[1]陈维涛,孙 珍,何 敏.2021.珠江口盆地中中新世SQ14.8层序-沉积演化及其地质意义.大地构造与成矿学,45(5):875-891.doi:10.16539/j.ddgzyckx.2021.05.004
 CHEN Weitao,SUN Zhen,HE Min.2021.The Mid-Miocene Stratigraphic-depositional Evolution Recorded by the SQ14.8 Layer in Pearl River Mouth Basin and its Geological Significances.Geotectonica et Metallogenia,45(5):875-891.doi:10.16539/j.ddgzyckx.2021.05.004
点击复制

珠江口盆地中中新世SQ14.8层序-沉积演化及其地质意义
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2021年45卷05期
页码:
875-891
栏目:
构造地质学
出版日期:
2021-10-25

文章信息/Info

Title:
The Mid-Miocene Stratigraphic-depositional Evolution Recorded by the SQ14.8 Layer in Pearl River Mouth Basin and its Geological Significances
文章编号:
1001-1552(2021)05-0875-017
作者:
陈维涛1、2、3 孙 珍1 何 敏3 张 琴3 王文勇3 王绪诚3 徐少华4*
1.中国科学院 南海海洋研究所 边缘海与大洋地质重点实验室, 广东 广州 510301; 2.中国科学院大学, 北京 100049; 3.中海石油(中国)有限公司 深圳分公司, 广东 深圳 518000; 4.重庆科技学院 复杂油气田勘探开发重庆市重点实验室, 重庆 401331
Author(s):
CHEN Weitao1、2、3 SUN Zhen1 HE Min3 ZHANG Qin3 WANG Wenyong3 WANG Xucheng3 and XU Shaohua4*
1. CAS Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Shenzhen Branch of CNOOC Ltd., Shenzhen 518000, Guangdong, China; 4. Chongqing Key Laboratory of Complex Oil and Gas Field Exploration and Development, Chongqing University of Science and Technology, Chongqing 401331, China
关键词:
层序地层 古珠江三角洲 珠江口盆地 强制海退体系域 中中新世
Keywords:
sequence stratigraphy ancient Pearl River Delta Pearl River Mouth Basin forced regressive systems tract Mid-Miocene
分类号:
TE51
DOI:
10.16539/j.ddgzyckx.2021.05.004
文献标志码:
A
摘要:
中中新世, 位于南海北部陆缘的珠江口盆地发生了构造、沉积和古气候格局的骤然变迁, 而对古珠江沉积体系层序、沉积的研究为重塑该变革提供了良好契机。本文利用珠江口盆地三维地震和钻井资料, 选取中中新世SQ14.8三级层序开展了系统的层序地层和沉积解剖, 通过厘定关键层序、体系域界面, 建立了高精度区域四分体系域格架, 并在此基础上重建陆架-陆坡区主要沉积体系的宏观展布特征和演化过程。研究发现, SQ14.8三级层序记录了珠江口盆地新近纪以来最大规模的一次相对海平面下降, 引发沉积滨线跨越陆架长距离迁移到陆架坡折, 发育了从低位到强制海退完整的体系域单元。古珠江三角洲作为陆架区主要的沉积体系, 在相对海平面升降旋回的驱动下, 其发育位置从内陆架到陆架边缘的迁移过程中, 发育主控因素也由河流作用为主逐渐变为河流和海洋水动力共同控制。强制海退体系域的识别及沉积展布研究为预测深水储层提供了依据, 该时期发育的陆架边缘三角洲下方陆坡区是寻找富砂重力流储集体的有利地区, 而陆架边缘三角洲侧翼砂质沉积较少, 下方的扇体以泥质扇为主。综合分析认为中中新世变冷事件是造成13.8 Ma相对海平面强烈下降的主要原因, 在珠江口盆地促成SQ14.8层序典型强制海退体系域及陆架边缘三角洲的发育, 进一步证明该事件是一次全球性的气候事件, 其响应不仅可以在大洋钻孔获取的O同位素中找到证据, 在边缘海盆的沉积记录中也有明显反映。
Abstract:
Located on the northern margin of the South China Sea, the Pearl River Mouth Basin experienced an abrupt change in tectonics, sedimentation, and paleoclimate conditions during the Middle Miocene. Research of the sequence stratigraphy and sedimentation of the ancient Pearl River sedimentary system is critical to decode this important transition. The SQ14.8 layer deposited during the Mid-Miocene was studied by utilizing 3D seismic and borehole data. Through systematic study of the sequence stratigraphy and the key stratigraphic boundaries, we established a high-resolution, four-order sequence stratigraphic framework for the SQ14.8 layer, and mapped the shelf to slope distribution and evolution of major depositional systems. Our results revealed that the SQ14.8 layer possibly recorded the largest sea level drop since the Neogene for the entire Pearl River Mouth Basin. This sea level drop triggered a long-distance migration of the depositional shorelines across the shelf to the shelf edge, forming a set of lowstand to forced-regressive deposition. Along with the progradation from the inner shelf to the shelf margin, the sedimentary process of the ancient Pearl River Delta which dominated the shelf region, had changed from river-dominated to wave-or wave-current dominated types, driven by the relative sea-level fall. It should be noted that the recognition of the forced regressive units provided valuable insights into the prediction of deep-water sandy reservoirs. For instance, it will be much easier to pinpoint deep-water sands beyond the region with the presence of shelf-edge deltas associated with the forced regression. In contrast, only muddy submarine fans tended to form within the flank region of the same shelf-edge delta. After comprehensive analysis, it is believed that that the Mid-Miocene cooling event was the most important driver for the relative sea level fall at 13.8 Ma, which final led to the development of the typical forced regressive units as well as the shelf-edge deltas. Our results also demonstrated that the cooling event should be a global one, and its profound responses can be found not only in the oxygen isotopes from cores in major oceans, but also in the depositional records from the marginal sea basins.

