[1]汤 超,魏佳林,陈路路.2021.松辽盆地长垣南端四方台组碎屑岩地球化学特征及其对物源与构造背景的制约.大地构造与成矿学,45(5):892-912.doi:10.16539/j.ddgzyckx.2021.05.005
 TANG Chao,WEI Jialin,CHEN Lulu.2021.Geochemical Characteristics of Clastic Rocks and Their Constrains on Source and Tectonic Background of the Sifangtai Formation at the Southern End of the Changyuan, Songliao Basin.Geotectonica et Metallogenia,45(5):892-912.doi:10.16539/j.ddgzyckx.2021.05.005
点击复制

松辽盆地长垣南端四方台组碎屑岩地球化学特征及其对物源与构造背景的制约
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2021年45卷05期
页码:
892-912
栏目:
构造地质学
出版日期:
2021-10-25

文章信息/Info

Title:
Geochemical Characteristics of Clastic Rocks and Their Constrains on Source and Tectonic Background of the Sifangtai Formation at the Southern End of the Changyuan, Songliao Basin
文章编号:
1001-1552(2021)05-0892-021
作者:
汤 超1、2 魏佳林1、2 陈路路1、2 徐增连1、2 肖 鹏1、2 刘华健1、2
1.中国地质调查局 天津地质调查中心, 天津 300170; 2.中国地质调查局 铀矿地质重点实验室, 天津 300170
Author(s):
TANG Chao1、2 WEI Jialin1、2 CHEN Lulu1、2 XU Zenglian1、2 XIAO Peng1、2 and LIU Huajian1、2
1. Tianjin center, China Geological Survey, Tianjin 300170, China; 2. Key Laboratory of Uranium Geology, China Geological Survey, Tianjin 300170, China
关键词:
碎屑岩 地球化学 物源区 构造背景 四方台组 长垣南端 松辽盆地
Keywords:
clastic rock geochemistry provenance area tectonic background Sifangtai Formation southern end of Changyuan Songliao Basin
分类号:
P588.21
DOI:
10.16539/j.ddgzyckx.2021.05.005
文献标志码:
A
摘要:
通过对松辽盆地长垣南端四方台组碎屑岩岩石学和地球化学特征的分析, 揭示了研究区四方台组碎屑岩的物质组分特征及其物源区的大地构造背景。四方台组砂岩以长石岩屑砂岩为主, 结构成熟度和成分成熟度中等。碎屑颗粒相对贫石英(Q)、富岩屑(L)和长石(F), 平均值分别为42.10%、37.83%和20.07%, Q/(F+L)平均值为0.80, 具有钛铁矿、石榴子石、锆石、磁铁矿、绿帘石等重矿物组合, 指示源岩以中酸性岩浆岩及变质岩为主。Dickinson判别图解表明物源主要来自再旋回造山带和岩浆弧物源区。四方台组碎屑岩具有较高的Si含量和较低的Fe、Mg含量, SiO2为60.42%~83.39%, K2O/Na2O值较低(0.91~1.52), (TFe2O3+MgO)为1.11%~9.14%; 富集亲石元素Rb、Sr、Ba、Pb及高场元素U, 亏损亲铁镁元素Sc、V、Cr、Co、Ni等及高场元素Th、Zr、Hf、Nb; ΣREE介于66.6×10-6~236×10-6之间, 球粒陨石标准化稀土元素配分曲线与上地壳相似, 呈现轻稀土元素富集, 重稀土元素平坦, 中等Eu负异常。碎屑岩化学蚀变指数CIA为46.72~64.49, 平均56.54, 成分变异指数ICV为0.99~1.39, 平均1.12, 表明物源区经历了较弱的风化作用, 物源主要为构造带首次沉积, 不具备沉积再循环特征。碎屑岩主量、微量元素、稀土元素构造环境判别图解及特征比值分析表明, 四方台组沉积时源区构造环境为活动大陆边缘和大陆岛弧; 源岩属性判别图解表明, 源岩主要为长英质火山岩, 并混有中酸性或基性火山岩。结合区域构造演化, 认为长垣南端四方台组物源主要来自张广才岭和吉黑东部构造混杂岩带发育的显生宙中酸性花岗岩、火山岩和变质岩。
Abstract:
By analyzing the petrological and geochemical characteristics of the clastic rocks of the Sifangtai Formation in the south end of the Changyuan trap in the Songliao Basin, the compositional characteristics and the tectonic background of the provenance area of the Sifangtai clastic rocks in the study area were discussed. The Sifangtai Formation sandstone consists mainly of feldspar sandstone with medium structure and composition maturity. The