[1]巩 鑫,魏小勇,赵元艺.2021.上黑龙江盆地虎拉林金矿床黄铁矿LA-ICP-MS原位测试及其对矿床成因的制约.大地构造与成矿学,45(4):745-760.doi:10.16539/j.ddgzyckx.2021.04.006
 GONG Xin,WEI Xiaoyong,ZHAO Yuanyi.2021.LA-ICP-MS Analysis of Pyrite from Hulalin Gold Deposit in the Upper Heilongjiang Basin and its Implication on Genesis of the Deposit.Geotectonica et Metallogenia,45(4):745-760.doi:10.16539/j.ddgzyckx.2021.04.006
点击复制

上黑龙江盆地虎拉林金矿床黄铁矿LA-ICP-MS原位测试及其对矿床成因的制约
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2021年45卷04期
页码:
745-760
栏目:
构造地质与成矿学
出版日期:
2021-07-25

文章信息/Info

Title:
LA-ICP-MS Analysis of Pyrite from Hulalin Gold Deposit in the Upper Heilongjiang Basin and its Implication on Genesis of the Deposit
文章编号:
1001-1552(2021)04-0745-016
作者:
巩 鑫1、2 魏小勇3 赵元艺2* 刘春花2 水新芳2 杜 蔺1 宋小军1 衮民汕1 谭 伟2
1.贵州省有色金属和核工业地质勘查局 地质矿产勘查院, 贵州 贵阳 550005; 2.中国地质科学院 矿产资源研究所, 自然资源部成矿与资源评价重点实验室, 北京 100037; 3.中国地质调查局 哈尔滨自然资源综合 调查中心, 黑龙江 哈尔滨 150086
Author(s):
GONG Xin1、2 WEI Xiaoyong3 ZHAO Yuanyi2* LIU Chunhua2 SHUI Xinfang2 DU Lin1 SONG Xiaojun1 GUN Minshan1 and TAN Wei2
1. Geological and Mineral Exploration Institute, Guizhou Bureau of Geological Exploration for Non-ferrous Metals and Nuclear Industry, Guiyang 550005, Guizhou, China; 2. MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China; 3. Harbin Center for Integrated Natural Resources Survey of China Geological Survey, Harbin 150086, Heilongjiang, China
关键词:
黄铁矿 微量元素 LA-ICP-MS原位分析 虎拉林金矿床 上黑龙江盆地
Keywords:
pyrite trace elements LA-ICP-MS in situ analysis Hulalin gold deposits Upper Heilongjiang Basin
分类号:
P611
DOI:
10.16539/j.ddgzyckx.2021.04.006
文献标志码:
A
摘要:
位于上黑龙江盆地内的虎拉林金矿床为区域重要的金矿床之一, 关于该矿床的成因一直存在较大的争议。为厘清虎拉林金矿床成矿物质来源及赋存状态, 确定矿床成因及形成机制, 作者运用LA-ICP-MS原位测试技术, 分析了矿床中不同期次黄铁矿的元素组成。结果表明, 该矿床存在PyI、PyII和PyIII三期黄铁矿, 不同期次黄铁矿的微量元素组成差异明显, PyII为金主成矿期, 其Cu、Pb、Zn、Ag、Au、Bi、As、Mo、V、Cr、Mn、Sb、Sn和Ga等微量元素含量较高。在PyI、PyII和PyIII三期黄铁矿中, Co、Ni、As、Se以类质同象形式赋存于黄铁矿中; 而Cu、Pb、Zn、Bi及Te、Mo、V、Cr、Mn、Sb、Sn、Ga分别以金属矿物微粒及纳米微粒金属矿物包体存在于黄铁矿颗粒中或间隙; Au、Ag以银金矿微粒形式存在于黄铁矿晶体及间隙中, 且As在Au的迁移、富集和沉淀等过程中具有重要的作用。三个不同期次黄铁矿的Co/Ni值均小于10, 且在Co-Ni成因判别图中PyI主要分布于沉积区, PyII与PyIII则主要分布于沉积改造区及岩浆区。结合研究区区域地质背景、矿床地质特征及黄铁矿微量元素特征, 认为虎拉林金矿床首先经历了早期沉积作用, 之后受到来自含Au、Ag、Cu、Pb、Zn、Bi等元素成矿流体的热液叠加改造, 成矿物质源于早白垩世深部岩浆, 且成矿过程中存在岩浆热液与早期沉积地层的混染作用, 是典型的斑岩型金矿床。
Abstract:
The Hulalin gold deposit in the Upper Heilongjiang Basin is one of the most important gold deposits in the region, and the origin of the gold deposit is controversial. In order to identify and clarify the source and occurrence of gold, also to determine the genesis and formation mechanism of the gold deposit, the elemental composition of pyrite in different stages were analyzed by using LA-ICP-MS in-situ measurement technique. The results indicate that there are three phases of pyrite in this gold deposit, i.e., PyI, PyII and PyIII, and different phases of pyrite have obviously different trace element compositions. PyII is the main metallogenic stage of the gold deposit. Pyrite of PyII stage has Cu, Pb, Zn, Ag, Au, Bi, As, Mo, V, Cr, Mn, Sb, Sn, and Ga contents higher than those of PyI and PyIII. Co, Ni, As and Se occur as isomorphism substitution in the overall pyrite. Cu, Pb, Zn, Bi and Te, Mo, V, Cr, Mn, Sb, Sn, Ga occur as fine to metallic mineral particles or metal mineral nanoparticle inclusions in pyrite particles respectively. Au and Ag occur as silver-gold ore particles in pyrite crystal lattice or fractures. As plays an important role in migration, enrichment and precipitation of Au during gold mineralization. Co/Ni ratios of pyrite in three different periods are less than 10, and PyI is mainly distributed in the sedimentary area, while PyII and PyIII are mainly distributed in the sedimentary modification area and magma area of Co versus Ni plot. Combining the regional geological background of the study area, the geological characteristics of the gold deposit and the trace element characteristics of pyrite, we suggest that the metallogenesis of the Hulalin gold deposit includes the early sedimentation, and subsequent hydrothermal superimposition of fluids bearing Au, Ag, Cu, Pb, Zn, and Bi. It is believed that the ore-forming materials in the Hulalin gold deposit originated from the deep intrusion of the Early Cretaceous. In the process of mineralization, there is a contaminant effect of magmatic hydrothermal fluid and early sedimentary strata. Hence, the Hulalin gold deposit is considered to be a typical porphyry gold deposit.

参考文献/References:

毕诗健, 李占轲, 唐克非, 高凯. 2016. 小秦岭东桐峪金矿床黄铁矿LA-ICP-MS微量元素特征及其成矿意义. 地球科学, 41(7): 1121-1140.
毕献武, 胡瑞忠, 彭建堂, 吴开兴. 2004. 黄铁矿微量元素地球化学特征及其对成矿流体性质的指示. 矿物岩石地球化学通报, 23(1): 1-4.
丁清峰, 孙丰月, 梁海军. 2006. 内蒙古虎拉林金矿矿床地质特征及成因探讨. 黄金, 27(10): 6-12.
傅晓明, 张德贤, 戴塔根, 高剑峰. 2018. 不同成因类型矿化中黄铁矿微量元素地球化学记录-以广东大宝山多金属矿床为例. 大地构造与成矿学, 42(3): 505-519.
巩鑫, 赵元艺, 水新芳, 程贤达, 王远超, 刘璇, 谭伟. 2020. 上黑龙江盆地虎拉林早白垩世岩体锆石U-Pb年代学、Hf同位素及地球化学特征研究. 地质学报, 94(2): 553-572.
冷成彪. 2017. 滇西北红山铜多金属矿床的成因类型: 黄铁矿和雌黄铁矿LA-ICP-MS微量元素制约. 地学前缘, 24(6): 162-175.
