[1]仲 正,仝来喜,刘 兆.2021.中国阿尔泰造山带的变形-变质历史研究: 以富蕴县乌恰沟地区为例.大地构造与成矿学,45(4):651-666.doi:10.16539/j.ddgzyckx.2021.04.002
 ZHONG Zheng,TONG Laixi,LIU Zhao and LI Chao.2021.Deformation and Metamorphic History of the Chinese Altai Orogenic Belt: A Case Study from the Wuqiagou Area in Fuyun County.Geotectonica et Metallogenia,45(4):651-666.doi:10.16539/j.ddgzyckx.2021.04.002
点击复制

中国阿尔泰造山带的变形-变质历史研究: 以富蕴县乌恰沟地区为例
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2021年45卷04期
页码:
651-666
栏目:
构造地质学
出版日期:
2021-07-25

文章信息/Info

Title:
Deformation and Metamorphic History of the Chinese Altai Orogenic Belt: A Case Study from the Wuqiagou Area in Fuyun County
文章编号:
1001-1552(2021)04-0651-016
作者:
仲 正1、2 仝来喜3* 刘 兆1、2 李 超1、2
1.中国科学院 广州地球化学研究所, 同位素地球化学国家重点实验室, 广东 广州 510640; 2.中国科学院大学, 北京 100049; 3.西北大学 地质系, 大陆动力学国家重点实验室, 陕西 西安 710069
Author(s):
ZHONG Zheng1、2 TONG Laixi3* LIU Zhao1、2 and LI Chao1、2
1. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, Shaanxi, China
关键词:
中国阿尔泰 富蕴 古生代 变形变质作用 P-T轨迹
Keywords:
Chinese Altai Fuyun Paleozoic deformation and metamorphism P-T path
分类号:
P588.3
DOI:
10.16539/j.ddgzyckx.2021.04.002
文献标志码:
A
摘要:
通过对中国阿尔泰造山带南缘富蕴县乌恰沟地区出露的含石榴子石副片麻岩进行详细的野外地质观察及岩相学分析, 确定了至少三期构造变形-变质事件: ①第一期变形变质作用(D1)可划分为早期的埋深变质作用与后期的伸展作用, 埋深作用初期发育M1期变质矿物组合(黑云母+斜长石+石英), 该阶段P-T条件为4.6×102 MPa/~590 ℃, 后达到P-T条件为5.5×102 MPa/~650 ℃的变质峰期, 发育M2期变质矿物组合(矽线石+石榴子石+黑云母+斜长石+石英), 随后由于泥盆纪(400~380 Ma)地壳的水平伸展运动, 发生广泛的减压熔融且伴随石榴子石的生长, 并形成以混合岩化条带为基础的区域上的主性面理S1; ②第二期变形变质(D2)为发生于晚泥盆世(~380 Ma)的褶皱构造, 区域上形成以S1面理为基础的NE-SW向近直立褶皱(F1), 该期变形导致后期位于同一地壳深度的岩石, 变质程度在垂直于F1方向上呈现出对称分布的特点, 该阶段P-T条件为4.5×102 MPa/~630 ℃; ③第三期变形变质(D3)为发生于早二叠世(~280 Ma)的NE-SW向压扭性变形, 表现为在被D2变形改造过的S1面理为基础上, 形成由一系列NW-SE向小型褶皱F2组成的大背形, 此时伴有左旋剪切, 并发育以尖晶石+堇青石+黑云母+斜长石矿物组合为特征的M4期变质矿物组合, 其P-T条件为~2.1×102 MPa/~ 615 ℃。以上不同阶段温压条件定义了一个顺时针P-T轨迹, 反映了岩石在埋藏后经历伸展减压, 并伴随热量的加入。
Abstract:
Based on detailed geological observations and petrographic analyses, three phases of tectonic deformation and metamorphism have been determined for the garnet-bearing paragneisses exposed in the Wuqiagou area in the southern margin of the Chinese Altai orogen. The first phase of metamorphism and deformation D1 can be further divided into the early burial metamorphism and the late extension. The M1 metamorphic mineral assemblage of Bi+Pl+Q formed at the initial stage of the burial metamorphism, indicating a P-T conditions of about 4.6×102 MPa/~590 ℃. The growth of M2 metamorphic mineral assemblage of Sil+Grt+Bi+Pl+Q in the late stage suggests a peak P-T conditions of 4.5× 102 MPa/~630 ℃. Then, the horizontal extension during 400 to 380 Ma led to extensive decompression melting of the lower crust, and formed the main foliation (S1) in the area based on the migmatitization strip. The second phase of deformation D2 is a folding deformation occurred at ~380 Ma. It formed a series of NE-SW trending upright folds F1 based on the foliation S1. The metamorphic grade presents a symmetric distribution at the core of the folds F2 along the direction of F1 axial because of this deformation. This stage is the end of the growth of garnet porphyroblast, and the P-T conditions are 4.5×102 MPa/~630 ℃. The third phase of deformation D3 is a NE-SW direction compression-shear deformation, which was activated at ~280 Ma. This deformation is shown as a series of NE-SW trending folds and composes regional antiform F2 based on the foliation S1 which was reworked by D2 and followed by a sinistral strike-slip deformation. This deformation corresponds to the M4 metamorphism, which is represented by an assemblage of Spl+Crd+Bi+Pl+Q with P-T conditions of ~2.1×102 MPa/615 ℃. The above P-T estimates define a clockwise P-T path. This clockwise P-T trajectory reflects that the rocks underwent an extensional decompression after burial, and this process was accompanied by heat input.

参考文献/References:

柴凤梅, 杨富全, 刘锋, 耿新霞, 姜丽萍, 吕书君, 郭旭吉, 陈斌. 2012. 阿尔泰南缘冲乎尔盆地康布铁堡组变质酸性火山岩年龄及岩石成因. 地质论评, 58(6): 1023-1037.
陈汉林, 杨树锋, 厉子龙, 余星, 肖文交, 袁超, 林秀斌, 李继亮. 2006. 阿尔泰造山带富蕴基性麻粒岩锆石 SHRIMP U-Pb年代学及其构造意义. 岩石学报, 22(5): 1351-1358.
单强, 曾乔松, 罗勇, 杨武斌, 张红, 裘瑜卓, 于学元. 2011. 新疆阿尔泰康布铁堡组钾质和钠质流纹岩的成因及同位素年代学研究. 岩石学报, 27(12): 3653- 3665.
韩宝福, 季建清, 宋彪, 陈立辉, 李宗怀. 2004. 新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义. 科学通报, 49(22): 2324-2328.
胡霭琴, 张国新, 张前锋, 李天德, 张积斌. 2002. 阿尔泰造山带变质岩系时代问题的讨论. 地质科学, 37(2): 129-142.
历子龙, 陈汉林, 杨树锋, 肖文交, Yoshiaki, TAINOSHO. 2004. 阿尔泰基性麻粒岩的发现: 来自矿物学的证据. 岩石学报, 20(6): 1445-1455.
刘飞, 王镇远, 林伟, 陈科, 姜琳, 王清晨. 2013. 中国阿尔泰造山带南缘额尔齐斯断裂带的构造变形及意义. 岩石学报, 29(5): 1811-1824.
刘伟, 刘丽娟, 刘秀金, 尚海军, 周刚. 2010. 阿尔泰南缘早泥盆世康布铁堡组的SIMS锆石U-Pb年龄及其向东向北延伸的范围. 岩石学报, 26(2): 387-400.
刘崴国, 韩静波, 薛晓峰, 郭伟伟. 2011. 阿尔泰山南缘二叠纪地壳伸展减薄——来自侵入岩的证据. 新疆地质, 29(3): 270-274.
刘兆, 仝来喜. 2015. 阿尔泰造山带晚古生代高温变质作用与塔里木地幔柱活动的成因联系: 来自泥质和镁铁质麻粒岩的证据. 岩石学报, 31(6): 1761-1773.