detrital particles are relatively low in quartz (Q), rich in debris (L) and feldspar (F). The average contents of quartz, debris and feldspar are 42.10%, 37.83%, and 20.07% respectively, and the average Q/(F+L) ratio is 0.80. The heavy mineral assemblage including garnet, zircon, magnetite, and epidote indicates that the source rocks are mainly acidic magmatic and metamorphic rocks. Dickinson discriminant diagram indicates that the sandstone mainly derived from recirculation orogenic belt and magmatic arc. Clastic rocks of the Sifangtai Formation have high Si content and low Fe and Mg contents. The rocks have SiO2 contents of 60.42%-83.39%, low K2O/Na2O ratios (0.91-1.52) and (TFe2O3+MgO) values (1.11%-9.14%), and are characterized by high Rb, Sr, Ba, Pb, and U, low Sc, V, Cr, Co, Ni and Th, Zr, Hf, and Nb, with ΣREE of 66.6×10-6 to 236×10-6. The clastic rocks have chondrite normalized REE patterns resemble that of the upper crust, showing light rare earth enrichment, flat heavy rare earth, and medium negative Eu anomalies. The chemical alteration index CIA is 46.72-64.49, with an average of 56.54, and the component variation index ICV is 0.99-1.39, with an average of 1.12, indicating that the provenance area of the clastic rocks experienced weak weathering. The provenance is mainly the first deposition in the structural zone without sedimentary recycling characteristics. Tectonic environment discrimination diagrams and characteristic ratios of major elements and trace elements show that the tectonic environment of the Sifangtai Formation is active continental margin and continental island arc. The discrimination diagrams show that the source rocks are mainly felsic volcanic rocks, mixed with medium acid or basic volcanic rocks. Based on the regional tectonic evolution, it is believed that the clastic materials of the Sifangtai Formation at the southern end of the Changyuan trap mainly came from the Mesozoic granites, volcanic and metamorphic rocks developed in the tectonic mixed zone of Zhangguangcailing and Eastern Jihei.

参考文献/References:

陈翠华, 何彬彬, 顾雪祥, 刘建明. 2003. 右江盆地中三叠统浊积岩系的物源和沉积构造背景分析. 大地构造与成矿学, 27(1): 77-82.
陈路路, 汤超, 李建国, 钟延秋, 谷社峰, 魏佳林, 肖鹏, 徐增连, 曾辉, 刘华建, 陈印. 2018. 松辽盆地大庆长垣南端四方台组含铀砂岩岩石学特征及地质意义. 地质调查与研究, 41(1): 33-39.
程日辉, 王国栋, 王璞珺, 高有峰. 2009. 松科1井北孔四方台组-明水组沉积微相及其沉积环境演化. 地学前缘, 16(6): 85-95.
高有峰, 王成善, 王璞珺, 万晓樵, 任延广, 程日辉, 王国栋. 2009. 松科1井北孔选址、岩心剖面特征与特殊岩性层的分布. 地学前沿, 16(6): 104-112.
高有峰, 王璞珺, 王成善, 任延广, 王国栋, 刘万洙, 程日辉. 2008. 松科1井南孔选址、岩心剖面特征与特殊岩性层的分布. 地质学报, 82(5): 669-675.
葛荣峰, 张庆龙, 王良书, 解国爱, 徐士银, 陈娟, 王锡勇. 2010. 松辽盆地构造演化与中国东部构造体制转换. 地质论评, 56(2): 180-195.
