[1]付建刚,李光明,王根厚.2021.西藏拉隆穹窿地质特征和Be-Nb-Ta稀有金属矿化的厘定及其战略意义.大地构造与成矿学,45(5):913-933.doi:10.16539/j.ddgzyckx.2021.05.006
 FU Jiangang,LI Guangming,WANG Genhou.2021.Geological Characteristics and Metallogenic Types of Be-Nb-Ta Rare Metals in the Lalong Dome, Southern Tibet, China.Geotectonica et Metallogenia,45(5):913-933.doi:10.16539/j.ddgzyckx.2021.05.006
点击复制

西藏拉隆穹窿地质特征和Be-Nb-Ta稀有金属矿化的厘定及其战略意义
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2021年45卷05期
页码:
913-933
栏目:
构造地质与成矿学
出版日期:
2021-10-25

文章信息/Info

Title:
Geological Characteristics and Metallogenic Types of Be-Nb-Ta Rare Metals in the Lalong Dome, Southern Tibet, China
文章编号:
1001-1552(2021)05-0913-021
作者:
付建刚1 李光明1 * 王根厚2 董随亮1 张 海1 郭伟康1 张林奎1 张小琼3 焦彦杰1
1.中国地质调查局 成都地质调查中心 矿产资源室, 四川 成都 610081; 2.中国地质大学(北京) 地球科学与资源学院, 北京 100083; 3.雅安市自然资源和规划局, 四川 雅安 625000
Author(s):
FU Jiangang1 LI Guangming1* WANG Genhou2 DONG Suiliang1 ZHANG Hai1 GUO Weikang1 ZHANG Linkui1 ZHANG Xiaoqiong3 and JIAO Yanjie1
1. Chengdu Institute of Geology and Mineral Resources, China Geological Survey, Chengdu 610081, Sichuan, China; 2. School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China; 3. The Bureau of Natural Resources and Planning Ya’an, Ya’an 625000, Sichuan, China
关键词:
矽卡岩 钠长石花岗岩 Be-Nb-Ta稀有金属 拉隆穹窿 北喜马拉雅
Keywords:
skarn albite granite Be-Nb-Ta rare metals Lalong dome North Himalaya
分类号:
P612; P542
DOI:
10.16539/j.ddgzyckx.2021.05.006
文献标志码:
A
摘要:
拉隆穹窿位于北喜马拉雅片麻岩穹窿带东段, 介于康马穹窿和错那洞穹窿中间。在野外地质调查和精细剖面测量基础上, 通过详细的构造变形、野外岩石学和矿物学综合研究, 发现拉隆穹窿由内向外由三部分组成, 依次是核部、滑脱系和盖层。核部主要是一套新生代高分异的淡色花岗岩组合, 未见老基底出露; 滑脱系主要由一套中高级变质的云母类片岩、和夹于片岩中的大理岩、矽卡岩和变形花岗岩组成, 整体属于一条规模较大的韧性剪切带; 盖层主要是一套浅变质或未变质的千枚岩、千枚状板岩和粉砂质板岩组成。滑脱系与盖层之间以上拆离断层为界, 下拆离断裂在穹窿中还未完全剥露出来, 整体以鞘褶皱发育为典型特征。且拉隆穹窿分别经历了由南向北逆冲挤压构造、由北向南伸展剪切构造、成穹构造和近E-W向伸展构造等四期构造变形; 其中第二期构造变形在穹窿中发育和保存最好。在变质作用上, 拉隆穹窿保存了两类变质作用: 一类是围绕穹窿核部呈环带分布的典型巴洛式变质作用, 由外向内依次是硬绿泥石-堇青石变质矿物带、石榴石-黑云母变质矿物带、十字石变质矿物带、蓝晶石变质矿物带; 另一类是受岩体热烘烤所形成的热接触变质作用, 典型的变质矿物有红柱石。穹窿核部花岗岩呈良好的垂向分带特征, 从下向上依次是二云母花岗岩、白云母花岗岩、伟晶质花岗岩、钠长石花岗岩和伟晶岩壳/石英壳。在稀有金属成矿方面, 拉隆穹窿中共识别出三种矿化类型: 矽卡岩型Be-Nb-Ta稀有金属矿、钠长石花岗岩型Be-Nb-Ta稀有金属矿和构造-热液型Cu-Pb-Zn多金属矿, 其中拉隆穹窿Be-Nb-Ta稀有金属矿床, 特别是钠长石花岗岩型Be-Nb-Ta稀有金属矿的发现, 极大地丰富和扩展了北喜马拉雅带稀有金属的成矿类型和成矿潜力; 同时在摸清我国关键矿产资源家底、提高关键矿产资源战略统筹能力、发挥其作为大国博弈的重要利器作用等方面具有十分重要的战略意义。
Abstract:
The Lalong dome is located at the eastern part of the North Himalayan Gneiss Domes (NHGD), sandwiched in-between the well-studied Kangmar dome and the Cuonadong dome. The Lalong dome consists of three lithologic-tectonic units from core to rim: the lower, middle and upper units. The lower unit mainly consists of the Cenozoic leucogranites including two mica granite, muscovite granite, pegmatitic granite, and albite granite. The middle unit predominately consists of the strongly