参考文献/References:

陈维涛, 杜家元, 龙更生, 陈淑慧, 李小平, 张尚峰, 张昌民. 2012. 珠江口盆地惠州地区珠江组控砂机制及地层岩性圈闭发育模式. 石油与天然气地质, 33(3): 449-458.
陈维涛, 杜家元, 龙更生, 张尚峰, 李向阳. 2012. 珠江口盆地海相层序地层发育的控制因素分析. 沉积学报, 30(1): 73-83.
陈晓良, 赵泉鸿, 翦知湣. 2002. 南海北部ODP1148站中新世以来的碳酸盐含量变化及其古环境意义. 海洋地质与第四纪地质, 22(2): 69-74.
高金尉, 吴时国, 彭学超, 董冬冬, 范建柯, 贾连凯, 周金扬. 2015. 南海共轭被动大陆边缘洋陆转换带构造特征. 大地构造与成矿学, 39(4): 555-570.
胡修棉, 王成善. 1999. 100Ma以来若干重大地质事件与全球气候变化. 大自然探索, 18(67): 53-58.
黄奇瑜, 闫义, 赵泉鸿, 刘平妹, 林彦均, 林秋婷, 谢凯旋. 2012. 台湾新生代层序: 反映南海张裂, 层序和古海洋变化机制. 科学通报, 57(20): 1842-1862.
李文静, 王英民, 何敏, 陈维涛, 徐少华, 卓海腾. 2018. 珠江口盆地中中新世陆架边缘三角洲的类型及控制因素. 岩性油气藏, 30(2): 58-65.
李小平, 柳保军, 丁琳, 郝建光, 龚文. 2016. 海相三角洲沉积单元划分及其对勘探砂体对比的意义——基于现代珠江三角洲沉积水动力综合研究. 沉积学报, 34(3): 555-561.
林畅松, 施和生, 李浩, 何敏, 张忠涛, 宫越, 张博, 张曼莉, 舒梁峰, 马铭. 2018. 南海北部珠江口盆地陆架边缘斜坡带层序结构和沉积演化及控制作用. 地球科学, 43(10): 3407-3422.
柳保军, 庞雄, 王家豪, 任建业, 刘军, 郑金云, 向绪洪, 蔡国富, 吴宇翔. 2019. 珠江口盆地深水区伸展陆缘地壳减薄背景下的沉积体系响应过程及油气勘探意义. 石油学报, 40(S1): 124-138.
柳保军, 庞雄, 颜承志, 刘军, 连世勇, 何敏, 申俊. 2011. 珠江口盆地白云深水区渐新世-中新世陆架坡折带演化及油气勘探意义. 石油学报, 32(2): 234-242.
陆钧, 陈木宏. 2006. 新生代主要全球气候事件研究进展. 热带海洋学报, 25(6): 72-78.
庞雄, 陈长民, 彭大钧, 周蒂, 陈红汉. 2007a. 南海珠江深水扇系统及油气. 北京: 科学出版社: 1-361.
庞雄, 陈长民, 邵磊, 王成善, 朱明, 何敏, 申俊, 连世勇, 吴湘杰. 2007b. 白云运动: 南海北部渐新统-中新统重大地质事件及其意义. 地质论评, 53(2): 145-151.
秦国权. 2002. 珠江口盆地新生代晚期层序地层划分和海平面变化. 中国海上油气(地质), 16(1): 1-10.
秦雁群, 计智锋, 万仑坤, 李志, 高霞, 马锋, 梁英波. 2017. 海相深水碎屑岩层序地层学理论进展及关键问题. 石油与天然气地质, 38(1): 12-21.
施和生, 代一丁, 刘丽华, 姜航, 李洪博, 白静. 2015. 珠江口盆地珠一坳陷油气藏地质特征与分布发育基本模式. 石油学报, 36(2): 120-132.
施和生, 舒誉, 杜家元, 朱俊章. 2017. 珠江口盆地古近系石油地质. 北京: 地质出版社: 1-7.
孙珍, 庞雄, 钟志洪, 周蒂, 陈长民, 郝沪军, 何敏, 黄春菊, 许鹤华. 2005. 珠江口盆地白云凹陷新生代构造演化动力学. 地学前缘, 12(4): 489-498.
王殿举, 李江海, 程鹏, 李一赫, 刘志强, 王越. 2019. 南大西洋被动陆缘盆地盐构造形成的控制因素. 大地构造与成矿学, 43(5): 924-933.
谢利华, 张博, 秦成岗, 王艳飞, 陈胜红, 高鹏. 2009. 陆架坡折盆地强制海退及正常海退沉积: 以珠江口盆地珠江组-韩江组为例. 沉积学报, 27(6): 1093-1100.
徐少华, 何敏, 庞雄, 陈维涛, 王英民, 卓海腾, 秦春雨. 2018. 被动陆缘层序地层结构的侧向变化及其启示——以珠江口盆地中中新世13.8Ma为例. 石油与天然气地质, 39(4): 811-822.
易雪斐, 张昌民, 李少华, 杜家元, 罗明, 李向阳. 2014. 珠江口盆地21Ma和13.8Ma陆架边缘三角洲对比. 石油与天然气地质, 35(5): 670-678.
于兴河, 李胜利, 乔亚蓉, 高阳. 2016. 南海北部新生代海陆变迁与不同盆地的沉积充填响应. 古地理学报, 18(3): 359-364.
余烨, 张昌民, 李少华, 杜家元, 黄俨然, 王莉. 2018. 珠江口盆地中新统珠江组强制海退沉积层序与有利砂体分布. 古地理学报, 20(5): 841-853.
赵泉鸿, 翦知湣, 王吉良, 成鑫荣, 黄宝琦, 徐建, 周震, 房殿勇, 汪品先. 2001. 南海北部晚新生代氧同位素地层学. 中国科学(D辑), 31(10): 800-807.
钟志洪, 施和生, 朱明, 庞雄, 何敏, 赵中贤, 刘思青, 王菲. 2014. 珠江口盆地构造-地层格架及成因机制探讨. 中国海上油气, 26(5): 20-29.
周家伟, 王英民, 何敏, 陈维涛, 徐少华, 李文静, 王星星, 卓海腾. 2018. 基于轨迹分析和数值模拟的陆架边缘沉积研究——以珠江口盆地13.8Ma陆架边缘三角洲为例. 中国矿业大学学报, 47(3): 603-614.
朱锐, 张昌民, 杜家元, 张尚锋, 李向阳. 2015. 珠江口盆地新近纪海平面升降过程及其对砂体的控制. 高校地质学报, 21(4): 685-693.
朱筱敏, 葛家旺, 赵宏超, 袁立忠, 刘军. 2017. 陆架边缘三角洲研究进展及实例分析. 沉积学报, 35(5): 945-957.
祝彦贺, 朱伟林, 徐强, 吴景富. 2011. 珠江口盆地13.8Ma陆架边缘三角洲与陆坡深水扇的“源-汇”关系. 中南大学学报, 42(12): 3827-3834.
Catuneanu O, Abreu V and Bhattacharya J P. 2009. Toward the standardization of sequence stratigraphy. Earth Science Reviews, 92(1): 1-33.