葛玉魁, 王成善, 李亚林, 张玉修. 2012. 松潘地区尕海盆地上白垩统热鲁组物源分析及其意义. 大地构造与成矿学, 36(2): 301-311.
韩建辉, 王英民, 李树青, 张国田. 2009. 松辽盆地北部湖盆萎缩期层序结构与沉积充填. 沉积学报, 27(3): 479-486.
胡望水, 吕炳全, 张文军, 毛治国, 冷军, 官大勇. 2005. 松辽盆地构造演化及成盆动力学探讨. 地质科学, 40(1): 16-31.
李娟, 舒良树. 2002. 松辽盆地中、新生代构造特征及其演化. 南京大学学报(自然科学版), 38(4): 525-531.
刘彬, 王学求. 2018. 长江中下游地区早古生代沉积岩地球化学特征及其构造背景与物源分析. 大地构造与成矿学, 42(1): 163-176.
刘德来, 陈发景. 1996. 松辽盆地形成, 发展与岩石圈动力学. 地质科学, 31(4): 397-408.
单芝波. 2019. 松辽盆地钱家店地区姚家组赋矿砂岩的组成、地球化学特征及其构造背景. 地质科学, 54(2): 472-490.
邵济安, 李永飞, 唐克东. 2013. 张广才岭造山过程的重构及其大地构造意义. 岩石学报, 29(9): 2959-2970.
邵磊, 刘志伟, 朱伟林. 2000. 陆源碎屑岩地球化学在盆地分析中的应用. 地学前缘, 7(3): 297-304.
司庆红, 俞礽安, 李光耀, 张超, 朱强, 王善博, 蔡洪广,王道华. 2021. 鄂尔多斯盆地乃马岱地区含铀岩系直罗组砂岩元素地球化学特征及其地质意义. 华北地质, 44(2): 49-57.
汤超, 金若时, 谷社峰, 李建国, 钟延秋, 苗培森, 司马献章, 魏佳林. 2018. 松辽盆地北部四方台组工业铀矿体的发现及其意义. 地质调查与研究, 41(1): 1-8.
汤超, 魏佳林, 肖鹏, 徐增连, 曾辉, 陈路路, 郭虎, 赵丽君. 2017. 松辽盆地北部砂岩型铀矿铀的赋存状态研究. 矿产与地质, 31(6): 1009-1016.
田洋, 赵小明, 王令占, 涂兵, 谢国刚, 曾波夫. 2015. 鄂西南利川三叠纪须家河组地球化学特征及其对风化、物源与构造背景的指示. 岩石学报, 31(1): 261-272.
王丛山, 陈文西, 单福龙. 2016. 西藏雄巴地区中新世雄巴组砂岩地球化学特征及对物源区、构造背景的指示. 地质学报, 90(6): 1195-1207.
王国栋, 程日辉, 王璞珺, 高有峰, 王成善, 任延广, 黄清华. 2011. 松辽盆地松科1井上白垩统四方台组沉积序列厘米级精细刻画: 岩性?岩相?旋回. 地学前沿, 18(6): 263-284.
王璞珺, 刘海波, 任延广, 万晓樵, 王树学, 瞿雪姣, 蒙启安, 黄永建, 黄清华, 高有峰, 王成善. 2017. 松辽盆地白垩系大陆科学钻探“松科2井”选址. 地学前沿, 24(1): 216-228.
肖鹏, 金若时, 汤超, 刘华健, 邓永辉, 魏佳林, 徐增连. 2018. 松辽盆地北部大庆长垣南端上白垩统四方台组物源体系分析. 石油实验地质, 40(4): 493-501.
徐增连, 汤超, 李建国, 魏佳林, 曾辉, 肖鹏, 刘华健, 陈路路. 2018. 松辽盆地北部三肇凹陷四方台组层序地层及其与砂岩型铀矿化的关系. 地质调查与研究, 41(1): 24-32.