牛贺才, 张海洋, 许继峰, 陈繁荣, 单强. 中国新疆阿尔泰晚古生代火山作用及成矿. 北京: 地质出版社: 1-12.
沈晓明, 张海祥, 马林. 2010. 洋脊俯冲及其在新疆阿尔泰地区存在的可能证据. 大地构造与成矿学, 34(2): 181-195.
沈晓明, 张海祥, 马林. 2013. 新疆阿尔泰地区库尔提蛇绿岩的锆石U-Pb和角闪石40Ar/39Ar年代学及其地质意义. 桂林理工大学学报, 33(3): 394-405.
宋鹏, 童英, 王涛, 秦切, 张建军, 宁东旭. 2017. 阿尔泰东南缘泥盆纪花岗质岩石的锆石U-Pb年龄、成因演化及构造意义: 钙碱性-高钾钙碱性-碱性岩浆演化新证据. 地质学报, 91(1): 55-79.
仝来喜, 陈义兵, 陈林丽. 2014. 阿尔泰造山带超高温变泥质麻粒岩的确定及其地质意义. 科学通报, 59(20): 1984-1991.
仝来喜, 陈义兵, 徐义刚, 周信, 刘兆. 2013. 阿尔泰超高温变泥质麻粒岩的锆石U-Pb年龄及其地质意义. 岩石学报, 29(10): 3435-3445.
王伟, 魏春景, 王涛, 娄玉行, 初航. 2009. 中国阿尔泰造山带泥质麻粒岩的确定及地质意义. 科学通报, 54(7): 918-923.
王宗秀, 周高志, 李涛. 2003. 对新疆北部蛇绿岩及相关问题的思考和认识. 岩石学报, 19(4): 683-691.
杨新岳. 1990. 北疆阿巴宫-库尔提断裂带显微组构的运动学和动力学分析. 大地构造与成矿学, 14(1): 29- 42.
张朝文, 刘援朝. 1992. 阿尔泰地区韧性剪切带和推覆-滑脱构造. 成都地质学院学报, 19(1): 1-7.
张进江, 郑亚东. 1993. 阿尔泰造山带的逆冲-走滑构造模式. 北京大学学报(自然科学版), 29(6): 15.
庄育勋. 1994. 中国阿尔泰造山带变质作用PTSt演化和热-构造-片麻岩穹窿形成机制. 地质学报, 68(1): 35-47.
Badarch G, Cunningham W D and Windley B F. 2002. A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of Central Asia. Journal of Asian Earth Sciences, 21(1): 87-110.
Briggs S M, Yin A, Manning C E, Chen Z L, Wang X F and Grove M. 2007. Late Paleozoic tectonic history of the Ertix Fault in the Chinese Altai and its implications for the development of the Central Asian Orogenic System. Geological Society of America Bulletin, 119(7): 944-960.
Broussolle A, Aguilar C, Sun M, Schulmann K, ?típská P, Jiang Y D, Yu Y, Xiao W J, Wang S and Míková J. 2018. Polycyclic Palaeozoic evolution of accretionary orogenic wedge in the southern Chinese Altai: Evidence from structural relationships and U-Pb geochronology. Lithos, 314(1-3): 400-424.
Broussolle A, Sun M, Schulmann K, Guy A, Aguilar C, ?típská P, Jiang Y D, Yu Y and Xiao W J. 2019. Are the Chinese Altai “terranes” the result of juxtaposition of different crustal levels during Late Devonian and Permian orogenesis? Gondwana Research, 66: 183-206.
Buslov M, Fujiwara Y, Iwata K and Semakov N. 2004. Late paleozoic-early Mesozoic geodynamics of Central Asia. Gondwana Research, 7(3): 791-808.
Cai K D, Sun M, Yuan C, Zhao G C, Xiao W J and Long X P. 2012. Keketuohai mafic-ultramafic complex in the Chinese Altai, NW China: Petrogenesis and geodynamic significance. Chemical Geology, 294: 26-41.
