[1]刘奕志,庞崇进,冯佐海.2021.桂东北晚震旦世-寒武纪砂岩物源特征: 对华南早古生代构造演化的制约.大地构造与成矿学,45(4):761-785.doi:10.16539/j.ddgzyckx.2020.04.018
 LIU Yizhi,PANG Chongjin,FENG Zuohai.2021.Provenance of Late Sinian-Cambrian Sandstones in Northeastern Guangxi: Constraints on Early Paleozoic Tectonic Evolution of South China Block.Geotectonica et Metallogenia,45(4):761-785.doi:10.16539/j.ddgzyckx.2020.04.018
点击复制

桂东北晚震旦世-寒武纪砂岩物源特征: 对华南早古生代构造演化的制约
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2021年45卷04期
页码:
761-785
栏目:
岩石大地构造与地球化学
出版日期:
2021-07-25

文章信息/Info

Title:
Provenance of Late Sinian-Cambrian Sandstones in Northeastern Guangxi: Constraints on Early Paleozoic Tectonic Evolution of South China Block
文章编号:
1001-1552(2021)04-0761-025
作者:
刘奕志1、2 庞崇进1、2、3* 冯佐海1、2、3 康志强1、2、3 蓝健宁1 朱家明1 肖冰清1 喻文亮1
1.桂林理工大学 地球科学学院, 广西 桂林 541004; 2.广西隐伏金属矿产勘查重点实验室, 广西 桂林 541004; 3.有色金属矿产勘查与资源高效利用协同创新中心, 广西 桂林 541004
Author(s):
LIU Yizhi1、2 PANG Chongjin1、2、3* FENG Zuohai1、2、3 KANG Zhiqiang1、2、3 LAN Jianning1 ZHU Jiaming1 XIAO Bingqing1 and YU Wenliang1
1. College of Earth Sciences, Guilin University of Technology, Guilin 541004, Guangxi, China; 2. Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration, Guilin University of Technology, Guilin 541004, Guangxi, China; 3. Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi, Guilin 541004, Guangxi, China
关键词:
晚震旦世-寒武纪 沉积地球化学 碎屑锆石U-Pb定年 扬子与华夏陆块界线 冈瓦纳大陆
Keywords:
Late Sinian-Cambrian sedimentary geochemistry detrital zircon U-Pb dating boundary between Yangtze and Cathaysia blocks gondwana continent
分类号:
P542; P597
DOI:
10.16539/j.ddgzyckx.2020.04.018
文献标志码:
A
摘要:
桂东北位于南岭西段, 为江山-绍兴断裂带的南部延伸地带, 较好地保存了华南晚震旦世-寒武纪构造演化的沉积记录。本文对桂东北晚震旦世-寒武纪砂岩开展了岩相学、地球化学和碎屑锆石U-Pb年代学工作, 试图揭示其物质来源及地质意义。分析结果表明, 永福、贺州两地浅变质长石石英砂岩和石英杂砂岩具有富集轻稀土元素, 亏损重稀土元素, 弱Ce负异常, 明显Eu负异常的特征, 母岩以上地壳长英质岩石和再循环古老沉积物组分为主。地球化学构造判别图显示, 研究区在晚震旦世-寒武纪时可能处于类似被动大陆边缘的构造环境。永福地区晚震旦世砂岩中900~780 Ma的碎屑锆石含量丰富并少量出现2.0 Ga的锆石, 与扬子陆块具有明显的亲缘性; 但贺州地区晚震旦世砂岩以含大量~1.0 Ga碎屑锆石, 与华夏陆块具有明显的亲缘性。永福与贺州地区寒武纪砂岩中的碎屑锆石均以~1.0 Ga为主, 暗示其物源区在早-中寒武世前(>520 Ma)由扬子陆块转变为华夏陆块。结合古地理特征, 这一物源变化暗示早寒武世开始南华裂谷盆地逐渐变浅和缩小。受加里东期构造运动的影响, 扬子与华夏陆块于早-中寒武世再次拼合, 其西南分界线可能从永福与贺州之间通过。依据碎屑锆石物源分析, 我们认为晚震旦世-寒武纪时期华南位于东冈瓦纳大陆北缘, 可能在印度北西缘的外围。
Abstract:
Late Sinian-Cambrian sandstones are well preserved in the northeastern area of the Guangxi Zhuang Autonomous Region, which is the western part of the Nanling Metallogenic Belt and the southern extension of the Jiangshan-Shaoxing fault zone, and can thus provide crucial information to constrain the Early Paleozoic tectonic evolution of the South China Block. This study presents petrological, geochemical and geochronological data of the Late Sinian-Cambrian sandstones in order to reveal their provenance and to constrain the Early Paleozoic tectonic evolution of the South China Block. Results show that the quartzofeldspathic sandstone and quartzose greywacke in the Yongfu and Hezhou areas are generally characterized by the enrichment of light Rare Earth Elements (REE), depletion of heavy REE, with negative Eu and Ce anomalies. The detritus could have been dominated by the recycled felsic igneous rocks and sedimentary components. Geochemical results suggest that the Late Sinian-Cambrian sandstones in the Yongfu and Hezhou areas may have been deposited in a tectonic setting that resembles passive continental margin. U-Pb ages of detrital zircon grains in the Yongfu Late Sinian sandstones peak at 900 to 780 Ma, with subordinated peak at 2.0 Ga, showing an affinity with the Yangtze Block. The Cambrian sandstones in the Yongfu area and the Late Sinian-Cambrian sandstones in the Hezhou area are characterized by large amounts of ca.1.0 Ga detrital zircon grains, showing an affinity with the Cathaysia Block. Combined with paleogeography, the shift of provenance of the Cambrian sandstones in the Yongfu area suggests that the Nanhua rift basin became shallower and smaller during the Early Cambrian. The Yangtze Block and the Cathaysia Block began to assemblage again during the early-Middle Cambrian (>520 Ma), with a southwestern boundary between the Yongfu and the Hezhou areas. Based on detrital zircon provenance analyses, we propose that the South China Block was located at the periphery of the northwestern margin of India in East Gondwana during the Late Sinian to Cambrian.

参考文献/References:

柏道远, 周亮, 王先辉, 张晓阳, 马铁球. 2007. 湘东南南华系-寒武系砂岩地球化学特征及对华南新元古代-早古生代构造背景的制约. 地质学报, 81(6): 755-771.
柏道远, 响钟, 贾朋远, 雄熊, 黄文义. 2014. 南岭西段加里东期苗儿山岩体锆石SHRIMP U-Pb年龄、地球化学特征及其构造意义. 岩石矿物学杂志, 33(3): 407- 423.
柏道远, 钟响, 贾朋远, 雄熊, 黄文义. 2015. 南岭西段加里东期越城岭岩体锆石SHRIMP U-Pb年龄、地质地球化学特征及其形成构造背景. 地球化学, 44(1): 27- 42.
陈凌云, 张忠伟. 2003. 加里东期扬子板块与南华活动带在广西境内分界线的探讨. 南方国土资源, 12: 8-19.
陈懋弘, 梁金城, 张桂林, 李文杰, 潘罗忠, 李容森. 2006. 加里东期扬子板块与华夏板块西南段分界线的岩相古地理制约. 高校地质学报, 12(1): 111-122.
程顺波, 付建明, 陈希清, 马丽艳, 卢友月. 2012. 桂东北海洋山岩体锆石SHRIMP U-Pb定年和地球化学研究. 华南地质与矿产, 28(2): 132-140.
丁式江, 许长海, 龙文国, 周祖翼, 廖宗廷. 2002. 海南屯昌变火山岩构造属性及其年代学研究. 岩石学报, 18(1): 83-90.
董云鹏, 朱炳泉, 常向阳, 张国伟, 2002. 滇东师宗-弥勒带北段基性火山岩地球化学及其对华南大陆构造格局的制约. 岩石学报, 18(1): 37-46.
冯佐海, 王春增, 梁金城, 李军朝, 黄永高, 廖家飞, 王睿. 2011. 南岭西段姑婆山-花山花岗岩基侵位机制与生长方式. 中国科学: 地球科学, 41(6): 816-831.