徐增连, 汤超, 魏佳林, 曾辉, 肖鹏, 刘华健. 2021. 大庆长垣南端晚白垩世孢粉组合特征及其古气候记录. 华北地质, 44(2): 74-80.
许文良, 王枫, 裴福萍, 孟恩, 唐杰, 徐美君, 王伟. 2013. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约. 岩石学报, 29(2): 339-353.
杨江海, 杜远生, 朱杰. 2007. 甘肃景泰崔家墩下奥陶统阴沟组砂岩化学组分特征及物源区构造背景判别. 古地理学报, 9(2): 197-206.
张雷, 王英民, 李树青, 韩建辉, 张新涛, 祝彦贺, 王改云, 杨婷. 2009. 松辽盆地北部四方台组-明水组高精度层序地层特征与有利区带预测. 中南大学学报(自然科学版), 40(6): 1679-1688.
周建波, 韩杰, Simon A W, 郭晓丹, 曾维顺, 曹嘉麟. 2013. 吉林-黑龙江高压变质带的初步厘定: 证据和意义. 岩石学报, 29(2): 386-398.
Allègre C J and Minster J F. 1978. Quantitative models of trace element behavior in magmatic processes. Earth and Planetary Science Letters, 38(1): 1-25.
Armstrong-Altrin J S, Lee Y I L, Verma S P and Ramasamy S. 2004. Geochemistry of sandstones from the upper Miocene Kudankulam Formation, southern India: Impli-ca-tions for provenance, weathering, and tectonic setting. Journal of Sedimentary Research, 74(2): 285-297.
Bhatia M R. 1983. Plate tectonics and geochemical composition of sandstones. The Journal of Geology, 91(6): 611-627.
Bhatia M R. 1985. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control. Sedimentary Geology, 45(1-2): 97-113.
Bhatia M R and Crook K A W. 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92(2): 181-193.
Condie K C, Noll J P D and Conway C M. 1992. Geochemical and detrital mode evidence for two sources of Early Proterozoic sedimentary rocks from the Tonto Basin Supergroup, central Arizona. Sediment Geology, 77(1-2): 51-76.
Cox R, Lowe D R and Cullers R L. 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919-2940.
Cullers R L. 2000. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: Implications for provenance and metamorphic studies. Lithos, 51(3): 181-203.
Dickinson W R. 1985. Interpreting provenance relations from detrital modes of sandstones // Zuffa G G. Provenance of Arenites. Dordrecht: Reidel Publishing Company: 333-361.
Dickinson W R and Suczek C A. 1979. Plate tectonics and sandstone compositions. The American Association of Petroleum Geologists Bulletin, 63(12): 2164-2182.
Dickinson W R and Valloni R. 1980. Plate settings and provenance of sands in modern ocean basins. Geology, 8(2): 82-86.
Dickinson W R and Valloni R. 1983. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin, 94(2): 222-235.
Fedo C M, Nesbtit H W and Young G M. 1995. Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosoles, with implications for paleoweathering conditions and provenance. Geology, 23(10): 921-924.
Floyd P A and Leveridge B E. 1987. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: Framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological Society, 144(4): 531-542.
Girty G H, Hanson A D, Knaack C and Johnson D. 1994. Provenance determined by REE, Th, and Se analyses of metasedimentary rocks, Boyden Cave Pendant, central Sierra Nevada, Caliofmia. Journal of Sedimentary Research, B64(l): 68-73.
Gu X X. 1994. Geochemical characteristics of the Triassic Tethys-turbidites in the northwestern Sichuan, China: Implications for provenance and interpretation of the tectonic setting. Geochimica et Cosmochimica Acta, 58(21): 4615-4631.
Gu X X, Liu J M, Zheng M H, Tang J X and Qi L. 2002. Provenance and tectonic setting of the Proterozoic turbidites in Hunan, South China: Geochemical evidence. Journal of Sedimentary Research, 72(3): 393-407
Kasanzu C, Maboko M A H and Manya S. 2008. Geochemistry of fine-grained clastic sedimentary rocks of the Neoproterozoic Ikorongo Group, NE Tanzania: Implications for provenance and source rock weathering. Precambrian Research, 164(3): 201-213.