Chai F M, Mao J W, Dong L H, Yang F Q, Liu F, Geng X X and Zhang Z X. 2009. Geochronology of metarhyolites from the Kangbutiebao Formation in the Kelang basin, Altay Mountains, Xinjiang: Implications for the tectonic evolution and metallogeny. Gondwana Research, 16(2): 189-200.
Chen B and Jahn B. 2002. Geochemical and isotopic studies of the sedimentary and granitic rocks of the Altai orogen of Northwest China and their tectonic implications. Geological Magazine, 139(1): 1-13.
Chen H L, Li Z L, Yang S F, Dong C W, Xiao W J and Tainosho Y. 2006. Mineralogical and geochemical study of a newly discovered mafic granulite, northwest China: Implications for tectonic evolution of the Altay Orogenic Belt. Island Arc, 15(1): 210-222.
Choulet F, Chen Y, Cogné J, Rabillard A, Wang B, Lin W, Faure M and Cluzel D. 2013. First Triassic palaeomagnetic constraints from Junggar (NW China) and their impli-cations for the Mesozoic tectonics in Central Asia. Journal of Asian Earth Sciences, 78(15): 371-394.
Collins W. 2002. Hot orogens, tectonic switching, and creation of continental crust. Geology, 30(6): 535-538.
Holdaway M. 2000. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. American Mineralogist, 85(7-8): 881-892.
Holland T and Powell R. 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16(3): 309-343.
Holland T and Powell R. 2003. Activity-composition relations for phases in petrological calculations: An asymmetric multi-component formulation. Contributions to Mineralogy and Petrology, 145(4): 492-501.
Hu A Q, Jahn B, Zhang G X, Chen Y B and Zhang Q F. 2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part. I. Isotopic characterization of basement rocks. Tectonophysics, 328(1-2): 15-51.
Jahn B, Capdevila R, Liu D, Vernon A and Badarch G. 2004. Sources of Phanerozoic granitoids in the transect Bayanhongor-Ulaan Baatar, Mongolia: Geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth. Journal of Asian Earth Sciences, 23(5): 629-653.
Jiang Y D, Schulmann K, Sun M, Weinberg R, ?típská P, Li P F, Zhang J, Chopin F, Wang S, Xia X O and Xiao W J. 2018. Structural and geochronological constraints on Devonian suprasubduction tectonic switching and Permian collisional dynamics in the Chinese Altai, Central Asia. Tectonics, 38(1-2): 253-280.
Jiang Y D, ?típská P, Sun M, Schulmann K, Zhang J, Wu Q H, Long X P, Yuan C, Racek M, Zhao G C and Xiao W J. 2015. Juxtaposition of Barrovian and migmatite domains in the Chinese Altai: A result of crustal thickening followed by doming of partially molten lower crust. Journal of metamorphic Geology, 33(1): 45-70.
Jiang Y D, Sun M, Zhao G C, Yuan C, Xiao W J, Xia X P, Long X P and Wu F Y. 2010. The ~390 Ma high-T metamorphic event in the Chinese Altai: A consequence of ridge-subduction? American Journal of Science, 310(10): 1421-1452.
Kozakov I, Sal’nikova E, Wang T, Didenko A, Plotkina Y and Podkovyrov V. 2007. Early Precambrian crystalline complexes of the Central Asian microcontinent: Age, sources, tectonic position. Stratigraphy and Geological Correlation, 15(2): 121-140.
Laurent-Charvet S, Charvet J, Shu L, Ma R and Lu H. 2002. Palaeozoic late collisional strike-slip deformations in Tianshan and Altay, Eastern Xinjiang, NW China. Terra Nova, 14(4): 249-256.
Li P F, Sun M, Rosenbaum G, Cai K D and Yu Y. 2015. Structural evolution of the Irtysh Shear Zone (northwestern China) and implications for the amalgamation of arc systems in the Central Asian Orogenic Belt. Journal of Structural Geology, 80(75): 142-156.