deformed mica schist, marble, skarn, granite, pegmatite, amphibolite and quartzite sequence, which is a meso-scale ductile shear zone. The upper unit consists of the Jurassic metasedimentary and sedimentary rocks that belong to the low-grade THS, and mainly composed of phyllite, phyllite slate, silty mudstone and silt-slate. The typical metamorphic minerals in this unit are predominantly cordierite, chloritoid, and andalusite. The upper detachment fault is the boundary between the middle unit and the upper unit, while the lower detachment fault is not well exposed in the Lalong dome, which is characterized by the sheath fold around the core of the Lalong dome. Rocks in the Lalong dome recorded four major deformational events: D1, top-to-S thrust resulting in N-S shortening and vertical thickening; D2, top-to-N extension characterized by vertical thinning and N-S extensional deformation; D3, doming deformation associated with intrusion of leucogranites; and D4, late extensional faults with N-S, E-W and NE trending which also cut three units of the dome. Two types of metamorphism have been identified in the Lalong dome: 1) the typical Barrovian metamorphism and 2) the lower thermal contact metamorphism. Based on textures and mineral assemblages of the granites, five varieties of granite could be distinguished vertically: two mica granite, muscovite granite, pegmatitic granite, albite granite, and pegmatite shell and or quartz shell. Three types of mineralization have been first discovered in the Lalong dome: skarn-hosted rare-metal mineralization (Be, Nb, Ta, W, Sn), albite granite hosted rare-metal mineralization (Be, Nb, Ta, W, Sn, Li, Rb, Cs, Mo), and tectonic hydrothermal Cu-Pb-Zn mineralization. The discovery of the Lalong Be-Nb-Ta rare metal deposit, especially the albite granite type rare metal mineralization, not only enriched the metallogenic types and the potential of the rare metals in the northern Himalaya, but also played an important strategic role in understanding key mineral resources in China, and improved the strategic coordination capacity for key mineral resources.

参考文献/References:

丁慧霞, 李文坛, 江媛媛. 2019. 喜马拉雅造山带东段错那洞片麻岩穹窿的变质作用及构造意义. 岩石学报, 35(2): 312-324.
付建刚, 李光明, 董随亮, 张海, 郭伟康, 张林奎, 张小琼, 焦彦杰. 2020. 西藏北喜马拉雅拉隆穹隆含Be-Nb-Ta稀有金属钠长石花岗岩的识别及其形成时代. 沉积与特提斯地质, 40(2): 92-103.
付建刚, 李光明, 王根厚, 黄勇, 张林奎, 董随亮, 梁维. 2018a. 北喜马拉雅双穹隆构造的建立: 来自藏南错那洞穹隆的厘定. 中国地质, 45(4): 783-802.
付建刚, 李光明, 王根厚, 张林奎, 梁维, 张志, 董随亮, 黄勇. 2018b. 北喜马拉雅E-W向伸展变形时限: 来自藏南错那洞穹隆Ar-Ar年代学证据. 地球科学, 43(8): 2638-2650.
高利娥, 曾令森, 王莉, 侯可军, 郭春丽, 唐索寒. 2013. 藏南马拉山高钙二云母花岗岩的年代学特征及其形成机制. 岩石学报, 29(6): 1995-2012.
黄春梅, 李光明, 张志, 梁维, 黄勇, 张林奎, 付建刚. 2018. 藏南错那洞淡色花岗岩成因: 来自全岩地球化学和锆石U-Pb年龄的约束. 地学前缘, 25(6): 182-195.