Kumon F and Kiminami K. 1994. Modal and chemical compositions of the representative sandstones from the Japanese Islands and their tectonic implications // Kumon F, Yu K M. Proceedings 29th IGC, Part A. Utrecht: VSP: 135-151.
McLennan S M. 1993. Weathering and global denudation. The Journal of Geology, 101(2): 295-303
McLennan S M, Hemming S, McDaniel D K and Hanson G N. 1993. Geochemical approaches to sedimentation, provenance, and tectonics. Geological Society of America Special Papers, 284: 21-40.
McLennan S M and Taylor S R. 1991. Sedimentary rocks and crustal evolution: Tectonic setting and secular trends. The Journal of Geology, 99(1): 1-21.
McLennan S M, Taylor S R, McCulloch M T and Maynard J B. 1990. Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta, 54(7): 2015-2050.
Nesbitt H W and Young G M. 1982. Early Proterozoic climates and Plate motion inferred from major element chemistry of lutites. Nature, 299(21): 715-717.
Roser B P and Korsch R J. 1986. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. The Journal of Geology, 94(5): 635-650.
Roser B P and Korsch R J. 1988. Provenance signatures of sand stone mud stone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67(1-2): 119-139.
Rudnick R L and Gao S. 2003. Composition of the continental crust // Holland H D and Turekian K K. Treatise on Geochemistry. Oxford: Elsevier-Pergamon: 1-64.
Stepashko A A. 2006. The Cretaceous dynamics of the pacific plate and stages of magmatic activity in northeastern Asia. Geotectonics, 40(3): 225-235.
Taylor S R and McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications.
Taylor S R and McLennan S M. 1995. The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2): 241-265.
Yan Z, Wang Z Q, Yan Q H, Xiao W J and Li J L. 2006. Provence analysis and tectonic setting of clastic deposits of the Xi-Cheng Basin in the Qinling orogen, central China. Journal of Sedimentary Research, 76(3-4): 557-574.
Yang W B, Niu H C, Cheng L R, Shan Q and Li N B. 2015. Geochronology, geochemistry and geodynamic implications of the Late Mesozoic volcanic rocks in the southern Great Xing’an Mountains, NE China. Journal of Asian Earth Sciences, 113: 454-470.
Zerfass H, Chemale J F, Schultz C L and Lavina E. 2004. Tectonics and sedimentation in southern South America during Triassic. Sedimentary Geology, 166(3): 265- 192.

相似文献/References:

[1]张玉修,张开均,李勇.西藏羌塘盆地东部中-上侏罗统沉积特征及沉积相划分.大地构造与成矿学,2007.31(1):052.
 ZHANG Yuxiu,ZHANG Kaijun,LI Yong.CHARACTERISTICS AND SEDIMENTARY FACIES OF THE MIDDLEUPPER JURASSIC CLASTIC ROCKS IN QIANGTANG BASIN, TIBET.Geotectonica et Metallogenia,2007.45(5):052.
[2]刘讲锋,徐义刚.河北阳原新生代玄武岩中两类辉石岩包体的矿物学和地球化学特征.大地构造与成矿学,2006.3(1):052.
 LIU Jiangfeng and Xu Yigang.MINERAL CHEMISTRY AND GEOCHEMISTRY OF THE TWO SUITES OF PYROXENITE XENOLITHS IN CENOZOIC BASALTS FROM YANGYUAN, HEBEI.Geotectonica et Metallogenia,2006.45(5):052.
[3]肖龙,周海民,董月霞.广东三水盆地火山岩: 地球化学特征及成因——兼论火山岩性质的时空演化和南海形成的深部过程.大地构造与成矿学,2006.3(1):072.