李睿华, 张晗, 孙丰月, 武广, 张宇婷, 王硕. 2018. 大兴安岭北段二十一站岩体年代学、地球化学及其找矿意义. 岩石学报, 34(6): 1725-1740.
李向文, 白令安, 王可勇, 周金波, 庞龙, 张飞. 2017. 上黑龙成矿带基于证据权重法的金矿综合信息成矿预测. 黄金, 38(3): 19-24.
林祖苇, 赵新福, 熊乐, 朱照先. 2019. 胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示. 地球科学进展, 34(4): 399-413.
刘桂阁, 王恩德, 李杰美, 李艳秋, 陈勇敢, 常春郊, 王治华, 朝银银. 2009. 虎拉林金矿岩石地球化学特征及成因. 黄金科学技术, 17(5): 1-5.
刘吉民, 张纯歌, 王晓勇, 常立海. 2012. 大兴安岭北部虎拉林金矿床矿石及金矿物特征. 黄金科学技术, 20(1): 32-36.
马健, 吕新彪, 但荣飞, 朱丁云, 卢飞, 袁波, 殷新. 2019. 西秦岭左家庄金矿成因研究: 来自黄铁矿微量元素及多元同位素地球化学的制约. 地学前缘, 26(5): 1-17.
毛先成, 潘敏, 刘占坤, 汪凡云, 邓浩, 韩建民, 樊红喜, 夏芳, 肖飞, 魏清峰, 三金柱. 2018.西天山阿希金矿床黄铁矿微量元素LA-ICP-MS原位测试及其指示意义. 中南大学学报(自然科学版), 49(5): 1148-1159.
乔东海, 赵元艺, 汪傲, 李玉彬, 郭硕, 李小赛, 王松. 2017. 西藏多龙矿集区地堡铜(金)矿床年代学、流体包裹体、地球化学特征及其成因类型研究. 地质学报, 91(7): 1542-1564.
宋贵斌, 宋丙剑, 岳继航. 2007. 内蒙古额尔古纳市虎拉林金矿床地质特征及成矿规律探讨. 黄金科学技术, 15(5): 30-35.
唐杰. 2016. 额尔古纳地块中生代火成岩的年代学与地球化学: 对蒙古-鄂霍茨克缝合带构造演化的制约. 长春: 吉林大学博士学位论文: 1-205.
王松, 赵元艺, 汪傲, 李玉彬, 李小赛, 郭硕. 2017. 西藏拿顿铜(金)矿床岩矿相学、流体包裹体和地球化学特征与成矿作用研究. 地质学报, 91(7): 1565-1588.
武广, 陈衍景, 孙丰月, 李景春, 李之彤, 王希今. 2008. 大兴安岭北段晚侏罗世花岗岩类地球化学及其地质找矿意义. 岩石学报, 24(4): 899-910.
武广, 孙丰月, 赵财胜, 丁清峰, 王力. 2007. 额尔古纳成矿带西北部金矿床流体包裹体研究. 岩石学报, 23(9): 2227-2240.
徐先伦, 宋丙剑, 周殿宇, 怀宝峰. 2007. 大兴安岭虎拉林金矿地质地球化学特征及找矿方向. 黄金科学技术, 15(3): 1-4.
许文良, 王枫, 裴福萍, 孟恩, 唐杰, 徐美君, 王伟. 2013. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约. 岩石学报, 29(2): 339-353.
严育通, 李胜荣, 贾宝剑, 张娜, 闫丽娜. 2012. 中国不同成因类型金矿床的黄铁矿成分标型特征及统计分析. 地学前缘, 19(4): 214-226.
袁继海, 詹秀春, 樊兴涛, 胡明月. 2011. 硫化物矿物中痕量元素的激光剥蚀-电感耦合等离子体质谱微区分析进展. 岩矿测试, 30(2): 122-127.
张德贤. 2011. 澳大利亚昆土兰州北部Ernest Henry铁氧化物型铜金(IOCG)矿床物理化学特征及磁铁矿微量元素地球化学特征——对全球IOCG矿床成因的启示. 长沙: 中南大学博士学位论文: 1-373.
