[1]季根源,江思宏,李高峰.2021.大兴安岭南段毛登Sn-Cu矿床岩浆作用对成矿制约: 年代学、地球化学及Sr-Nd-Pb同位素证据.大地构造与成矿学,45(4):681-704.doi:10.16539/j.ddgzyckx.2021.04.004
 JI Genyuan,JIANG Sihong,LI Gaofeng.2021.Metallogenetic Control of Magmatism on the Maodeng Sn-Cu Deposit in the Southern Great Xing’an Range: Evidence from Geochronology, Geochemistry, and Sr-Nd-Pb Isotopes.Geotectonica et Metallogenia,45(4):681-704.doi:10.16539/j.ddgzyckx.2021.04.004
点击复制

大兴安岭南段毛登Sn-Cu矿床岩浆作用对成矿制约: 年代学、地球化学及Sr-Nd-Pb同位素证据
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2021年45卷04期
页码:
681-704
栏目:
构造地质与成矿学
出版日期:
2021-07-25

文章信息/Info

Title:
Metallogenetic Control of Magmatism on the Maodeng Sn-Cu Deposit in the Southern Great Xing’an Range: Evidence from Geochronology, Geochemistry, and Sr-Nd-Pb Isotopes
文章编号:
1001-1552(2021)04-0681-024
作者:
季根源1、2 江思宏1* 李高峰1、3 易锦俊2 张莉莉1 刘翼飞1
1.中国地质科学院 矿产资源研究所, 自然资源部成矿作用与资源评价重点实验室, 北京 100037; 2.自然资源实物地质资料中心, 河北 廊坊 065201; 3.北京大学 造山带与地壳演化重点实验室, 北京 100871
Author(s):
JI Genyuan1、2 JIANG Sihong1* LI Gaofeng1、3 YI Jinjun2 ZHANG Lili1 and LIU Yifei1
1. MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China; 2. Cores and Samples Center of Natural Resources, Langfang 065201, Hebei, China; 3. Key Laboratory of Orogen and Crust Evolution, Peking University, Beijing 100871, China
关键词:
大兴安岭南段 毛登锡铜矿床 锡石U-Pb年龄 锆石U-Pb年龄 Sr-Nd-Pb同位素
Keywords:
southern segment of the Great Xing’an Range Maodeng Sn-Cu deposit cassiterite U-Pb dating zircon U-Pb dating Sr-Nd-Pb isotopes
分类号:
P597; P612
DOI:
10.16539/j.ddgzyckx.2021.04.004
文献标志码:
A
摘要:
毛登Sn-Cu矿床位于大兴安岭南段内蒙古锡林浩特境内, 其Sn、Cu储量均达到中型。本文利用LA-ICP-MS锆石U-Pb法测得与成矿关系密切的花岗斑岩成岩年龄为138±0.6 Ma; 利用LA-ICP-MS锡石U-Pb法测得锡石-硫化物-石英脉型矿石中锡石的Tera-Wasserburg谐和年龄为139±3.2 Ma, 表明花岗斑岩体形成年龄与毛登矿床成矿年龄在误差范围内一致, 均形成于早白垩世。花岗斑岩富硅(SiO2=73.18%~77.3%)、富碱(Na2O+K2O=8.00%~8.69%)、富钾(K2O=4.80%~ 5.22%)、贫铝(Al2O3=11.67%~12.83%), 贫钙(CaO=0.49%~0.95%)、镁(MgO=0.12%~0.46%), 具有较高的FeOT/(MgO+FeOT)值(0.74~0.91)、10000×Ga/Al值(3.64~4.28); 微量元素亏损Ba、Sr、P、Ti等元素, 富集Rb、Th、K、Hf等元素; 稀土元素配分模式图呈典型的“海鸥型”以及显著的Eu负异常(δEu=0.05~0.2); 锆石饱和温度为817~861 ℃, 以上均说明花岗斑岩具有A型花岗岩特征。全岩Sr-Nd同位素结果显示低初始(87Sr/86Sr)i值(0.702907~0.704506)、较高的εNd(t)值(+0.8~+4.4)以及年轻的二阶段模式年龄(tDM2=572~863 Ma), 说明花岗斑岩可能为新生地壳经部分熔融后, 在上升过程中经历较强烈的结晶分异演化作用而形成。Pb同位素组成指示岩体和矿石的Pb同位素组成接近, 说明成矿物质主要来源于岩浆。微量元素特征、构造环境判别图解显示花岗斑岩具有A2型造山后花岗岩特征, 成岩环境处于伸展构造背景。结合前人研究成果以及矿区地质特征、成岩(矿)年代学、Sr-Nd-Pb同位素特征, 认为毛登矿床成矿物质的富集与花岗斑岩体侵入密切相关, 矿床成矿物质的富集规模受花岗斑岩结晶分异演化程度制约。
Abstract:
The Maodeng Sn-Cu deposit is a medium-sized deposit in the southern segment of the Great Xing’an Range located in Xinlinhot City of Inner Mongolia. Whole rock geochemistry, LA-ICP-MS zircon and cassiterite U-Pb ages, and Sr-Nd-Pb isotopic compositions of the granite porphyry and Sn-Cu ores in the Maodeng deposit have been studied in detail and are reported in this contribution. The zircon from the ore-related granite porphyry has a weighted mean U-Pb age of 138±0.6 Ma, while the cassiterite from cassiterite-sulphide-quartz vein-type ore has a Tera-Wasserburg concordant U-Pb age of 139±3.2 Ma. These two ages are consistent within error, which indicates that the emplacement of granite porphyry and Sn-polymetallic mineralization in Maodeng took place during the Early Cretaceous. Geoche-mically, the granite porphyry is characterized by high SiO2 (73.18% to 77.3%), (Na2O+K2O) (8.00% to 8.69%), and K2O (4.80% to 5.22%), with low CaO (0.49% to 0.95%), Al2O3 (11.67% to 12.83%), MgO (0.12% to 0.46%), and relatively high FeOT/(MgO+FeOT) (0.74 to 0.91), and 10000×Ga/Al (3.64 to 4.28) ratios. The rock is enriched in Rb, Th, K, Hf, and depleted in Ba, Sr, P and Ti. The REE distribution patterns of the granite porphyry are of typical gull-wing shape with obviously negative Eu anomalies (δEu=0.05 to 0.2). Zircon saturation temperatures of the granite porphyry vary from 817 to 861 ℃. All these show that the granite porphyry exhibits geochemical characteristics typical for A-type granite. The granite porphyry has relatively low (87Sr/86Sr)i values (0.702907 to 0.704506), high εNd(t) values (+0.8 to +4.4) and young two-stage Nd model ages (tDM2=572 to 863 Ma), suggesting that the rock was dominantly derived from partial melting of a juvenile lower crust, followed by strong fractional crystallization during magma ascent. The Pb isotope compositions of the granite porphyry and ores are similar, indicating that the Pb of the ores could be sourced from the granite porphyry. According to the trace element characteristics, chemical subdivision diagrams and tectonic environment discrimination diagrams, the granite porphyry in the Maodeng belongs to A2-type granite, which formed in an extensional setting. Based on previous studies and combining geological characteristics, ages of the ores and granite porphyry, and Pb istope characteristics, it is believed that the intensely fractionated granite porphyry at the Maodeng deposit is spatially and temporally, and possibly genetically related to the Sn-Cu mineralization. It is proposed that the size of the Sn deposit is constrained by the degree of fractional crystallization of the magma.

参考文献/References:

蔡剑辉, 阎国翰, 肖成东, 王关玉, 牟保磊, 张任祜. 2004. 太行山-大兴安岭构造岩浆带中生代侵入岩Nd、Sr、Pb同位素特征及物质来源探讨. 岩石学报, 20(5): 1225-1242.
常勇, 赖勇. 2010. 内蒙古银都银铅锌多金属矿床成矿流体特征及成矿年代学研究. 北京大学学报(自然科学版), 46(4): 581-593.
陈公正, 武广, 李铁刚, 刘瑞麟, 武利文, 章陪春, 张彤, 陈毓川. 2018. 内蒙古道伦达坝铜钨锡矿床LA-ICP- MS锆石和锡石U-Pb年龄及其地质意义. 矿床地质, 27(2): 225-245.