He M, Zhuo H T, Chen W T, Wang Y M, Du J Y, Liu L H, Wang L L and Wan H Q. 2017. Sequence stratigraphy and depositional architecture of the Pearl River Delta system, northern South China Sea: An interactive response to sea level, tectonics and paleoceanography. Marine and Petroleum Geology, 84: 76-101.
Helland H W and Hampson G J. 2009. Trajectory analysis: Concepts and applications. Basin Research, 21(5): 454-483.
Holbourn A, Kuhnt W and Lyle M. 2014. Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling. Geology, 42(1): 19-22.
Hunt D and Tucker M E. 1992. Stranded parasequences and the forced regressive wedge systems tract: Deposition during base-level fall. Sedimentary Geology, 81(1): 1-9.
Janok P B and Brian J W. 2001. Lowstand deltas in the Frontier Formation, Powder River basin, Wyoming: Implications for sequence stratigraphic models. AAPG Bulletin, 85(2): 261-294.
Janok P B and Liviu G. 2003. Wave-in?uenced deltas: Geomorphological implications for facies reconstruction. Sedimentology, 50: 187-210.
Miller K G, Feigenson M D and Keni D V. 1988. Oligocene stable isotopes (87Sr/86Sr, δ18O, δ13C) standard section. Deep Sea Drilling Project Site 522. Paleoceanography, 3: 223-233.
Miller K G and Mountain G S. 1996. Drilling and dating New Jersey Oligocene-Miocene sequence: Ice volume, global sea level, and Exxon records. Science, 271(5252): 1092-1095.
Miller K G, Wright J D and Fairbanks R G. 1991. Unlocking the ice house: Oligocene-Miocene isotope, eustasy, and margin erosion. Journal of Geophysical Research, 96(B4): 6829-6848.
Posamentier H W and Morris W R. 2000. Aspects of the strata architecture of forced regressive deposits // Hunt D and Gawthorpe R L. Sedimentary Responses to Forced Regressions. London: SEPM Special Publications: 19-46.
Santra M, Goff J A, Steel R J and Austin J A. 2013. Forced regressive and lowstand Hudson paleo-Delta system: Latest Pliocene growth of the outer New Jersey shelf. Marine Geology, 339(1): 57-70.
Vander M W C, Flint S S and Hodgson D M. 2010. Sequence stratigraphy of an argillaceous, deepwater basin-plain succession: Vischkuil Formation (Permian), Karoo Basin, South Africa. Marine and Petroleum Geology, 27(2): 321-333.
William A A, Tucker F H, Florence B, Robert G L, Frank B J, Fred P W and Eric C P. 2009. Sequence-stratigraphic controls on complex reservoir architecture of highstand fluvial-dominated deltaic and lowstand valley-fill deposits in the Upper Cretaceous (Cenomanian) Woodbine Group, East Texas field: Regional and local perspectives. AAPG Bulletin, 93(2): 231-269.
Woodruff F and Savin S M. 1991. Mid-Miocene isotope stratigraphy in the deep sea: High-resolution correlations, paleoclimatic cycles, and sediment preservation. Paleoceanography, 6(6): 755-806.