付建明, 马昌前, 谢才富, 张业明, 彭松柏. 2004. 湖南九嶷山复式花岗岩体SHRIMP锆石定年及其地质意义. 大地构造与成矿学, 28(4): 370-378.
顾雪祥, 刘建明, Oskar S, Franz V, 郑明华. 2003. 江南造山带雪峰隆起区元古宙浊积岩沉积构造背景的地球化学制约. 地球化学, 32(5): 406-426.
广西壮族自治区地质矿产局, 1985. 广西壮族自治区区域地质志. 北京: 地质出版社: 1-853.
郭丽爽, 吕鑫, 王政华, 毛佐国, 张继林, 刘玉琳, 陈旭. 2017. 广西大宁岩体和初洞岩体锆石U-Pb年代学及Hf同位素研究. 北京大学学报(自然科学版), 53(4): 667-682.
郭令智, 施央申, 马瑞士, 叶尚夫, 卢华复. 1984. 中国东南部地体构造的研究. 南京大学学报(自然科学版), 20(4): 782-739.
韩坤英, 许可娟, 高林志, 丁孝忠, 任留东, 刘燕学, 庞健峰. 2017. 云开地区变质沉积岩碎屑锆石U-Pb年龄、Lu-Hf同位素特征及其地质意义. 岩石学报, 33(9): 2939-2956.
韩乃仁, 唐兰, 李容森, 陈暑荣. 1998. 桂林阳朔寒武系球接子的发现及其意义. 桂林工学院学报, 18(2): 154-155.
洪大卫, 谢锡林, 张季生. 2002. 试析杭州-诸广山-花山高εNd值花岗岩带的地质意义. 地质通报, 21(6): 348- 354.
胡肇荣, 邓国辉. 2009. 钦-杭接合带之构造特征. 东华理工大学学报(自然科学版), 32(2): 114-122.
李献华. 1999. 广西北部新元古代花岗岩锆石U-Pb年代学及其构造意义. 地球化学, 28(1): 1-9.
李献华, 李武显, 何斌. 2012. 华南陆块的形成与Rodinia超大陆聚合-裂解——观察、解释与检验. 矿物岩石地球化学通报, 31(6): 543-559.
李晓峰, 冯佐海, 李容森, 唐专红, 屈文俊, 李军朝. 2009. 华南志留纪钼的矿化: 白石顶钼矿锆石SHRIMP U-Pb年龄和辉钼矿Re-Os年龄证据. 矿床地质, 28(4): 403-412.
梁斌, 王全伟, 阚泽忠. 2006. 珙县恐龙化石埋藏地自流井组泥质岩地球化学特征及其对物源区和古风化作用的指示. 矿物岩石, 26(3): 94-99.
刘宝珺, 许效松. 1994. 中国南方岩相古地理图集. 北京: 科学出版社: 1-188.
刘耀荣, 贺春平, 刘富国, 郑基俭. 2003. 都庞岭岩体环斑花岗岩的特征. 华南地质与矿产, 19(2): 23-29.
鲁学悟, 冯佐海, 郭俊刚, 杨锋. 2008. 南岭西段永和-太保花岗岩体的地球化学特征及其大地构造环境. 世界地质, 27(2): 156-163.
马筱. 2018. 黔东及其邻区早古生代构造变形机制及其演化过程. 北京: 中国地质大学博士学位论文: 1-129.
潘罗忠, 李容森, 韩乃仁. 2000. 桂北阳朔-恭城地区早古生代地层新资料. 广西地质, 13(4): 15-17.
饶家荣, 肖海云, 刘耀荣, 柏道远, 邓延林. 2012. 扬子、华夏古板块会聚带在湖南的位置. 地球物理学报, 55(2): 484-502.
舒良树. 2006. 华南前泥盆纪构造演化: 从华夏地块到加里东期造山带. 高校地质学报, 12(4): 418-431.
舒良树. 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053.
王丽娟, 于津海, O’Reilly S Y, Griffin W L, 孙涛, 魏震洋, 舒良树, 蒋少涌. 2008. 华夏南部可能存在Grenville期造山作用: 来自基底变质岩中锆石U-Pb定年及Lu-Hf同位素信息. 科学通报, 53(14): 1680-1692.