张锦让, 侯林, 邹志超, 朱斯豹, 吴松洋. 2016. 泥堡金矿床载金含砷黄铁矿的微量元素LA-ICP-MS原位测定及其对矿床成因的指示意义. 岩石矿物学杂志, 35(3): 493-505.
张勇, 刘荫椿, 王科强, 王治华, 刘桂阁. 2003. 内蒙古虎拉林爆破角砾岩型金矿床特征. 黄金地质, 9(4): 13-18.
赵晓燕, 杨竹森, 张雄, 裴英茹. 2019. 邦布造山型金矿床黄铁矿原位微量元素特征及其成矿意义. 地球科学, 44(6): 2052-2062.
赵岩, 黄钰涵, 梁坤, 张岐能. 2015. 西南三江地区镇沅金矿载金黄铁矿稀土与微量元素特征. 岩石学报, 31(11): 3297-3308.
赵元艺, 刘妍, 王瑞江, 崔玉斌, 宋亮, 吕立娜, 曲晓明. 2010. 西藏班公湖-怒江成矿带及邻区铋矿化带的发现与意义. 地球学报, 31(2): 183-193.
周涛发, 张乐骏, 袁峰, 范裕, David R C. 2010. 安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约. 地学前缘, 17(2): 306- 319.
Bajwah Z U, Seccombe P K and Offler R. 1987. Trace element distribution, Co: Ni ratios and genesis of the Big Cadia iron copper deposit, New South Wales, Australia. Mineral Deposita, 22: 292-300.
Belousov I, Large R R, Meffer S, Danyushevsky L V, Steadman J and Beardsmore T. 2016. Pyrite compositions from VHMS and orogenic Au deposits in the Yilgarn Craton, Western Australia: Implications for gold and copper exploration. Ore Geology Reviews, 79(4): 474-499.
Cook N J, Ciobanu C L, Meria D, Silcock D and Wade B. 2013. Arsenopyrite-Pyrite association in an Orogenic Gold Ore: Tracing mineralization history from textures and trace. Ecomoic Geology, 108(6): 1273-1283.
Dubosq R, Lawley C J M, Rogowitz A, Schneider D A and Jackson S. 2018. Pyrite deformation and connections to gold mobility: Insight from micro-structural analysis and trace element mapping. Lithos, 310-311(3): 86-104.
Fougerouse D, Micklethwaite S, Tomkins A G, Mei Y, Kilburn M, Guagliardo P, Fisher L A, Halfpenny A, Gee M, Paterson D and Howard D L. 2016. Gold remobilisation and formation of high grade ore shoots driven by dissolution-reprecipitation replacement and Ni substi-tution into auriferous arsenopyrite. Geochimica et Cosmo-chimica Acta, 178(1): 143-159.
Hu X K, Li T, Zhang S T, Santosh M, Spencer C J, Zhao Y, Cao H W and Pei Q M. 2019. In situ trace element and sulfur isotope of pyrite constrain ore genesis in the Shapoling molybdenum deposit, East Qinling Orogen, China. Ore Geology Reviews, 105(2): 123-136.
Keith M, Hackel F, Haase K M, Schwarz-Schampera U and Klemd R. 2016. Trace element systematic of pyrite from submarine hydrothermal vents. Ore Geology Reviews, 72(11): 728-745.
Liu Z K, Mao X C, Deng H, Li B, Zhang S G, Lai J Q, Bayless R C, Pan M, Li L J and Shang Q H. 2018. Hydrothermal processes at the Axi epithermal Au deposit, western Tianshan: Insights from geochemical effects of alteration, mineralization and trace element in pyrite. Ore Geology Reviews, 102(9): 368-385.
Mao G Z, Hua R M, Gao J F, Li W Q, Zhao K D, Long G M and Lu H J. 2009. Existing forms of REE in gold-bearing pyrite of the Jinshan gold deposit, Jiangxi Province, China. Journal of Rare Earths, 27(6): 1079-1087.
