[1]董 昊,戴黎明,李三忠.2021.太古宙岩石圈构造变形过程与岩浆作用的数值模拟研究.大地构造与成矿学,45(4):621-633.doi:10.16539/j.ddgzyckx.2021.04.001
 DONG Hao,DAI Liming,LI Sanzhong.2021.Numerical Simulation of the Structural Deformation Process and Magmatism of the Archaean Lithosphere.Geotectonica et Metallogenia,45(4):621-633.doi:10.16539/j.ddgzyckx.2021.04.001
点击复制

太古宙岩石圈构造变形过程与岩浆作用的数值模拟研究
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2021年45卷04期
页码:
621-633
栏目:
构造地质学
出版日期:
2021-07-25

文章信息/Info

Title:
Numerical Simulation of the Structural Deformation Process and Magmatism of the Archaean Lithosphere
文章编号:
1001-1552(2021)04-0621-013
作者:
董 昊1、2 戴黎明1、2* 李三忠1、2 杨 悦1、2 胡泽明1、2
1.中国海洋大学 海洋地球科学学院, 海底科学与探测技术教育部重点实验室, 山东 青岛 266100; 2.青岛海洋科学与技术国家实验室, 海洋地质过程与环境功能实验室, 山东 青岛 266237
Author(s):
DONG Hao1、2 DAI Liming1、2* LI Sanzhong1、2 YANG Yue1、2 and HU Zeming1、2
1. Key Lab of Submarine Geosciences and Prospecting Techniques, MOE, Institute for Advanced Ocean Study, College of Marine Geosciences, Ocean University of China, Qingdao 266100, Shandong, China; 2. Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, Shandong, China
关键词:
太古宙 岩石圈 构造变形 数值模拟 岩浆作用
Keywords:
Archean lithosphere deformation numerical modeling magmatism
分类号:
P542
DOI:
10.16539/j.ddgzyckx.2021.04.001
文献标志码:
A
摘要:
太古宙岩石圈构造变形是岩石圈与软流圈在高温条件下发生垂向运动的结果, 反映了太古宙非板块构造体制下的地球动力学过程。为了解释这个已经消失的过程, 前人利用数值模拟方法并结合较少的地质实例, 提出了盖子构造、热管构造、湿盖子构造、地幔柱构造等多种可能存在于太古宙的前板块构造体制。这些体制的主要差异源于前人实验中对岩浆作用的简化方式不同, 进而导致了对太古宙地球动力学过程认识的不一致性。为了解决上述矛盾, 本研究在不简化岩浆运移过程的前提下, 讨论了五种可能条件及其组合对太古宙岩石圈构造变形的控制作用。结果显示, 太古宙岩石圈强度较高时, 只有经充分弱化才可能产生垂向变形。岩浆的存在不仅弱化了岩石圈, 还借由自身浮力提供了变形所需的驱动力。地幔柱主要引发岩石圈减薄与底部拆沉, 其他因素如岩石圈厚度、地壳性质、薄弱带等并非岩石圈变形的敏感因素。该结论揭示了太古宙岩浆作用对岩石圈构造变形过程起到了重要控制作用。
Abstract:
Deformation of the Archaean lithosphere as a result of vertical movement of lithosphere and asthenosphere under high temperature may reveal geodynamic processes under the Archaean pre-plate tectonics. In order to explain the Archean deformation, various pre-plate tectonic hypotheses have been proposed, such as lid tectonics, heat-pipe tectonics, plume-lid tectonics and mantle plume tectonics by using numerical modeling and geological examples. These different theories arose mainly from some different ways of simplification for magmatism in previous experiments, which leads to the inconsistent interpretations of the Archean geodynamic process. To avoid such contradiction, five possible conditions and their combined models without simplifying the process of magma migration are discussed in this contribution. The numerical experimental results show that the strength of the Archaean lithosphere is high enough so that only full weakening can cause vertical movement. The existence of magma not only weakens the strength of lithosphere, but also provides driving force for buoyant deformation. Other conditions such as lithospheric thickness, crustal properties or weak zone are not sensitive factors for lithosphere deformation. Therefore, this study reveals an impact of magmatism on deformation of the Archaean lithosphere.