陈郑辉, 王登红, 盛继福, 应立娟, 梁停, 王成辉, 刘丽君, 王永幕. 2015. 中国锡矿成矿规律概要. 地质学报, 89(6): 1026-1037.
程天赦, 杨文静, 王登红. 2014. 内蒙古西乌旗阿鲁包格山A型花岗岩锆石U-Pb年龄、地球化学特征及地质意义. 大地构造与成矿学, 38(3): 718-728.
崔玉荣, 涂家润, 陈枫, 郝爽, 叶丽娟, 周红英, 李惠民. 2017. LA-(MC)-ICP-MS锡石U-Pb定年研究进展. 地质学报, 91(6): 1386-1399.
顾玉超, 陈仁义, 贾斌, 宋万兵, 余昌涛, 鞠楠. 2017. 内蒙古边家大院铅锌银矿床深部正长花岗岩年代学与形成环境研究. 中国地质, 44(1): 101-117.
郭锋, 范蔚茗, 王岳军, 林舸. 2001. 大兴安岭南段中生代双峰式火山作用. 岩石学报, 17(1): 161-168.
郭硕, 何鹏, 张学斌, 崔玉荣, 张天福, 张阔, 来林, 刘传宝. 2019. 大兴安岭南段毛登-小孤山锡多金属矿田年代学、地球化学特征及其地质意义. 矿床地质, 38(3): 509-525.
郝立波, 段国正, 李殿超, 吕志成, 潘军. 1999. 大兴安岭锡多金属成矿带花岗岩地球化学特征. 世界地质, 18(2): 66-72.
郝爽, 李惠民, 李国占, 耿建珍, 周红英, 肖志斌, 崔玉荣, 涂家润. 2016. LA-ICP-MS测定锡石U-Pb同位素年龄时两种普通铅扣除方法的原理及适用性比较. 地质通报, 35(4): 622-632.
河南省有色金属地质勘查总院. 2009. 内蒙古自治区锡林浩特市毛登矿区钼锡铜矿详查报告: 1-179.
洪大卫, 王式洸, 谢锡林, 张季生. 2000. 兴蒙造山带正εNd(t)值花岗岩的成因和大陆地壳生长. 地学前缘, 7(2): 441-455.
侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492.
贾小辉, 王强, 唐功建. 2009. A型花岗岩的研究进展及意义. 大地构造与成矿学, 33(3): 465-480.
江思宏, 梁清玲, 刘翼飞, 刘妍. 2012. 内蒙古大井矿区及外围岩浆岩锆石U-Pb年龄及其对成矿时间的约束. 岩石学报, 28(2): 495-513.
江思宏, 张莉莉, 刘翼飞, 刘春花, 康欢, 王丰翔. 2018. 兴蒙造山带成矿规律及若干科学问题. 矿床地质, 37(4): 671-711.
黎彤, 袁怀雨, 吴胜昔. 1998. 中国花岗岩类和世界花岗岩类平均化学成分的对比研究. 大地构造与成矿学, 22(1): 24-29.
李昌年. 1992. 火成岩微量元素岩石学. 武汉: 中国地质大学出版社: 97-109.
李睿华. 2019. 大兴安岭南段锡林浩特地区锡铜多金属矿床的成矿作用. 北京: 北京大学博士学位论文: 1-240.
李小伟, 莫宣学, 赵志丹, 朱弟成. 2010. 关于A型花岗岩判别过程中若干问题的讨论. 地质通报, 29(2-3): 278-285.
梁维, 杨竹森, 郑远川. 2015. 藏南扎西康铅锌多金属矿绢云母Ar-Ar年龄及其成矿意义. 地质学报, 89(3): 560-568.
刘昌实, 陈小明, 陈培荣, 王汝成, 胡欢. 2003. A型岩套的分类、判别标志和成因. 高校地质学报, 9(4): 573- 591.
刘传宝, 王强, 王建忠, 郎欣欣, 张猛, 侯冠宇. 2018. 内蒙古毛登地区阿鲁包格山花岗斑岩地质特征及U-Pb年代学意义. 矿产勘查, 9(7): 1316-1321.
刘建明, 张锐, 张庆洲. 2004. 大兴安岭地区的区域成矿特征. 地学前缘, 11(1): 269-273.