王鹏鸣, 于津海, 孙涛, 时毓, 陈培荣, 赵葵东, 陈卫峰, 刘潜. 2013. 湘桂震旦-寒武纪沉积岩组成的变化——对华南构造演化的指示. 中国科学: 地球科学, 43(11): 1893-1906.
王孝磊, 周金城, 陈昕, 张凤凤, 孙梓铭. 2017. 江南造山带的形成与演化. 矿物岩石地球化学通报, 36(5): 714-735.
韦盛孔. 2001. 广西平南县金秀地区寒武纪微古植物群. 广西地质, 14(4): 12-16.
魏震洋, 于津海, 王丽娟, 舒良树. 2009. 南岭地区新元古代变质沉积岩的地球化学特征及构造意义. 地球化学, 38(1): 1-19.
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604.
夏斌. 1984. 广西龙胜元古代二种不同成因蛇绿岩岩石地球化学及侵位方式研究. 南京大学学报(自然科学版), (3): 554-566.
杨明桂, 梅勇文. 1997. 钦-杭古板块结合带与成矿带的主要特征. 华南地质与矿产, 3: 52-59.
杨世文, 楼法生, 杨坤光, 张芳荣, 凌国卿, 曹员兵. 2016. 江西南部震旦-寒武纪寻乌岩组变沉积岩地球化学特征及构造意义. 中国地质, 43(1): 351-366.
殷鸿福, 吴顺宝, 杜远生, 彭元桥. 1999. 华南是特提斯多岛洋体系的一部分. 地球科学, 24(1): 3-14.
于津海, 魏震洋, 王丽娟, 舒良树, 孙涛. 2006. 华夏地块: 一个由古老物质组成的年轻陆块. 高校地质学报, 12(4): 440-447.
张爱梅, 王岳军, 范蔚茗, 张菲菲, 张玉芝. 2011. 福建武平地区桃溪群混合岩U-Pb定年及其Hf同位素组成: 对桃溪群时代及郁南运动的约束. 大地构造与成矿学, 35(1): 64-72.
张国伟, 郭安林, 王岳军, 李三忠, 董云鹏, 刘少峰, 何登发, 程顺有, 鲁如魁, 姚安平. 2013. 中国华南大陆构造与问题. 中国科学: 地球科学, 43(10): 1553- 1582.
张雄, 曾佐勋, 刘伟, 潘黎黎, 杨宝忠, 刘建雄, 魏运许, 贺赤诚, 李绍凡. 2016. 湘南-桂东北地区寒武-奥陶纪沉积岩碎屑锆石U-Pb年代学特征及其地质意义. 中国地质, 43(1): 153-173.
周雪瑶, 于津海, 王丽娟, 沈林伟, 张春晖. 2015. 粤西云开地区基底变质岩的组成和形成. 岩石学报, 31(3): 855-882.
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1): 59-79.
Bhatia M R and Crook K A W. 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92: 181-193.
Black L P, Kamo S L, Allen C M, Aleinikoff J N, Davis D W, Korsch R J and Foudoulis C. 2003. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200: 155-170.
Cawood P A. 2005. Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth-Science Reviews, 69(3): 249-279.
Cawood P A, Johnson M R W and Nemchin A A. 2007. Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly. Earth and Planetary Science Letters, 255(1-2): 70-84.
Cawood P A, Zhao G C, Yao J L, Yao J L, Wang W, Xu Y J and Wang Y J. 2018. Reconstructing South China in Phanerozoic and Precambrian supercontinents. Earth- Science Reviews, 186: 173-194.
Chen Q, Sun M, Long X P, Zhao G C, Wang J, Yu Y and Yuan C. 2017. Provenance study for the Paleozoic sedimentary rocks from the west Yangtze Block: Constraint on possible link of South China to the Gondwana supercontinent reconstruction. Precambrian Research, 309: 271-289.
Cocks L R M and Torsvik T H. 2013. The dynamic evolution of the Palaeozoic geography of eastern Asia. Earth-Science Reviews, 117: 40-79.
Compston W, Williams I S, Kirschvink J L, Zhang Z H and Ma G G. 1992. Zircon U-Pb ages for the early Cambrian time scale. Journal of the Geological Society, 149: 171-184.