Norman M, Robinson P, Clark D. 2003. Major and trace element analysis of sulfide ores by laser-ablation ICP-MS, solution ICP-MS, and XRF: New data on international materials. The Canadian Mineralogist, 41(3): 293-305.
?hlander B, Müller B, Axelsson M and Alakangas L. 2007. An attempt to use LA-ICP-MS to quantify enrichment of trace elements on pyrite surfaces in oxidizing mine tailings. Journal of Geochemical Exploration, 92(1): 1-12.
Reich M, Deditius A and Chryssoulis S. 2013. Pyrite as a Record of Hydrothermal Fluid Evolution in a Porphyry Copper System: A SIMS/EMPA Trace Element Study. Geochimica et Cosmochimica Acta, 104(3): 42-62.
Wu F Y, Sun D Y, Ge W C, Zhang Y B, Grant M L, Wilde S A and Jahn B M. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30.
Yang M Z, Li J W, Zhao X F, Xu H J and Zhou Y Y. 2019. Electron back-scattered diffraction and LA-ICP-MS analysis of pyrite from the Dahu lode gold deposit, southern North China craton: Insights into geochemistry and distribution of trace element connection to microstructure of pyrite. Ore Geology Reviews, 115(12): 1-21.
Zhang J, Deng J, Chen H Y, Yang L Q, David C, Leonid D and Gong Q J. 2014. LA-ICP-MS trace element analysis of pyrite from the Chang’an gold deposit, Sanjiang region, China: Implication for ore-forming process. Gondwana Research, 26(2): 557-575.
Zhao H X, Hartwig E F, Jiang S Y and Dai B Z. 2011. LA-ICP-MS trace element analysis of pyrite from the Xiaoqinling gold district, China Implications for ore genesis. Ore Geology Reviews, 43(1): 142-153.
Zhao S, Xu W L, Wang W, Tang J and Zhang Y H. 2014. Geochronology and Geochemistry of Middle-Late Ordovician Granites and Gabbros in the Erguna Region, NE China: Implications for the Tectonic Evolution of the Erguna Massif. Journal of Earth Science, 25(5): 841-853.
Zhou Z H, Mao J W and Lyckberg P. 2012. Geochronology and isotopic geochemistry of the A-type granites from the Huanggang Sn-Fe deposit, southern Great Hinggan Range, NE China: Implication for their origin and tectonic setting. Journal of Asian Earth Science, 49(1): 272-286.

相似文献/References:

[1]孔华,黄德志,金振民.广西平南玄武岩的地球化学特征.大地构造与成矿学,2000.24(4):342.
 KONG Hua,HUANG Dezhi,JIN Zhenmin.GEOCHEMICAL CHARACTERISTICS OF ALKALINE BASALTS IN PINGNAN COUNTY, GUANGXI.Geotectonica et Metallogenia,2000.45(4):342.
[2]孙家富.鄂东石炭系多因复成矿床的特点.大地构造与成矿学,1984.8(1):091.
 SUN Jiafu.FEATURES OF CARBONIFEROUS POLYGENETIC COMPOUND ORE DEPOSITS IN EAST HUBEI.Geotectonica et Metallogenia,1984.45(4):091.
[3]刘显凡,倪师军,金景福.滇黔桂微细浸染型金矿成矿物质来源的微量元素地球化学示踪.大地构造与成矿学,1997.21(3):205.
 LIU Xianfan,NI Shijun,JIN Jingfu.THE TRACE ELEMENT GEOCHEMICAL TRACER FOR ORE MATERIAL SOURCES OF CARLIN-TYPE GOLD DEPOSITS──A CASE STUDY OF THE GOLD DEPOSITS IN YUNNAN-GUIZHOU-GUANGXI AREA.Geotectonica et Metallogenia,1997.45(4):205.
[4]吴学益,肖化云,吴惠明.江西金山金矿床黄铁矿与金成矿关系的模拟实验研究.大地构造与成矿学,2000.24(3):274.