刘瑞麟, 武广, 李铁刚, 陈公正, 武利文, 章培春, 张彤, 江彪, 刘文元. 2018. 大兴安岭南段维拉斯托锡多金属矿床LA-ICP-MS锡石和锆石U-Pb年龄及其地质意义. 地学前缘, 25(5): 1-15.
刘瑞麟. 2018. 内蒙古维拉斯托稀有金属-锡多金属成矿系统的成矿作用. 北京: 北京大学博士学位论文: 1-185.
刘伟, 潘小菲, 谢烈文, 李禾. 2007. 大兴安岭南段林西地区花岗岩类的源岩: 地壳生长的时代和方式. 岩石学报, 23(2): 441-460.
刘新, 李学刚, 祝新友, 孙雅琳, 蒋昊原, 蒋斌斌, 王海, 程细音. 2017. 内蒙古白音查干锡多金属矿床成矿作用研究Ⅱ: 成矿花岗斑岩年代学、地球化学特征及地质意义. 矿产勘查, 8(6): 981-996.
刘玉强. 1996a. 内蒙古毛登锡铜矿床地质及成因. 矿床地质, 15(2): 133-143.
刘玉强. 1996b. 毛登锡铜矿床成矿分带及其成因讨论. 矿床地质, 15(4): 318-329.
吕志成, 段国正, 郝立波, 李殿超, 潘军, 吴丰昌. 2004. 大兴安岭中南段中生代中基性火山岩岩石学地球化学研究. 高校地质学报, 10(2): 186-198.
吕志成, 段国正, 刘丛强, 郝立波, 李殿超, 魏存第. 2000. 大兴安岭地区银矿床类型、成矿系列及成矿地球化学特征. 矿物岩石地球化学通报, 19(4): 305-309.
毛景文, 谢桂青, 张作衡, 李晓峰, 王义天, 张长青, 李永峰. 2005. 中国北方中生代大规模成矿作用的期次及其地球动力学背景. 岩石学报, 21(1): 169-188.
毛景文, 周振华, 武广, 江思宏, 刘成林, 李厚民, 欧阳荷根, 刘军. 2013. 内蒙古及邻区矿床成矿规律与成矿系列. 矿床地质, 32(4): 715-729.
邵济安, 牟保磊, 朱慧忠, 张履桥. 2010. 大兴安岭中南段中生代成矿物质的深部来源与背景. 岩石学报, 26(3): 649-656.
石得凤. 2007. 内蒙古锡林浩特市毛登多金属矿区地质特征及成矿模式研究. 长沙: 中南大学硕士学位论文: 1-72.
汪洋. 2008. 再论南岭侏罗纪“铝质”A型花岗岩的成因及其对古低温线的制约. 大地构造与成矿学, 32(3): 365-381.
汪洋. 2009. 北京白查A型花岗岩的地球化学特征及其成因与构造指示意义. 岩石学报, 25(1): 13-24.
王春女, 王全明, 于晓飞, 韩振哲. 2016. 大兴安岭南段锡矿成矿特征及找矿前景. 地质与勘探, 52(2): 220- 227.
王金芳, 李英杰, 李红阳, 董培培. 2017. 内蒙古西乌旗努和特早白垩世A型花岗岩LA-ICP-MS锆石U-Pb年龄及其地质意义. 地质通报, 36(8): 1343-1358.
王金芳, 李英杰, 李红阳, 董培培. 2018a. 内蒙古西乌旗德勒哈达早白垩世A型花岗岩形成时代: 锆石U-Pb定年证据. 中国地质, 45(1): 197-198.
王金芳, 李英杰, 李红阳, 董培培. 2018b. 内蒙古西乌旗石匠山晚侏罗世-早白垩世A型花岗岩锆石U-Pb年龄及构造环境. 地质通报, 37(2-3): 382-396.
王京彬, 王玉往, 王莉娟. 2005. 大兴安岭南段锡多金属成矿系列. 地质与勘探, 41(6): 15-20.
王良玉, 廖群安, 江云川, 罗婷, 胡朝斌, 肖典, 汤帅, 刘洋. 2016. 内蒙古锡林浩特早白垩世晚期钾玄质火山岩成因及构造环境. 地质通报, 35(6): 919-931.