 XIAO Long,ZHOU Haiming,DONG Yuexia.GEOCHEMISTRY AND PETROGENESIS OF CENOZOIC VOLCANIC ROCKS FROM SANSHUI BASIN: IMPLICATIONS FOR SPATIAL AND TEMPORAL VARIATION OF ROCK TYPES AND CONSTRAINTS ON THE FORMATION OF SOUTH CHINA SEA.Geotectonica et Metallogenia,2006.45(5):072.
[4]卜国民,李华启,李文铅.新疆塔克札勒蛇绿混杂岩中玄武质熔岩地球化学特征及其成因讨论.大地构造与成矿学,2005.29(2):252.
 BU Guomin,LI Huaqi,LI Wenqian.GEOCHEMICAL CHARACTERISTICS AND TECTONIC SETTINGS FOR BASALTS IN TAKEZHALE OPHIOLITE IN EAST JUNGGAR, XINJIANG.Geotectonica et Metallogenia,2005.45(5):252.
[5]蔡明海,梁婷,吴德成.桂西北丹池成矿带花岗岩地球化学特征及其构造环境.大地构造与成矿学,2004.28(3):306.
 CAI Minghai,LIANG Ting,WU Decheng and HUANG Huimin.GEOCHEMICAL CHARACTERISTICS OF GRANITES AND ITS STRUCTURAL GENETIC ENVIRONMENT IN THE NANDANHECHI METALLOGENETIC BELT, NORTHWEST GUANGXI.Geotectonica et Metallogenia,2004.45(5):306.
[6]刘 燊、,胡瑞忠,迟效国.羌塘岩带碰撞后超钾质火山岩地球化学特征及成因探讨.大地构造与成矿学,2003.27(2):167.
 LIU Shen,HU Rui-zhong,CHI Xiao-guo.GEOCHEMICAL CHARACTERISTICS AND PETROGENESIS DISCUSS OF THE POST-COLLISION ULTRA-POTASSIUM VOLCANIC ROCKS IN QIANGTANG ROCK ZONE.Geotectonica et Metallogenia,2003.45(5):167.
[7]何业伟.湖南资兴三都地洼型煤田的地质特征.大地构造与成矿学,1984.8(2):186.
 HE Yiewei.THE GEOLOGICAL CHARACTERISTICS OF SANDOU COAL FIELD OF DIWA TYPE AT ZIXING IN HUNAN.Geotectonica et Metallogenia,1984.45(5):186.
[8]张照伟.青海省化隆县下什堂岩体地质-地球化学特征及其含矿性研究.大地构造与成矿学,2011.35(4):596.
 ZHANG Zhaowei,LI Wenyuan.Geology and Geochemistry Characteristics and Ore-bearing Potential of the Xiashentang Intrusive Rocks in Hualong County, Qinghai Province.Geotectonica et Metallogenia,2011.45(5):596.
[9]张旗,王焰,王元龙.埃达克岩与构造环境.大地构造与成矿学,2003.27(2):101.
 ZHANG Qi,WANG Yan and WANG Yuan long.ON THE RELATIONSHIP BETWEEN ADAKITE AND ITS TECTONIC SETTING.Geotectonica et Metallogenia,2003.45(5):101.
[10]匡永生.胶莱盆地晚白垩世玄武岩的年代学和地球化学特征及其对华北岩石圈减薄-增生的制约.大地构造与成矿学,2012.36(4):559.
 KUANG Yongsheng,PANG Chongjin.Geochronology and Geochemistry of the Late Cretaceous Basalts in the Jiaolai Basin: Constraints on Lithospheric Thinning and Accretion Beneath North China Craton.Geotectonica et Metallogenia,2012.45(5):559.

备注/Memo

备注/Memo:
收稿日期: 2020-04-15; 改回日期: 2020-08-24 项目资助: 中国地质调查局项目(DD20190121)和国家重点研发计划重点专项项目(2018YFC0604200)联合资助。 第一作者简介: 汤超(1982-), 男, 硕士, 高级工程师, 从事矿床地球化学方面研究。Email: tjtangchao@163.com
更新日期/Last Update: 2021-09-20