李光明, 张林奎, 焦彦杰, 夏祥标, 董随亮, 付建刚, 梁维, 张志, 吴建阳, 董磊, 黄勇. 2017. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义. 矿床地质, 36(4): 1003-1008.
梁维, 张林奎, 夏祥标, 马国桃, 黄勇, 张志, 付建刚, 曹华文, 缪华清, 李光明. 2018. 藏南地区错那洞钨锡多金属矿床地质特征及成因. 地球科学, 43(8): 2742-2754.
唐宏, 张晖. 2018. 可可托海 3 号伟晶岩脉石英中微量元素组成特征与岩浆-热液演化. 矿物学报, 38(1): 15-24.
王晓先, 张进江, 闫淑玉, 刘江. 2016. 藏南错那淡色花岗岩LA-MC-ICP-MS锆石U-Pb年龄、岩石地球化学及其地质意义. 地质通报, 35(1): 91-103.
吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47(7): 745-765.
吴福元, 刘志超, 刘小驰, 纪伟强. 2015. 喜马拉雅淡色花岗岩. 岩石学报, 31(1): 1-36.
夏祥标, 李光明, 曹华文, 梁维, 付建刚. 2019. 西藏南部错那洞矽卡岩型铍钨锡多金属矿体成矿母岩成岩时代及其地球化学特征. 地球科学, 44(7): 2207-2223.
曾令森, 刘静, 高利娥, 谢克家, 文力. 2009. 藏南也拉香波穹隆早渐新世地壳深熔作用及其地质意义. 科学通报, 54(3): 373-381.
张进江. 2007. 北喜马拉雅及藏南伸展构造综述. 地质通报, 26(6): 639-649.
张进江, 郭磊, 张波. 2007. 北喜马拉雅穹隆带雅拉香波穹隆的构造组成和运动学特征. 地质科学, 42(1): 16-30.
张进江, 杨雄英, 戚国伟, 王德朝. 2011. 马拉山穹窿的活动时限及其在藏南拆离系-北喜马拉雅片麻岩穹窿形成机制的应用. 岩石学报, 27(12): 3535-3544.
张进江, 郑亚东. 1998. 变质核杂岩与岩浆作用成因关系综述. 地质科技情报, 17(1): 20-26.
周起凤, 秦克章, 唐冬梅, 丁建刚, 郭正林. 2013. 阿尔泰可可托海3号脉伟晶岩型稀有金属矿床云母和长石的矿物学研究及意义. 岩石学报, 29(9): 3004-3022.
朱金初, 饶冰, 熊小林, 李福春, 张佩华. 2002. 富锂氟含稀有矿化花岗质岩石的对比和成因思考. 地球化学, 31(2): 141-152.
朱金初, 王汝成, 陆建军, 张晖, 张文兰, 谢磊, 章荣清. 2011. 湘南癞子岭花岗岩体分异演化和成岩成矿. 高校地质学报, 17(3): 381-392.
朱金初, 吴长年, 刘昌实, 李福春, 黄小龙, 周东山. 2000. 新疆阿尔泰可可托海3号伟晶岩脉岩浆-热液演化和成因. 高校地质学报, 6(1): 40-52
Aoya M, Wallis S R, Terada K, Lee J, Kawakami T, Wang Y and Heizler M. 2005. North-south extension in the Tibetan crust triggered by granite emplacement. Geology, 33(11): 853-856.
Burg J P and Chen G M. 1984. Tectonics and structural zonation of southern Tibet, China. Nature, 311(5983): 219-223.
Burg J P, Guiraud M, Chen G M and Li G C. 1984. Himalayan metamorphism and deformations in the North Himalayan Belt (southern Tibet, China). Earth and Planetary Science Letters, 69(2): 391-400.
Chen Z N, Liu Y K, Hodges K V, Burchfiel B C, Royden L H and Deng C. 1990. The Kangmar Dome: A metamorphic core complex in southern Xizang (Tibet). Science, 250(4987): 1552-1556.
Coleman M and Hodges K. 1995. Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east-west extension. Nature, 374(6517): 49-52.
Cooper F J, Hodges K V, Parrish R R, Roberts N M W and Horstwood M S A. 2015. Synchronous N-S and E-W extension at the Tibet-to-Himalaya transition in NW Bhutan. Tectonics, 34(7): 1375-1395.