 WU Xue yi,XIAO Hua yun,WU Hui ming.RELATIONSHIP BETWEEN PYRITE AND GOLD MINERALIZATION IN THE JINSHAN DEPOSIT AND ITS SIMULATING EXPERIMENT.Geotectonica et Metallogenia,2000.45(4):274.
[5]董汉文,许志琴,李 源.东喜马拉雅构造结墨脱地区晚三叠世深熔作用的 锆石U-Pb年代限定.大地构造与成矿学,2014.38(2):398.
 DONG Hanwen,XU Zhiqin,LI Yuan and LIU Zhao.Zircon LA-ICP-MS U-Pb Dating of the Triassic Anatexis at Mutuo, the Eastern Himalayan Syntaxis.Geotectonica et Metallogenia,2014.45(4):398.
[6]邹 灏,淡 永*,张寿庭.重庆东南部彭水地区重晶石-萤石矿床的成矿物质来源探讨: 地球化学证据.大地构造与成矿学,2016.4(1):071.doi:10.16539/j.ddgzyckx.2016.01.007
 ZOU Hao,DAN Yong*,ZHANG Shouting.Geochemical Evidence for Sources of Ore-forming Material of Barite-Fluorite Deposits in Pengshui Area, Southeast Chongqing.Geotectonica et Metallogenia,2016.45(4):071.doi:10.16539/j.ddgzyckx.2016.01.007
[7]赵振华.矿物微量元素组成用于火成岩构造背景判别.大地构造与成矿学,2016.4(5):986.doi:10.16539/j.ddgzyckx.2016.05.008
 ZHAO Zhenhua.Discrimination of Tectonic Settings Based on Trace Elements in Igneous Minerals.Geotectonica et Metallogenia,2016.45(4):986.doi:10.16539/j.ddgzyckx.2016.05.008
[8]龙雄志.内蒙古贺根山蛇纹岩化流体来源的H-O-B同位素地球化学制约.大地构造与成矿学,2017.预出版:001.doi:10.16539/j.ddgzyckx.2016.06.019
 LONG Xiongzhi,GUO Feng*.H-O-B Isotopic Constraints on Fluid Origin of Serpentinization of the Hegenshan Ophiolite, Inner Mongolia.Geotectonica et Metallogenia,2017.45(4):001.doi:10.16539/j.ddgzyckx.2016.06.019
[9]蒋英,梁细荣*,梁新权.海南岛陆缘扩张带形成及新生代岩石圈动力学机制: 来自幔源包体的地球化学证据.大地构造与成矿学,2017.41(1):157.doi:10.16539/j.ddgzyckx.2017.01.012
 JIANG Ying,LIANG Xirong*,LIANG Xinquan.Formation Mechanism of East Asia Continental Margin Extensional Belt: Evidence from Geochemistry Study of Hainan Mantle Xenoliths.Geotectonica et Metallogenia,2017.45(4):157.doi:10.16539/j.ddgzyckx.2017.01.012
[10]龙雄志,郭 锋*,赵 亮.内蒙古贺根山蛇纹岩化流体来源的H-O-B同位素地球化学制约.大地构造与成矿学,2017.41(3):590.doi:10.16539/j.ddgzyckx.2016.06.019
 LONG Xiongzhi,GUO Feng*,ZHAO Liang.H-O-B Isotopic Constraints on Fluid Origin of Serpentinization of the Hegenshan Ophiolite, Inner Mongolia.Geotectonica et Metallogenia,2017.45(4):590.doi:10.16539/j.ddgzyckx.2016.06.019

备注/Memo

备注/Memo:
收稿日期: 2020-03-15; 改回日期: 2020-05-11
项目资助: 国家重点研发计划“蒙古-鄂霍茨克洋构造体制成矿系统物质组成与过程”(2017YFC0601303)资助。
第一作者简介: 巩鑫(1992-), 男, 硕士研究生, 矿床学与矿床地球化学专业。Email: xingong2502@163.com
通信作者: 赵元艺(1966-), 男, 研究员, 从事矿床学、地球化学研究。Email: yuanyizhao2@sina.com
更新日期/Last Update: 2021-07-20