相似文献/References:

[1]赵宗举,潘文庆,张丽娟.塔里木盆地奥陶系层序地层格架.大地构造与成矿学,2009.33(1):175.
 ZHAO Zongju,PAN Wenqing,ZHANG Lijuan.Sequence Stratigraphy in the Ordovician in the Tarim Basin.Geotectonica et Metallogenia,2009.45(5):175.
[2]鹿洪友,操应长,吴明荣.层序地层学应用于陆相湖盆中隐蔽油气藏的成因解释.大地构造与成矿学,2004.28(2):209.
 LU Hongyou,CAO Yingchang,WU Minrong and XIAO Xianming.A DISCUSSION ON THE GENETIC INTERPRETATION AND CLASSIFICATION OF SUBTLE TRAP RESERVOIR BY USING SEQUENCE STRATIGRAPHIC METHOD.Geotectonica et Metallogenia,2004.45(5):209.
[3]谢刚平,王玉静,余宏忠.百色盆地古近系层序地层模式与油气勘探.大地构造与成矿学,2003.27(4):378.

备注/Memo

备注/Memo:
收稿日期: 2020-04-06; 改回日期: 2020-07-05 项目资助: 十三五国家科技重大专项课题“南海东部海域勘探新领域及关键技术”(2016ZX05024-004)、南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0104、GML2019ZD0205、2019BT2H594)联合资助。 第一作者简介: 陈维涛(1983-), 男, 博士研究生, 海洋地质学专业。Email: chenwt2@cnooc.com.cn 通信作者: 徐少华(1987-), 男, 讲师, 主要从事层序地层学和沉积学等研究工作。Email: xsh_xu@163.com
更新日期/Last Update: 2021-09-20