王楠, 吴才来, 秦海鹏. 2017. 川西义敦岛弧中生代典型花岗岩体矿物学、地球化学特征及岩浆来源探讨. 地质论评, 63(4): 981-1000.
王涛, 刘燊. 2013. 胶南花岗岩锆石饱和温度及其地质意义. 矿物岩石地球化学通报, 32(5): 619-624.
王喜龙, 刘家军, 翟德高, 杨永强, 王建平, 张琪彬, 张安立. 2014. 内蒙古边家大院矿区石英斑岩U-Pb年代学、岩石地球化学特征及其地质意义. 矿物岩石地球化学通报, 33(5): 654-665.
王长明, 张寿庭, 邓军. 2006. 大兴安岭南段铜多金属成矿时空结构. 成都理工大学学报(自然科学版), 33(5): 478-484.
吴福元, 曹林. 1999. 东北亚地区的若干重要基础地质问题. 世界地质, 18(2): 1-13.
吴福元, 江博明, 林强. 1997. 中国北方造山带造山后花岗岩的同位素特点与地壳生长意义. 科学通报, 42(20): 2188-2192.
吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238.
吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究. 中国科学, 47(7): 745-765.
肖成东, 张忠良, 赵利青. 2004. 东蒙地区燕山期花岗岩Nd、Sr、Pb同位素及其岩石成因. 中国地质, 31(1): 57-63.
徐备, 赵盼, 鲍庆中, 周永恒, 王炎阳, 罗志文. 2014. 兴蒙造山带前中生代构造单元划分初探. 岩石学报, 30(7): 1841-1857.
杨奇荻, 郭磊, 王涛, 曾涛, 张磊, 童英, 史兴俊. 2014. 张建军大兴安岭中南段甘珠尔庙地区晚中生代两期花岗岩的时代、成因、物源及其构造背景. 岩石学报, 30(7): 1961-1981.
杨武斌, 单强, 赵振华, 罗勇, 于学元, 李宁波, 牛贺才. 2011. 巴尔哲地区碱性花岗岩的成岩和成矿作用: 矿化和未矿化岩体的比较. 吉林大学学报(地球科学版), 41(6): 1689-1704.
姚磊, 吕志成, 叶天竺, 庞振山, 贾宏翔, 张志辉, 吴云峰, 李睿华. 2017. 大兴安岭南段内蒙古白音查干Sn多金属矿床石英斑岩的锆石U-Pb年龄、地球化学和Nd-Hf同位素特征及地质意义. 岩石学报, 33(10): 3183-3199.
要梅娟, 曹烨, 刘家军, 翟德高. 2016. 内蒙古黄岗梁铁锡矿床辉钼矿Re-Os年龄及其成因意义. 矿产勘查, 7(3): 399-403.
要梅娟, 刘家军, 翟德高, 王建平, 邢永亮. 2012. 大兴安岭南段多金属成矿带硫、铅同位素组成及其地质意义. 吉林大学学报(地球科学版), 42(2): 362-373.
叶天竺. 2013. 矿床模型综合地质信息预测技术方法理论框架. 吉林大学学报(地球科学版), 43(7): 1053-1072.
袁小平, 杨瑞, 邵长亮, 薛燕萍. 2016. 内蒙古锡林浩特毛登铜矿控矿因素及矿床成因分析. 甘肃冶金, 38(1): 81-86.
翟德高, 刘家军, 杨永强, 王建平, 定立, 刘星旺, 张梅, 要梅娟, 苏犁, 张红雨. 2012. 内蒙古黄岗梁铁锡矿床成岩、成矿时代与构造背景. 岩石矿物学杂志, 31(4): 513-523.
张德全. 1993. 大兴安岭南段不同构造环境中的两类花岗岩. 岩石矿物学杂志, 12(1): 1-11.
张德全, 刘勇, 李大新. 1993. 大兴安岭地区与铜多金属有关的侵入岩//大兴安岭及邻区铜多金属矿床论文集. 北京: 地震出版社: 50-64.
张东亮, 彭建堂, 胡瑞忠, 袁顺达, 郑德顺. 2011. 锡石U-Pb同位素体系的封闭性及其测年的可靠性分析. 地质论评, 57(4): 549-554.