Li P F, Sun M, Rosenbaum G, Cai K D, Chen M and He Y L. 2016b. Transpressional deformation, strain partitioning and fold superimposition in the southern Chinese Altai, Central Asian Orogenic Belt. Journal of Structural Geology, 87: 64-80.
Li P F, Sun M, Rosenbaum G, Jiang Y D and Cai K D. 2016a. Structural evolution of zonal metamorphic sequences in the southern Chinese Altai and relationships to Permian transpressional tectonics in the Central Asian Orogenic Belt. Tectonophysics, 693: 277-289.
Li P F, Sun M, Rosenbaum G, Jourdan F, Li S Z and Cai K D. 2017. Late Paleozoic closure of the Ob-Zaisan Ocean along the Irtysh shear zone (NW China): Implications for arc amalgamation and oroclinal bending in the Central Asian orogenic belt. Geological Society of America Bulletin, 129(5-6): B31541.1.
Li Z L, Li Y Q, Chen H L, Santosh M, Xiao W J and Wang H H. 2010. SHRIMP U-Pb zircon chronology of ultrahigh- temperature spinel-orthopyroxene-garnet granulite from South Altay orogenic belt, northwestern China. Island Arc, 19(3): 506-516.
Li Z L, Yang X Q, Li Y Q, Santosh M, Chen H L and Xiao W J. 2014. Late Paleozoic tectono-metamorphic evolution of the Altai segment of the Central Asian Orogenic Belt: Constraints from metamorphic P-T pseudosection and zircon U-Pb dating of ultra-high- temperature granulite. Lithos, 204(3): 83-96.
Liu Z, Bartoli O, Tong L X, Carvalho B, Xu Y G, Gianola O and Li C. 2020a. Anatexis and metamorphic history of Permian pelitic granulites from the southern Chinese Altai: Constraints from petrology, melt inclusions and phase equilibria modeling. Lithos, https: //doi.org/ 10.1016/j.lithos.2020.105432.
Liu Z, Bartoli O, Tong L X, Xu Y G and Huang X L. 2020b. Permian ultrahigh-temperature reworking in the southern Chinese Altai: Evidence from petrology, P-T estimates, zircon and monazite U-Th-Pb geochronology. Gondwana Research, 78: 20-40.
Liu Z, Tong L X, Bartoli O, Carvalho B and Li C. 2020c. Low-pressure granulite-facies metamorphism in the Southern Chinese Altay orogenic belt, NW China: P-T estimates, U-Pb ages and tectonic implications. Geochemistry, https: //doi.org/10.1016/j.chemer.2020. 125603.
Liu Z, Tong L X, Bartoli O, Xu Y G, Huang X L and Li C. 2019. Low-pressure metamorphism of mafic granulites in the Chinese Altay orogen, NW China: P-T path, U-Pb ages and tectonic implications. Solid Earth Sciences, https: // doi.org/10.1016/j.sesci.2019.11.004.
Long X P, Sun M, Yuan C, Xiao W J, Lin S F, Wu F Y and Cai K D. 2007. Detrital zircon age and Hf isotopic studies for metasedimentary rocks from the Chinese Altai: Implications for the Early Paleozoic tectonic evolution of the Central Asian Orogenic Belt. Tectonics, 26(5): TC5015. http: //doi: 10.1029/2007TC002128.
Long X P, Yuan C, Sun M, Xiao W J, Zhao G C, Wang Y J, Cai K D, Xia X P and Xie L W. 2010. Detrital zircon ages and Hf isotopes of the early Paleozoic flysch sequence in the Chinese Altai, NW China: New constrains on depositional age, provenance and tectonic evolution. Tectonophysics, 480(1): 213-231.
Pirajno F, Mao J W, Zhang Z C, Zhang Z H and Cai F M. 2008. The association of mafic-ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens, NW China: Implications for geodynamic evolution and potential for the discovery of new ore deposits. Journal of Asian Earth Sciences, 32(2): 165-183.