Ding R X, Zou H P, Min K, Yin F, Du X D, Ma X Y, Su Z X and Shen W J. 2017. Detrital Zircon U-Pb Geochronology of Sinian-Cambrian Strata in the Eastern Guangxi Area, China. Journal of Earth Science, 28(2): 295-304.
Fedo C M, Nesbitt H W and Young G M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23: 921-924.
Floyd P A and Leveridge B E. 1987. Tectonic environment of the Devonian Gramscatho Basin, south Cornwall: Framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological Society, 144(4): 531-542.
Girty G H, Ridge D L, Knaack C, Jonhson D and Al-Riyami R K. 1996. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California. Journal of Sedimentary Research, 66: 107-118.
Guo L G, Liu Y P, Li C Y, Xu W and Ye L. 2009. SHRIMP zircon U-Pb geochronology and lithogeochemistry of Caledonian Granites from the Laojunshan area, southeastern Yunnan Province, China: Implications for the collision between the Yangtze and Cathaysia blocks. Geochemical Journal, 473: 101-122.
Guo L H and Gao R. 2018. Potential-field evidence for the tectonic boundaries of the central and western Jiangnan belt in South China. Precambrian Research, 309: 45-55.
Jackson S E, Pearson N J, Griffin W L and Belousova E A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211: 47-69.
Jenkins R, Cooper J A and Compston W. 2002. Age and biostratigraphy of Early Cambrian tuffs from SE Australia and southern China. Journal of the Geological Society, 159(6): 645-658.
Jiang B Y, Sinclair H D, Niu Y Z and Yu J H. 2014. Late Neoproterozoic-Early Paleozoic evolution of the South China Block as a retroarc thrust wedge/foreland basin system. International Journal of Earth Sciences, 103: 23-40.
Li H B, Jia D, Wu L, Zhang Y, Yin H W, Wei G Q and Benliang L. 2013. Detrital zircon provenance of the Lower Yangtze foreland basin deposits: Constraints on the evolution of the early Palaeozoic Wuyi-Yunkai orogenic belt in South China. Geological Magazine, 150(6): 959-974.
Li L M, Lin S F, Xing G F, Jiang Y and He J. 2017. First direct evidence of Pan-african orogeny associated with Gondwana assembly in the Cathaysia block of southern China. Scientific Reports, 7(1): 794.
Li X H. 1999. U-Pb zircon ages of granites from the southern margin of the Yangtze Block: Timing of Neoproterozoic Jinning: Orogeny in SE China and implications for Rodinia Assembly. Precambrian Research, 97(1-2): 43-57.
Li X H, Li W X, Li Z X, Lo C H, Wang J, Ye M F and Yang Y H. 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Research, 174: 117-128.
Li X H, Li Z X and Li W X. 2014. Detrital zircon U-Pb age and Hf isotope constrains on the generation and reworking of Precambrian continental crust in the Cathaysia Block, South China: A synthesis. Gondwana Research, 25(3): 1202-1215.
Li Z X, Li X H, Warthol J A, Clark C, Li W X, Zhang C L and Bao C M. 2010. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions. Geological Society of America Bulletin, 122(5-6): 772-793.
Liu Y S, Gao S, Hu Z C, Gao C, Zong K and Wang D. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571.
Ludwig K R. 2003. User’s manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 4: 1-71.
Macouin M, Besse J, Ader M, Gilder S, Yang Z, Sun Z and Agrinier P. 2004. Combined paleomagnetic and isotopic data from the Doushantuo carbonates, South China: Implications for the “snowball Earth” hypothesis. Earth and Planetary Science Letters, 224(3): 387-398.
Markwitz V, Kirkland C L, Wyrwoll K H, Hancock E A, Evans N J and Lu Y. 2017. Variations in zircon provenance constrain age and geometry of an early paleozoic rift in the Pinjarra orogen, East Gondwana. Tectonics, 36: 2477-2496.
Martin E L, Collins W J and Kirkland C L. 2017. An Australian source for Pacific-Gondwanan zircons: Implications for the assembly of northeastern Gondwana. Geology, 45(8): 699-702.