张连昌, 陈志广, 周新华, 英基丰, 王非, 张玉涛. 2007. 大兴安岭根河地区早白垩世火山岩深部源区与构造-岩浆演化: Sr-Nd-Pb-Hf同位素地球化学制约. 岩石学报, 23(11): 2823-2835.
张巧梅, 翟东兴, 李华. 2013. 内蒙古毛登钼锡铜矿床地质特征及成因探讨. 矿产勘查, 4(3): 248-256.
张天福, 郭硕, 辛后田, 张云, 何鹏, 刘文刚, 张阔, 王可祥, 张超. 2019. 大兴安岭南段维拉斯托高分异花岗岩体的成因与演化及其对Sn-(Li-Rb-Nb-Ta)多金属成矿作用的制约. 地球科学, 44(1): 248-267.
张晓玲, 张文山. 2010. 内蒙古毛登锡铜钼多金属矿床花岗岩及火山角砾熔岩地质特征及找矿意义. 矿床地质, 29(S1): 337-338.
章荣清, 陆建军, 王汝成, 姚远, 丁腾, 胡加斌, 张怀峰. 2016. 湘南王仙岭地区中生代含钨与含锡花岗岩的岩石成因及其成矿差异机制. 地球化学, 45(2): 105- 132.
赵国龙, 杨桂林, 傅嘉友, 杨玉琢. 1989. 大兴安岭中南部中生代火山岩. 北京: 北京科学技术出版社: 1- 260.
赵海杰, 毛景文, 向君峰, 周振华, 魏克涛, 柯于富. 2010. 湖北铜绿山矿床石英闪长岩石的矿物学及Sr-Nd-Pb同位素特征. 岩石学报, 26(3): 768-784.
赵辉, 李舢, 王涛, 王文志, 焦永艳. 2015. 大兴安岭南段黄岗梁地区早白垩世岩浆作用的时代、成因及其构造意义. 地质通报, 34(12): 2203-2218.
赵一鸣, 王大畏, 张德全, 傅先政, 鲍修坡, 李鹤年, 艾永富. 1994. 内蒙古东南部铜多金属成矿地质条件及找矿模式. 北京: 地震出版社: 1-234.
赵振华, 熊小林, 韩小东. 1999. 花岗岩稀土元素四分组效应形成机理探讨——以千里山和巴尔哲花岗岩为例. 中国科学(D辑), 29(4): 331-338.
周振华, 吕林素, 王挨顺. 2011. 内蒙古黄岗锡铁矿床花岗岩深部源区特征与构造岩浆演化: Sr-Nd-Pb-Hf多元同位素制约. 地质科技情报, 30(1): 1-14.
周振华, 吕林素, 杨永军, 李涛. 2010. 内蒙古黄岗锡铁矿区早白垩世A型花岗岩成因: 锆石U-Pb年代学和岩石地球化学制约. 岩石学报, 26(12): 3521-3537.
祝新友, 张志辉, 付旭, 李柏阳, 王艳丽, 焦守涛, 孙雅琳. 2016. 内蒙古赤峰维拉斯托大型锡多金属矿的地质地球化学特征. 中国地质, 43(1): 188-208.
Batchelor R A and Bowden P. 1985. Petrogeneic interpre-tation of granitoid rock series using multicationic paramters. Chemical Geology, 48: 43-55.
Bau M. 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contri-butions to Mineralogy and Petrology, 123: 323-333.
Bau M. 1997. The lanthanide tetrad effect in highly evolved felsic igneous rocks—A reply to the comment by Y. Pan. Contributions to Mineralogy and Petrology, 128(4): 409-412.
Chappell B W and White A J R. 1992. I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1-2): 1-26.
Chen Y J, Zhang C, Wang P, Pirajno F and Li N. 2017. The Mo deposits of Northeast China: A powerful indicator of tectonic settings and associated evolutionary trends. Ore Geology Reviews, 81(2): 602-640.
Clemens J D, Holloway J R and White A J R. 1986. Origin of an A-type granite: Experimental constraints. American Mineralogist, 71(3-4): 317-324.
Collins W J, Beams S D, White A J R and Chappell B W. 1982. Nature and origin of A-type granites with particular reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200.
Dickin A P. 1994. Nd isotope chemistry of Tertiary igneous rocks from Arran, Scotland: Implications for magma evolution and crustal structure. Geological Magazine, 131(3): 329-333.