Cottle J M, Searle M P, Horstwood M S and Waters D J. 2009. Timing of midcrustal metamorphism, melting, and deformation in the Mount Everest region of southern Tibet revealed by U (-Th) -Pb geochronology. The Journal of Geology, 117(6): 643-664.
Daczko N R, Caffi P and Mann P. 2011. Structural evolution of the Dayman dome metamorphic core complex, eastern Papua New Guinea. Geological Society of America Bulletin, 123(11-12): 2335-2351.
Dewane T J, Stockli D F, Hager C, Taylor M, Ding L, Lee J and Wallis S. 2006. Timing of Cenozoic E-W Extension in the Tangra Yum Co-Kung Co Rift, south-central Tibet. AGU Fall Meeting Abstracts, 87: 1-2.
Diedesch T F, Jessup M J, Cottle J M and Zeng L S. 2016. Tectonic evolution of the middle crust in southern Tibet from structural and kinematic studies in the Lhagoi Kangri gneiss dome. Lithosphere, 8(5): 480-504.
Fu J G, Li G M, Wang G H, Huang Y, Zhang L K, Dong S L and Liang W. 2017. First field identification of the Cuonadong dome in southern Tibet: Implications for EW extension of the North Himalayan gneiss dome. International Journal of Earth Sciences, 106(5): 1581-1596.
Fu J G, Li G M, Wang G H, Zhang L K, Liang W, Zhang Z, Zhang X Q and Huang Y. 2018. Synchronous granite intrusion and E-W extension in the Cuonadong dome, southern Tibet, China: Evidence from field observations and thermochronologic results. International Journal of Earth Sciences, 107: 2023-2041.
Harrison T M, Copeland P, Kidd W S F and Lovera O M. 1995. Activation of the Nyainqentanghla Shear Zone: Implications for uplift of the southern Tibetan Plateau. Tectonics, 14(3): 658-676.
Hintersberger E, Thiede R C, Strecker M R and Hacker B R. 2010. East-west extension in the NW Indian Himalaya. Geological Society of America Bulletin, 122(9-10): 1499-1515.
Jessup M J, Langille J M, Cottle J M and Ahmad T. 2016. Crustal thickening, Barrovian metamorphism, and exhumation of midcrustal rocks during doming and extrusion: Insights from the Himalaya, NW India. Tectonics, 35(1): 160-186.
Kellett D A, Grujic D and Erdmann S. 2009. Miocene structural reorganization of the South Tibetan detachment, eastern Himalaya: Implications for continental collision. Lithosphere, 1(5): 259-281.
King J, Harris N, Argles T, Parrish R and Zhang H. 2011. Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet. Geological Society of America Bulletin, 123(1-2): 218-239.
La Roche R S, Godin L, Cottle J M and Kellett D A. 2016. Direct shear fabric dating constrains early Oligocene onset of the South Tibetan detachment in the western Nepal Himalaya. Geology, 44(6): 403-406.
Langille J M, Jessup M J, Cottle J and Ahmad T. 2014. Kinematic and thermal studies of the Leo Pargil Dome: Implications for synconvergent extension in the NW Indian Himalaya. Tectonics, 33(9): 1766-1786.
Langille J M, Lee J, Hacker B and Seward G. 2010. Middle crustal ductile deformation patterns in southern Tibet: Insights from vorticity studies in Mabja Dome. Journal of Structural Geology, 32(1): 70-85.
Larson K P, Godin L, Davis W J and Davis D W. 2010. Out of sequence deformation and expansion of the Himalayan orogenic wedge: Insight from the Changgo culmination, south central Tibet. Tectonics, 29(4): 1-30.
Lee J, Hacker B and Wang Y. 2004. Evolution of North Himalayan gneiss domes: Structural and metamorphic studies in Mabja Dome, southern Tibet. Journal of Structural Geology, 26(12): 2297-2316.
Lee J, Hacker B R, Dinklage W S, Wang Y, Gans P, Calvert A, Wan J L, Chen W J, Blythe A E and McClelland W. 2000. Evolution of the Kangmar Dome, southern Tibet: Structural, petrologic, and thermochronologic constraints. Tectonics, 19(5): 872-895.