参考文献/References:

范正国, 黄旭钊, 谭林, 杨雪, 张洪瑞. 2013. 鞍山山地区地质构造及深部铁矿. 地质与勘探, 49(6): 1153-1163.
李洁. 2010. 地核是怎样形成的//10000个科学难题. 北京: 科学出版社: 399-402.
李三忠, 戴黎明, 张臻, 郭玲莉, 赵淑娟, 赵国春, 张国伟. 2015. 前寒武纪地球动力学(Ⅳ): 前板块体制. 地学前沿, 22(6): 46-64.
刘昕悦, 李婧, 刘永江, 李伟民, 温泉波, 梁琛岳, 常瑞虹. 2017. 辽东鞍山齐大山韧性剪切带运动学解析及形成机制. 地球科学, 42(12): 2129-2145.
万渝生, 董春艳, 任鹏, 白文倩, 颉颃强, 刘守偈, 谢士稳, 刘敦一. 2017. 华北克拉通太古宙TTG岩石的时空分布、组成特征及形成演化: 综述. 岩石学报, 33(5): 1405-1419.
翟明国. 2012. 华北克拉通的形成以及早期板块构造. 地质学报, 86(9): 1335-1349.
张旗, 翟明国. 2012. 太古宙 TTG 岩石是什么含义? 岩石学报, 28(11): 3446-3456.
赵国春, 孙敏. 2002. 华北克拉通基底构造单元特征及早元古代拼合. 中国科学, 32(7): 538-549.
Beall A P, Moresi L and Cooper C M. 2018. Formation of Cratonic Lithosphere during the Initiation of Plate Tectonics. Geology, 46(6): 487-490.
Bédard J H. 2006. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochimica et Cosmochimica Acta, 70(5): 1188-1214.
Clos F, Weinberg R F, Zibra I and Fenwick M J. 2019. Archean diapirism recorded by vertical sheath folds in the core of the Yalgoo Dome, Yilgarn Craton. Precambrian Research, 320: 391-402.
Dai L M, Li S Z, Li Z H, Somerville I D, Suo Y H, Liu X C, Gerya T and Santosh M. 2018. Dynamics of exhumation and deformation of HP-UHP orogens in double subduction-collision systems: Numerical modeling and implications for the Western Dabie Orogen. Earth- Science Reviews, 182(238): 68-84.
Davies G F. 2011. Mantle Convection for Geologists. New York: Cambridge University Press: 1-217.
Debaille V, Brandon A D, Oneill C, Yin Q Z and Jacobsen B. 2009. Early martian mantle overturn inferred from isotopic composition of Nakhlite meteorites. Nature Geoscience, 2(8): 548-52.
Ernst W G. 2007. Speculations on evolution of the terrestrial lithosphere-asthenosphere system-plumes and plates. Gondwana Research, 11(1-2): 38-49.
Fischer R and Gerya T. 2016. Early earth plume-lid tectonics: A high-resolution 3D numerical modelling approach. Journal of Geodynamics, 100: 198-214.
Gerya T and Yuen D A. 2003. Characteristics-based marker- in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties. Physics of the Earth and Planetary Interiors, 140(4): 293-318.
Harris L B, Godin L and Yakymchuk C. 2012. Regional shortening followed by channel flow induced collapse: A new mechanism for “Dome and Keel” geometries in Neoarchaean granite-greenstone terrains. Precambrian Research, 212-213: 139-154.
Huangfu P P, Li Z H, Gerya T, Fan W M, Zhang K J, Zhang H and Shi Y L. 2018. Multi-terrane structure controls the contrasting lithospheric evolution beneath the western and central-eastern Tibetan Plateau. Nature Commu-ni-cations, 9(1): 1-11.
Li Z H, Liu M Q and Gerya T. 2015. Material transportation and fluid-melt activity in the subduction channel: Numerical modeling. Science China: Earth Sciences, 58(8): 1251-1268.
Liao J and Gerya T. 2014. Influence of lithospheric mantle stratification on craton extension: Insight from two- dimensional thermo-mechanical modeling. Tectonophysics, 631: 50-64.
Louren?o D L, Rozel A B, Gerya T and Tackley P J. 2018. Efficient Cooling of rocky planets by intrusive magmatism. Nature Geoscience, 11(5): 322-327.
Moore W B and Webb A A G. 2013. Heat-Pipe Earth. Nature, 501(7468): 501-505.
Moore W B, Simon J I and Webb A A G. 2017. Heat-Pipe Planets. Earth and Planetary Science Letters, 474: 13-19.
Piper J D A. 2013. A planetary perspective on earth evolution: Lid tectonics before plate tectonics. Tectono-physics, 589: 44-56.
Ranalli G and Donald M. 1983. Rheological stratification of the lithosphere. Tectonophysics, 132(4): 281-295.
Rozel A B, Golabek G J, Jain C, Tackley P J and Gerya T. 2017. Continental crust formation on early earth controlled by intrusive magmatism. Nature, 545(7654): 332-335.
Salop L I. 1972. Two types of Precambrian structures: Gneiss folded ovals and gneiss domes. International Geology Review, 14(11): 1209-1228.
Sizova E, Gerya T, Brown M and Stüwe K. 2018. What drives metamorphism in Early Archean greenstone belts? Insights from numerical modeling. Tectonophysics, 746: 587-601.
Smith A D and Lewis C. 1999. The Planet beyond the plume hypothesis. Earth-Science Reviews, 48(3): 135-182.
Thébauda N and Rey P F. 2013. Archean gravity-driven tectonics on hot and flooded continents: Controls on long-lived mineralised hydrothermal systems away from continental margins. Precambrian Research, 229: 93-104.
Van Kranendonk M J, Hugh Smithies R, Hickman A H and Champion D C. 2007. Review: Secular tectonic evolution of Archean continental crust: Interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova, 19(1): 1-38.

