zones: Melting of adakite-metasomatized peridotite and the origin of the “are signature”. Geochimica et Cosmochimica Acta, 70(18): A517.
Rapp R P and Watson E B. 1995. Dehydration melting of metabasalt at 8-32kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891-931.
Rapp R P, Watson E B and Miller C. 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research, 51(1-4): 1-25.
Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides for major and minor elements. Lithos, 22(4): 247-263.
Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implication for mantle composition and processes, Magmatism in the ocean basins. Geological Society, London, Special Publications, 42: 313-345.
Sun W D, Ling M X, Yang X Y, Fan W M, Ding X and Liang H Y. 2010. Ridge subduction and porphyry copper-gold mineralization: An overview. Science China (Earth Sciences), 53(4): 475-484.
Taylor S R and McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. London: Blackwell Scientific Publication, Carlton: 1-312.
Wang J H, Yin A, Harrison T M, Grove M, Zhang Y Q and Xie G H. 2001. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone. Earth and Planetary Science Letters, 188(1-2): 123-133.
Wang Q, Xu J F, Jian P, Bao Z W, Zhao Z H, Li C F, Xiong X L and Ma J L. 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization. Journal of Petrology, 47(1): 119-144.
Xu X W, Cai X P, Xiao Q B and Peters S G. 2007. Porphyry Cu-Au and associated polymetallic Fe-Cu-Au deposits in the Beiya area, western Yunnan Province, South China. Ore Geology Reviews, 31(1): 224-246.
Zhang P Z, Shen Z K, Wang M, Gan W J, Burgmann R, Molnar P, Wang Q, Niu Z J, Sun J Z, Wu J C, Sun H R and You X Z. 2004. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9): 809-812.
Zhou J X, Dou S, Huang Z L, Cui Y L, Ye L, Li B, Gan T and Sun H R. 2016. Origin of the Luping Pb deposit in the Beiya area, Yunnan Province, SW China: Constraints from geology, isotope geochemistry and geochronology. Ore Geology Reviews, 72: 179-190.
Zhou X H, Sun M, Zhang G H and Chen S H. 2002. Continental crust and lithospheric mantle interaction beneath North China: Isotopic evidence from granulite xenoliths in Hannuoba, Sino-Korean craton. Lithos, 62(3): 111-124.
Zhou Z H, Li B Y, Wang A S, Wu X L, Ouyang H G and Feng J R. 2013. Zircon SHRIMP U-Pb dating and geochemical characteristics of Late Variscan granites of the Daitongshan copper deposit and Lamahanshan polymetallic-silver deposit, southern Daxing’anling, China. Journal of Earth Science, 24(5): 772-795.
Zorpi M J, Coulon C, Orsini J B and Cocorta C. 1989. Magma mingling, zoning and emplacement in cal-alkaline granitoid plutons. Tectonophysics, 157(4): 315-329.

相似文献/References:

[1]魏庆国.东秦岭钼矿带成矿特征及其与美国克莱马克斯-亨德森钼矿带的对比.大地构造与成矿学,2009.33(2):259.
 WEI Qingguo,YUAN Zhenlei.Characteristics of Mo Deposits in the Eastern Qinling and Comparison with Those in ClimaxHenderson.Geotectonica et Metallogenia,2009.45(5):259.
[2]莫柱孙.试论南岭花岗岩的地质环境分类.大地构造与成矿学,1985.9(1):017.
 MO Zhusun.A DISCUSSION ON THE CLASSIFICATION OF NANLING GRANITES ACCORDING TO GEOLOGICAL ENVIRONMENT.Geotectonica et Metallogenia,1985.45(5):017.
[3]胡祥昭,黄震.扬子地台西缘富碱花岗斑岩特征及成因探讨.大地构造与成矿学,1997.21(2):173.
 HU Xiangzhao,HUANG Zhen.THE PETROLOGY AND PETROGENSIS OF THE YANGTZE PLATFROM WESTERN MARGINIS ALKALI-RICH GRANITE PORPHYTY.Geotectonica et Metallogenia,1997.45(5):173.
[4]翟文建,崔霄峰,岳国利.西藏扎雪-门巴韧性剪切带变形时代及机制研究: 来自同构造花岗岩体的证据.大地构造与成矿学,2012.36(2):149.
 ZHAI Wenjian,CUI Xiaofeng,YUE Guoli.Age and Genetic Mechanism of Deformation of the Zhaxue-Menba Shear Zone in Tibet: Evidence from the Synorogenic Granites.Geotectonica et Metallogenia,2012.45(5):149.
[5]张富铁,夏斌,张玉泉.湖北麻城市四道河地区面理化含榴花岗岩的成因.大地构造与成矿学,2012.36(2):293.
 ZHANG Futie,XIA Bin,ZHANG Yuquan.Petrogenesis of the Garnet-Bearing Granites in the Sidaohe Region, Macheng City, Hubei Province.Geotectonica et Metallogenia,2012.45(5):293.
[6]于扬,陈振宇,陈郑辉.赣南印支期清溪岩体的锆石U-Pb年代学研究 及其含矿性评价.大地构造与成矿学,2012.36(3):413.
 YU Yang,CHEN Zhenyu,CHEN Zhenghui.Zircon U-Pb Dating and Mineralization Prospective of the Triassic Qingxi Pluton in Southern Jiangxi Province.Geotectonica et Metallogenia,2012.45(5):413.
[7]侯莹玲,何 斌,钟玉婷.桂西二叠系喀斯特型铝土矿成矿物质来源的 新认识: 来自合山组碎屑岩地球化学证据.大地构造与成矿学,2014.38(1):181.
 HOU Yingling,HE Bin and ZHONG Yuting,New Perspective on Provenance of the Permian Karstic Bauxite in the Western Guangxi: Geochemical Evidence of Clastic Rocks of the Heshan Formation.Geotectonica et Metallogenia,2014.45(5):181.
[8]许庆林,孙丰月,李碧乐.东昆仑莫河下拉银多金属矿床花岗斑岩年代学、 地球化学特征及其构造背景.大地构造与成矿学,2014.38(2):421.
 XU Qinglin,SUN Fengyue,LI Bile.Geochronological Dating, Geochemical Characteristics and Tectonic Setting of the Granite-porphyry in the Mohexiala Silver Polymetallic Deposit, Eastern Kunlun Orogenic Belt.Geotectonica et Metallogenia,2014.45(5):421.
[9]张海东,刘建朝,陈正乐.太行山南段平顺杂岩体成因: 岩石学、 年代学和地球化学证据.大地构造与成矿学,2014.38(2):454.
 ZHANG Haidong,LIU Jianchao,CHEN Zhengle.Petrogensis of the Pingshun Complexes in the Southern Taihang Mountains: Petrology, Geochronology and Geochemistry.Geotectonica et Metallogenia,2014.45(5):454.
[10]范淑芳,曲晓明,宋 扬.西藏尼雄铁矿成矿花岗岩成因及其对成矿构造背景的启示.大地构造与成矿学,2015.39(2):286.
 FAN Shufang,QU Xiaoming,SONG Yang and XIN Hongbo.Petrogenesis of the Ore-forming Granodiorite in the Nixiong Iron Deposit and its Implications for the Metallogenic Tectonic Background.Geotectonica et Metallogenia,2015.45(5):286.
[11]许中杰,程日辉,王嘹亮.北黄海盆地花岗斑岩锆石U-Pb年代学、地球化学及其地质意义.大地构造与成矿学,2017.41(3):577.doi:10.16539/j.ddgzyckx.2017.03.011
 XU Zhongjie,CHENG Rihui,WANG Liaoliang.U-Pb Zircon Chronology and Geochemistry of Granite Porphyry in North Yellow Sea Basin and their Geological Significance.Geotectonica et Metallogenia,2017.45(5):577.doi:10.16539/j.ddgzyckx.2017.03.011
[12]黄乾峰,吴堑虹,张云蛟.江西乐华铅锌矿花岗斑岩锆石年代学、微量元素特征及其地质意义.大地构造与成矿学,2018.42(6):1121.doi:10.16539/j.ddgzyckx.2018.06.013
 HUANG Qianfeng,WU Qianhong,ZHANG Yunjiao.U-Pb Ages and Trace Element Characteristics of Zircon from Granite Porphyry in Lehua Lead-zinc Deposit, Jiangxi Province and their Geological Significances.Geotectonica et Metallogenia,2018.45(5):1121.doi:10.16539/j.ddgzyckx.2018.06.013

备注/Memo

备注/Memo:
收稿日期: 2020-05-09; 改回日期: 2020-09-19 项目资助: 云南省技术创新人才培养对象项目(202105AD160003)、第二次青藏高原综合科学考察研究项目(2019QZKK0802)、中国地质调查局项目(1212011120607)、云南省整装勘查项目(201100024)和云南省有色地质局项目(2013100001)联合资助。 第一作者简介: 徐恒(1981-), 男, 博士, 高级工程师, 主要从事地质科研与矿产勘查工作。Email: 306551439@qq.com
更新日期/Last Update: 2021-09-20