Dostal J and Chatterjee A K. 2000. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada). Chemical Geology, 163(1): 207-218.
Eby G N. 1992. Chemical subdivision of the A-type granitoids: Petrognetic and tectonic implications. Geology, 20(7): 641-644.
Engebretson D C, Cox A and Gordon R G. 1985. Relative motions between oceanic and continental plates in the Pacific basin. Geological Society of America Specical Paper, 206: 1-59.
Fan W M, Guo F, Wang Y J and Lin G. 2003. Late Mesozoic calcalkaline volcanism of post orogenic extension in the northern Da Hinggan Mountains, northeastern China. Journal of Volcanology and Geothernal Rearch, 121(1-2): 115-135.
Guo C L, Chen Y C, Zeng Z L and Lou F S. 2012. Petrogenesis of the Xihuashan granites in southeastern China: Constraints from geochemistry and in-situ analyses of zircon U-Pb-Hf-O isotopes. Lithos, 148: 209-227.
Han B F, Wang S G, Jan B M, Hong D W, Kagami H and Sun Y L. 1997. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: Geochemistry and Nd-Sr isotopic evidence, and impli-cations for Phanerozoic crustal growth. Chemical Geology, 138(3-4): 135-159.
Harris C, Marsh J S and Milner S C. 1999. Petrology of the alkaline core of the Messum igneous complex, Nambibia: Evidence for the progressively decreasing effect of crustal contamination. Journal of Petrology, 40(9): 1377-1397.
Irber W. 1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zu/Hf of evolving peraluminous granite suites. Geochimica et Cosmochimica Acta, 63(3-4): 489-508.
Irvine A J and Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Science, 8(5): 523-548.
Jahn B M, Wu F Y and Chen B. 2000. Massive granitoid generation in Central Asia: Nd isotope evidence and implications for continental growth in the Phanerozoic. Episodes, 23(2): 82-92.
Jahn B M, Wu F Y, Capdevila R, Martineau F, Zhao Z H and Wang Y X. 2001. Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China. Lithos, 59(4): 171-198.
Jahn B M, Wu F Y, Lo C H and Tsai C H. 1999. Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotropic evidence from post-collosional maifc-ultramafic intrusion of the northern Dabie complex, central China. Chemical Geology, 157(1): 119-146.
Jiang S H, Bagas L, Hu P, Han N, Chen C L, Liu Y and Kang H. 2016. Zircon U-Pb ages and Sr-Nd-Hf isotopes of the highly fractionated granite with tetrad REE patterns in the Shamai tungsten deposit in eastern Inner Mongolia, China: Implications for the timing of mineralization and ore genesis. Lithos, 261: 322-339.
King P L, Chappell B W, Allen C M and White A J R. 2001. Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Australian Journal of Earth Sciences, 48(4): 501-514.
King P L, White A J R, Chappell B W and Allen C M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391.
Le Maitre R W. 1976. The chemical variability of some common igneous rocks. Petrology, 17(4): 589-598.
Liu Y F, Jiang S H and Bagas L. 2016. The genesis of metal zonation in the Weilasituo and Bairendaba Ag-Zn-Pb- Cu-(Sn-W) deposits in the shallow part of a porphyry Sn-W-Rb system, Inner Mongolia, China. Ore Geology Reviews, 75: 150-173.
Liu Y S, Gao S, Hu Z C, Gao S, Gunther D, Xu J, Gao C G and Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43.
Ludwig K R. 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication: 1-70.
Maniar P D and Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635-643.
Middlemost E A K. 1994. Naming materials in the magma/ igneous rock system. Earth-Science Reviews, 37(3-4): 215-224.
Mingram B, Trumbull R B, Littman S and Gertenberger H. 2000. A Petrogenetic study of anorogenic felsic magmatism in the Cretaceous Paresis ring complex, Namibia: Eviendence for mixing of crust and mantle-derived components. Lithos, 54(1): 1-22.
Mushkin A, Navon O, Halicz L, Hartmann G and Stein M. 2003. The petrogenesis of A-type magmas from the Amram Massif, Southern Israel. Journal of Petrology, 44(5): 815-832.