Qu G S and Chong M Y. 1991. Lead isotope geology and its tectonic implications in Altaides. China Geoscience, 5(1): 100-110.
Qu G S and Zhang J J. 1994. Oblique thrust systems in the Altay orogen, China. Journal of Southeast Asian Earth Sciences, 9(3): 277-287.
Safonova I and Santosh M. 2014. Accretionary complexes in the Asia-Pacific region: Tracing archives of ocean plate stratigraphy and tracking mantle plumes. Gondwana Research, 25(1): 126-158.
Safonova I, Seltmann R, Kr?ner A, Gladkochub D, Schulmann K, Xiao W J, Kim J, Komiya T and Sun M. 2011. A new concept of continental construction in the Central Asian Orogenic Belt. Episodes, 34(2): 186-196.
Safonoval I, Buslovl M, Iwata K and Kokh D. 2004. Fragments of Vendian-Early Carboniferous oceanic crust of the Paleo-Asian Ocean in fold belts of the Altai- Sayan region of Central Asia: Geochemistry, biostratigraphy and structural setting. Gondwana Research, 7(3): 771-790.
?eng?r A, Natal’In B and Burtman V. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299-307.
Sun M, Long X P, Cai K D, Jiang Y D, Wang B Y, Yuan C, Zhao G C, Xiao W J and Wu F Y. 2009. Early Paleozoic ridge subduction in the Chinese Altai: Insight from the abrupt change in zircon Hf isotopic compositions. Science in China (Series D), 52(9): 1345-1358.
Tong L X, Chen Y B and Chen L L. 2014a. Confirmation of ultrahigh-temperature metapelitic granulite in the Altay orogen and its geological significance. Chinese Science Bulletin, 59(27): 3441-3448.
Tong L X, Xu Y G, Cawood P, Zhou X, Chen Y B and Liu Z. 2014b. Anticlockwise PT evolution at ~280 Ma recorded from ultrahigh-temperature metapelitic granulite in the Chinese Altai orogenic belt, a possible link with the Tarim mantle plume? Journal of Asian Earth Sciences, 94: 1-11.
Tong Y, Wang T, Jahn B, Sun M, Hong D W and Gao J F. 2014. Post-accretionary Permian granitoids in the Chinese Altai orogen: Geochronology, petrogenesis and tectonic implications. American Journal of Science, 314(1): 80-109.
Wan B, Xiao W J, Zhang L C, Windley B, Han C M and Quinn C. 2011. Contrasting styles of mineralization in the Chinese Altai and East Junggar, NW China: Impli?ca?tions for the accretionary history of the southern Altaids. Journal of the Geological Society, 168(6): 1311-1321.
Wang B, Chen Y, Zhan S, Shu L S, Faure M, Cluzel D, Charvet J and Laurent-Charvet S. 2007. Primary Carboniferous and Permian paleomagnetic results from the Yili Block (NW China) and their implications on the geodynamic evolution of Chinese Tianshan Belt. Earth and Planetary Science Letters, 263(3-4): 288-308.
Wang T, Hong D W, Jahn B, Tong Y, Wang Y B, Han B F and Wang X X. 2006. Timing, petrogenesis and setting of Paleozoic synorogenic intrusions from the Altai Moun?tains, northwest China: Implications for the tectonic evolution of an accretionary orogen. Journal of Geology, 114: 735-751.
Wang T, Jahn B, Kovach V, Tong Y, Hong D W and Han B F. 2009. Nd-Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt. Lithos, 110(1-4): 359-372.
Wang W, Wei C J, Zhang Y H, Chu H, Zhao Y and Liu X C. 2014. Age and origin of sillimanite schist from the Chinese Altai metamorphic belt: Implications for late Palaeozoic tectonic evolution of the Central Asian Orogenic Belt. International Geology Review, 56(2): 224- 236.