Lee J, Hager C, Wallis S R, Stockli D F, Whitehouse M J, Aoya M and Wang Y. 2011. Middle to late Miocene extremely rapid exhumation and thermal reequilibration in the Kung Co rift, southern Tibet. Tectonics, 30(2): 1-26.
Lee J, McClelland W, Wang Y, Blythe A and McWilliams M. 2006. Oligocene-Miocene middle crustal flow in southern Tibet: Geochronology of Mabja Dome. Geological Society, London, Special Publications, 268(1): 445-469.
Liu X C, Wu F Y, Yu L J, Liu Z C, Ji W Q and Wang J G. 2016a. Emplacement age of leucogranite in the Kampa Dome, southern Tibet. Tectonophysics, 667: 163-175.
Liu Z C, Wu F Y, Ding L, Liu X C, Wang J G and Ji W Q. 2016b. Highly fractionated Late Eocene (~ 35 Ma) leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet. Lithos, 240-243: 337-354.
Mitsuishi M, Wallis S R, Aoya M, Lee J and Wang Y. 2012. E-W extension at 19 Ma in the Kung Co area, S. Tibet: Evidence for contemporaneous E-W and N-S extension in the Himalayan orogen. Earth and Planetary Science Letters, 325-326: 10-20.
Murphy M, Yin A, Kapp P, Harrison T, Manning C, Ryerson F, Lin D and Guo J H. 2002. Structural evolution of the Gurla Mandhata detachment system, southwest Tibet: Implications for the eastward extent of the Karakoram fault system. Geological Society of America Bulletin, 114(4): 428-447.
Quigley M C, Yu L J, Gregory C, Corvino A, Sandiford M, Wilson C J L and Liu X H. 2008. U-Pb SHRIMP zircon geochronology and T-t-d history of the Kampa Dome, southern Tibet. Tectonophysics, 446(1-4): 97-113.
Schultz M H, Hodges K V, Ehlers T A, van Soest M and Wartho J A. 2017. Thermochronologic constraints on the slip history of the South Tibetan detachment system in the Everest region, southern Tibet. Earth and Planetary Science Letters, 459(Supplement C): 105-117.
Sundell K E, Taylor M H, Styron R H, Stockli D F, Kapp P, Hager C, Liu D L and Ding L. 2013. Evidence for constriction and Pliocene acceleration of east-west extension in the North Lunggar rift region of west central Tibet. Tectonics, 32(5): 1454-1479.
Thiede R C, Arrowsmith J R, Bookhagen B, McWilliams M, Sobel E R and Strecker M R. 2006. Dome formation and extension in the Tethyan Himalaya, Leo Pargil, northwest India. Geological Society of America Bulletin, 118(5-6): 635-650.
Viskupic K, Hodges K V and Bowring S A. 2005. Timescales of melt generation and the thermal evolution of the Himalayan metamorphic core, Everest region, eastern Nepal. Contributions to Mineralogy and Petrology, 149(1): 1-21.
Wagner T, Lee J, Hacker B R and Seward G. 2010. Kinematics and vorticity in Kangmar Dome, southern Tibet: Testing midcrustal channel flow models for the Himalaya. Tectonics, 29(6): 1-26.
Zhang H F, Harris N, Parrish R, Kelley S, Zhang L, Rogers N, Argles T and King J. 2004. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth and Planetary Science Letters, 228(1-2): 195-212.
Zhang J J, Santosh M, Wang X X, Guo L, Yang X Y and Zhang B. 2012. Tectonics of the northern Himalaya since the India-Asia collision. Gondwana Research, 21(4): 939-960.

备注/Memo

备注/Memo:
收稿日期: 2020-04-22; 改回日期: 2020-5-31 项目资助: 国家自然科学基金项目(91955208、41602214)、中国地质调查局项目“西藏山南地区铍锡多金属矿调查评价”(DD20190147)、国家科学技术部项目“青藏高原典型矿集区透明化与矿体定位预测”(2016YFC060308)和“青藏高原重要矿产资源基地成矿系统深部探测技术与勘查增储示范”(2018YFC0604103)联合资助。 第一作者简介: 付建刚(1987-), 男, 博士, 副研究员,主要从事于构造地质与成矿理论研究。Email: fujiangangcd@163.com 通信作者: 李光明(1965-), 男, 研究员, 主要从事于矿产资源勘查与评价、区域成矿规律与成矿预测。Email: 13982257109@163.com
更新日期/Last Update: 2021-09-20