Nasdala L, Hofmeister W G, Norberg N, Mattinson J M, Corfu F, Dorr W, Kamo SL, Kennedy A K, Kronz A and Reiners P W. 2008. Zircon M257: A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geoanalytical Research, 32(3): 247-265.
Ouyang H G, Mao J W, Zhou Z H and Su H M. 2015. Late Mesozoic metallogeny and intracontinental magmatism, southern Great Xing’an Range, northeastern China. Gondwana Research, 27(3): 1153-1172.
Pearce J A, Harris N B W and Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983.
Peccerillo A and Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81.
Rapp R P and Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891-931.
Streckeisen A L. 1973. Plutonic rocks: Classification and nomenclature recommended by the IUGS subcom-mission on the systematics of igneous rocks. Geotimes, 18(7): 26-30.
Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes // Sauders A D and Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345.
Wang F X, Bagas L, Jiang S H and Liu Y F. 2017. Geological, geochemical, and geochronological charac-teristics of Weilasituo Sn-polymetal deposit, Inner Mongolia, China. Ore Geology Reviews, 80: 1206-1229.
Watson E B and Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effect in a variety of crustal magmas types. Earth and Planetary Science Letters, 64(2): 295-304.
Whalen J B, Currie K L and Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petro-logy, 95(4): 407-419.
Wu F Y, Jahn B M, Wilde S A and Sun D Y. 2000. Phanerozoic continental crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics, 328(1-2): 89-113.
Wu F Y, Jahn B M, Wilde S A, Lo C H, Yui T F, Lin Q, Ge W C, Sun D Y. 2003. Highly fractionated I-type granites in NE China (II): Isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos, 67(3-4): 191-204.
Wu F Y, Sun D Y, Li H M, Jahn B M and Wilde S A. 2002. A-type granites in northeastern China: Age and geoche-mical constraints on their petrogenesis. Chemical Geology, 187(1-2): 143-173.
Wu F Y, Sun D Y, Jahn B M and Wilde S A. 2004. A Jurassic garnet-bearing granitic pluton from NE China showing tetrad REE patterns. Journal of Asian Earth Sciences, 23(5): 731-744.
Wyllie P J. 1984. Constraints imposed by experimental petrology on possible and impossible magma sources and products. Philosophical Transactions of the Royal Society of London Series A, 310(1514): 439-456.
Yuan S D, Peng J T, Hao S, Li H M, Geng J Z and Zhang D L. 2011. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization. Ore Geology Reviews, 43(1): 235-242.
Zartman R E and Doe B R. 1981. Lead-isotope evolution. U. S. Geological Survey Professional Paper: 169-170.
Zhai D G, Liu J J, Zhang A L and Sun Y Q. 2017. U-Pb, Re-Os, and 40Ar/39Ar geochronology of porphyry Sn±Cu±Mo and polymetallic Ag-Pb-Zn-Cu vein mineralization at Bianjiadayuan, InnerMongolia, Northeast China: Implications for discrete mineralization events. Economic Geology, 112(8): 2041-2059.
Zhang L L, Jiang S H, Bagas L, Han N, Liu Y and Liu Y F. 2019. Element behaviour during interaction of magma and fluid: A case study of Chamuhan Granite, and implications on the genesis of W-Mo mineralization. Lithos, (342-343): 31-34.
Zhao Z H, Xiong X L, Han Z D, Wang Y X, Wang Q, Bao Z W and Jahn B M. 2002. Controls on the REE tetrad effect in granites: Evidence from the Qianlishan and Baerzhe granites, China. Geochemical Journal, 36(6): 527-543.
Zindler A and Hart S. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493-571.

备注/Memo

备注/Memo:
收稿日期: 2020-02-04; 改回日期: 2020-06-19
项目资助: 科技部深地项目(2017YFC0601303)、国家自然科学基金项目(41873051)、地科院基本业务费项目(YYWF201715)和地质调查项目(DD20190437、DD20190411)联合资助。
第一作者简介: 季根源(1987-), 男, 工程师, 博士研究生, 矿物学、岩石学、矿床学专业。Email: csujigenyuan@163.com
通信作者: 江思宏(1968-), 男, 研究员, 博士生导师, 主要从事金属矿床成矿规律研究。Email: jiangsihong1@163.com
更新日期/Last Update: 2021-07-20