Mckenzie N R, Hughes N C, Myrow P M, Xiao S and Sharma M. 2011. Correlation of Precambrian-Cambrian sedimentary succession across northern India and the utility of isotopic signatures of Himalayan lithotectonic zones. Earth and Planetary Science Letters, 312: 471-483.
McLennan S M, Hemming S, Mcdaniel D K and Hanson G N. 1993. Geochemical approaches to sedimentation, provenance, and tectonics. Geological Society of America Special Paper, 284: 21-40.
McLennan S M, Taylor S R, McCulloch M T and Maynard J B. 1990. Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta, 54(7): 2015-2050.
Murray R W, Buchholta ten Brink M R, Jones D L, Gerlach D C and Price Russ III G. 1990. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology, 18(3): 268-271.
Myrow P M, Hughes N C, Goodge J W, Fanning C M, Williams I S, Peng S, Bhargava O N, Parcha S K and Pogue K R. 2010. Extraordinary transport and mixing of sediment across Himalayan central Gondwana during the Cambrian-Ordovician. Geological Society of America Bulletin, 122: 1660-1670.
Nesbitt H W and Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715-717.
Nesbitt H W and Young G M. 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48: 1523-1534.
Robinson F A, Foden J D, Collins A S and Payne J L. 2014. Arabian Shield magmatic cycles and their relationship with Gondwana assembly: Insights from zircon U-Pb and Hf isotopes. Earth and Planetary Science Letters, 408: 207-225.
Roser B P and Korsch R J. 1986. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratios. The Journal of Geology, 94: 635- 650.
Roser B P and Korsch R J. 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant cuion analysis of major-element data. Chemical Geology, 67: 119-139.
Santosh M, Hu C N, He X F, Li S S, Tsunogae T, Shaji E and Indu G. 2017. Neoproterozoic arc magmatism in the southern Madurai Block, India: Subduction, relamination, continental outbuilding, and the growth of Gondwana. Gondwana Research, 45: 1-42.
Santosh M, Maruyama S, Sawaki Y and Meeet J G. 2014a. The Cambrian explosion: Plume-driven birth of the second ecosystem on Earth. Gondwana Research, 25(3): 945-965.
Santosh M, Tsunogae T, Malaviarachchi S P K, Zhang Z, Ding H X, Tang L and Dharmapriya P L. 2014b. Neoproterozoic crustal evolution in Sri Lanka: Insights from petrologic, geochemical and zircon U-Pb and Lu-Hf isotopic data and implications for Gondwana assembly. Precambrian Research, 255: 1-29.
Shu L S, Jahn B M, Charvet J, Santosh M, Wang B, Xu X S and Jiang S Y. 2014. Early Paleozoic depositional environment and intraplate tectono-magmatism in the Cathaysia Block (South China): Evidence from stratigraphic, structural, geochemical and geochronological investigations. American Journal of Science, 314: 154- 186.
Taylor S R and McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell: 1-312.
Veevers J J, Belousova E A, Saeed A, Sircombe K, Cooper A F and Read S E. 2006. Pan-Gondwanaland detrital zircons from Australia analysed for Hf-isotopes and trace elements reflect an ice-covered Antarctic provenance of 700-500 Ma age, TDM of 2.0-1.0 Ga, and alkaline affinity. Earth-Science Reviews, 76(3): 135-174.
Veevers J J and Saeed A. 2008. Gamburtsev Subglacial Mountains provenance of Permian-Triassic sandstones in the Prince Charles Mountains and offshore Prydz Bay: Integrated U-Pb and TDM ages and host-rock affinity from detrital zircons. Gondwana Research, 14(3): 316-342.
Wang J and Li Z X. 2003. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up. Precambrian Research, 122(1): 141-158.
Wang L J, Griffin W L, Yu J H and O’Reilly S Y. 2013a. U-Pb and Lu-Hf isotopes in detrital zircon from Neoproterozoic sedimentary rocks in the northern Yangtze Block: Implications for Precambrian crustal evolution. Gondwana Research, 23(4): 1261-1272.