Wei C J, Clarke G, Tian W and Qiu L. 2007. Transition of metamorphic series from the Kyanite-to andalusite- types in the Altai orogen, Xinjiang, China: Evidence from petrography and calculated KMnFMASH and KFMASH phase relations. Lithos, 96(3-4): 353-374.
Windley B, Alexeiev D, Xiao W J, Kr?ner A and Badarch G. 2007. Tectonic models for accretion of the central asian orogenic belt. Journal of the Geological Society, 164(1): 31-47.
Windley B, Kr?ner A, Guo J H, Qu G S, Li Y Y and Zhang C. 2002. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: new zircon age data and tectonic evolution. The Journal of Geology, 110(6): 719-737.
Windley B and Xiao W J. 2018. Ridge subduction and slab windows in the Central Asian Orogenic Belt: Tectonic implications for the evolution of an accretionary orogen. Gondwana Research, 61: 73-87.
Xiao W J, Han C M, Yuan C, Sun M, Lin S F, Chen H L, Li Z L, Li J L and Sun S. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia. Journal of Asian Earth Sciences, 32(2-4): 102-117.
Xiao W J, Windley B, Badarch G, Badarch, Sun S, Li J, Qin K and Wang Z. 2004. Palaeozoic accretionary and convergent tectonics of the southern Altaids: Implications for the growth of Central Asia. Journal of the Geological Society, 161: 339-342.
Yang C D, Yang F Q, Chai F M and Wu Y F. 2018. Timing of formation of the Keketale Pb-Zn deposit, Xinjiang, Northwest China, central Asian Orogenic Belt: Implications for the metallogeny of the South Altay Orogenic Belt. Geological Journal, 53(3): 899-913.
Yang T N, Li J Y, Liang M J and Wang Y. 2015. Early Permian mantle-crust interaction in the South-Central Altaids: High-temperature metamorphism, crustal partial melting, and mantle-derived magmatism. Gondwana Research, 28(1): 371-390.
Zhang C, Liu L F, Santosh M, Luo Q and Zhang X. 2017. Sediment recycling and crustal growth in the Central Asian Orogenic Belt: Evidence from Sr-Nd-Hf isotopes and trace elements in granitoids of the Chinese Altay. Gondwana Research, 47: 142-160.
Zhang C L, Santosh M, Zou H B, Xu Y G, Zhou G, Dong Y G, Ding R F and Wang H Y. 2012. Revisiting the “Irtish tectonic belt”: implications for the Palaeozoic tectonic evolution of the Altai orogen. Journal of Asian Earth Sciences, 52: 117-133.
Zhang Y L, Wen Z M, Guan L, Jiang P, Gu T, Zhao J Y, Lv X and Wen T. 2015. Extracellular histones play an inflammatory role in acid aspiration-induced acute respiratory distress syndrome. Survey of Anesthesiology, 59(5): 213-214.

相似文献/References:

[1]徐 扛,舒 坦,孔令竹.中国阿尔泰造山带南缘晚古生代花岗岩脉年代学特征及构造意义.大地构造与成矿学,2021.45(3):444.doi:10.16539/j.ddgzyckx.2020.05.018
 XU Kang,SHU Tan,KONG Lingzhu.Late Paleozoic Granite Veins in the Southern Chinese Altai: Structural Characteristics, Geochronology and Tectonic Implications.Geotectonica et Metallogenia,2021.45(4):444.doi:10.16539/j.ddgzyckx.2020.05.018

备注/Memo

备注/Memo:
收稿日期: 2020-02-27; 改回日期: 2020-04-09
项目资助: 中科院战略先导项目(B)课题(XDB18030601)资助。
第一作者简介: 仲正(1994-), 男, 硕士研究生, 矿物学、岩石学、矿床学专业。Email: 919212791@qq.com
通信作者: 仝来喜(1965-), 男, 教授, 主要从事变质岩石学研究。Email: tonglx@nwu.edu.cn
更新日期/Last Update: 2021-07-20