Wang X L, Zhou J C, Griffin W L, Wang R C, Qiu J S, O’Reilly S Y, Xu X S, Liu X M and Zhang G L. 2007. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia Blocks. Precambrian Research, 159: 117-131.
Wang X L, Zhou J C, Griffin W L, Zhao G C, Yu J H, Qiu J S, Zhang Y J and Xing G F. 2014. Geochemical zonation across a Neoproterozoic orogenic belt: Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China. Precambrian Research, 242: 154-171.
Wang Y J, Fan W M, Guo F, Peng T and Li C. 2003. Geochemistry of Mesozoic mafic rocks adjacent to the Chenzhou-Linwu fault, South China: Implications for the lithospheric boundary between the Yangtze and Cathaysia Blocks. International Geology Review, 45: 263-286.
Wang Y J, Zhang A M, Cawood P A, Fan W M, Xu J F, Zhang G W and Zhang Y Z. 2013b. Geochronological, geochemical and Nd-Hf-Os isotopic fingerprinting of an early Neoproterozoic arc-back-arc system in South China and its accretionary assembly along the margin of Rodinia. Precambrian Research, 231: 343-371.
Wang Y J, Zhang F F, Fan W M, Zhang G W, Chen S Y, Cawood P A and Zhang A M. 2010. Tectonic setting of the South China Block in the early Paleozoic: Resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology. Tectonics, 29: TC6020.
Wu L, Jia D, Li H B, Deng F and Li Y Q. 2010. Provenance of detrital zircons from the late Neoproterozoic to Ordovician sandstones of South China: Implications for its continental affinity. Geological Magazine, 147(6): 974-980.
Xu D R, Xia B, Li P C, Chen G H, Ma C and Zhang Y Q. 2007. Protolith natures and U-Pb sensitive high mass-resolution ion microprobe (SHRIMP) zircon ages of the metabasites in Hainan Island, South China: Implications for geodynamic evolution since the late Precambrian. The Island Arc, 16(4): 575-597.
Xu Y J, Cawood P A and Du Y S. 2016. Intraplate orogenesis in response to Gondwana assembly: Kwangsian Orogeny, South China. American Journal of Science, 316: 329-362.
Xu Y J, Cawood P A, Du Y S, Zhong Z Q and Hughes N C. 2014. Terminal suturing of Gondwana along the southern margin of South China Craton: Evidence from detrital zircon U-Pb ages and Hf isotopes in Cambrian and Ordovician strata, Hainan Island. Tectonics, 33(12): 2490-2504.
Xu Y J, Du Y S, Cawood P A, Zhu Y H, Li W C and Yu W C. 2012. Detrital zircon provenance of Upper Ordovician and Silurian strata in the northeastern Yangtze Block: Response to orogenesis in South China. Sedimentary Geology, 267-268: 63-72.
Xue E K, Wang W, Huang S F and Lu G M. 2019. Detrital zircon U-Pb-Hf isotopes and whole-rock geochemistry of neoproterozoic-cambrian successions in the Cathaysia Block of South China: Implications on paleogeographic reconstruction in supercontinent. Precambrian Research, 331: 1-18.
Yang Z Y, Sun Z, Yang T and Pei J. 2004. A long connection (750-380 Ma) between South China and Australia: Paleomagnetic constraints. Earth and Planetary Science Letters, 220: 423-434.
Yao J L, Shu L S and Santosh M. 2014. Neoproterozoic arc-trench system and breakup of the South China Craton: Constraints from N-MORB type and arc-related mafic rocks, and anorogenic granite in the Jiangnan orogenic belt. Precambrian Research, 247: 187-207.
Yao J L, Shu L S, Santosh M and Li J Y. 2012. Precambrian crustal evolution of the South China Block and its relation to supercontinent history: Constraints from U-Pb ages, Lu-Hf isotopes and REE geochemistry of zircons from sandstones and granodiorite. Precambrian Research, 208-211: 19-48.
Yao W H, Li Z X, Li W X and Yang J H. 2015. Detrital provenance evolution of the Ediacaran-Silurian Nanhua foreland basin, South China. Gondwana Research, 28(4): 1449-1465.
Yu J H, O’Reilly S Y, Wang L J, Griffin W L, Zhang M, Wang R C, Jiang S Y and Shu L S. 2008. Where was South China in the Rodinia supercontinent? Evidence from U-Pb geochronology and Hf isotopes of detrital zircons. Precambrian Research, 164: 1-15.
Yu J H, O’Reilly S Y, Wang L J, Griffin W L, Zhou M F, Zhang M and Shu L S. 2010. Components and episodic growth of Precambrian crust in the Cathaysia Block, South China: Evidence from U-Pb ages and Hf isotopes of zircons in Neoproterozoic sediments. Precambrian Research, 181: 97-114.
Zhang A M, Wang Y J, Fan W M, Zhang Y Z and Yang J. 2012. Earliest Neoproterozoic (ca. 1.0 Ga) arc-back-arc basin nature along the northern Yunkai Domain of the Cathaysia Block: Geochronological and geochemical evidence from the metabasite. Precambrian Research, 220-221: 217-233.
Zhang C L, Santosh M, Zhu Q B, Chen X Y and Huang W C. 2015. The Gondwana connection of South China: Evidence from monazite and zircon geochronology in the Cathaysia Block. Gondwana Research, 28: 1137-1151.
Zhang Z J and Wang Y H. 2007. Crustal structure and contact relationship revealed from deep seismic sounding data in South China. Physics of the Earth and Planetary Interiors, 165: 114-126.
Zhao G C and Guo J H. 2012. Precambrian geology of China: Preface. Precambrian Research, 222: 1-12.
Zhao T Y, Feng Q L, Metcalfe I, Milan L, Liu G H and Zhang Z B. 2017. Detrital zircon U-Pb-Hf isotopes and provenance of Late Neoproterozoic and Early Paleozoic sediments of the Simao and Baoshan blocks, SW China: Implications for Proto-Tethys and Paleo-Tethys evolution and Gondwana reconstruction. Gondwana Research, 51: 193-208.
Zhao Z H and Zhou L D. 1997. REE geochemistry of some alkali-rich intrusive rocks in China. Science in China (Series D), 40(2): 145-158.
Zhou J C, Wang X L and Qiu J S. 2009. Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China: Coeval arc magmatism and sedimentation. Precambrian Research, 170(1): 27-42.
Zhou J L, Rasoamalala V, Razoeliarimalala M, Ralison B and Luo Z H. 2015. Age and geochemistry of Early Cambrian post-collisional granites from the Ambatondrazaka area in east-central Madagascar. Journal of African Earth Sciences, 106: 75-86.
Zhu D C, Zhao Z D, Niu Y L, Dilek Y, Wang Q, Ji W H, Dong G C, Sui Q L, Liu Y S, Yuan H L and Mo X X. 2012. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin. Chemical Geology, 328: 290-308.

相似文献/References:

[1]刘奕志,庞崇进,冯佐海.桂东北晚震旦世-寒武纪砂岩物源特征: 对华南早古生代构造演化的制约.大地构造与成矿学,2021.优先出版:001.doi:10.16539/j.ddgzyckx.2020.04.018
 LIU Yizhi,PANG Chongjin,FENG Zuohai.Provenance of Late Sinian-Cambrian Sandstones in Northeastern Guangxi: Constraints on Early Paleozoic Tectonic Evolution of South China Block.Geotectonica et Metallogenia,2021.45(4):001.doi:10.16539/j.ddgzyckx.2020.04.018

备注/Memo

备注/Memo:
收稿日期: 2019-12-16; 改回日期: 2020-03-28; 网络出版日期: 2020-09-16
项目资助: 国家自然科学基金项目(42072259、41703039)、广西研究生教育创新计划项目(YCBZ2019055)、中国地质调查局基础地质调查项目(DD20190022)、广西中青年教师基础能力提升项目(2021KY0250)、广西隐伏金属矿产勘查重点实验室课题(19-185-17-06)联合资助。
第一作者简介: 刘奕志(1986-), 男, 博士研究生, 地质资源与地质工程专业。Email: liuyz130505@163.com
通信作者: 庞崇进(1983-), 男, 副教授, 从事沉积学和盆地动力学研究。Email: chongjinpang@glut.edu.cn
更新日期/Last Update: 2021-07-20