相似文献/References:

[1]程素华,汪洋.TTG岩系Nb~Ta~La分馏特征的地球化学模拟:对太古宙板块俯冲与大陆地壳生长机制的约束.大地构造与成矿学,2011.35(1):095.
 CHENG Suhua and WANG Yang.Geochemical Modeling of Nb-Ta-La Fractionation in TTG Suite: Constraints on Archean Plate Subduction and Continental Crust Growth.Geotectonica et Metallogenia,2011.45(4):095.
[2]哈茵,B.E.Xauh,钱祥麟.大陆和大洋的现代构造及其形成的主要阶段.大地构造与成矿学,1986.1(2):195.
[3]И.К.Туезов.亚洲-太平洋区的岩石圈和软流圈.大地构造与成矿学,1992.16(3):312.
[4]V.E.哈因.地洼构造与板块构造.大地构造与成矿学,1993.17(2):113.
 Kttain.DIWA TECTONICS AND PLATE TECTONICS.Geotectonica et Metallogenia,1993.45(4):113.
[5]宋扬,王树志,胡建中.冀东太古宙末期基底构造约束下的金成矿作用及演化.大地构造与成矿学,2013.37(3):410.
 SONG Yang,WANG Shuzhi,HU Jianzhong.Gold Mineralization and Evolution Under Structural Constraints of the Basement in the Jidong Area, North China Craton.Geotectonica et Metallogenia,2013.45(4):410.
[6]吴 哲,许怀智,杨风丽.南海东北部岩石圈伸展的构造模拟约束.大地构造与成矿学,2014.38(1):071.
 WU Zhe,XU Huaizhi,YANG Fengli.Lithospheric Extension in the Northeastern South China Sea: Constraints from Structural Modeling.Geotectonica et Metallogenia,2014.45(4):071.
[7]周海廷,姜效典*,李德勇.东海陆架盆地西湖凹陷岩石圈热流变性质.大地构造与成矿学,2017.41(3):481.doi:10.16539/j.ddgzyckx.2017.03.005
 ZHOU Haiting,JIANG Xiaodian*,LI Deyong.Thermal-rheological Property of Lithosphere Beneath Xihu Sag, East China Sea Shelf Basin.Geotectonica et Metallogenia,2017.45(4):481.doi:10.16539/j.ddgzyckx.2017.03.005

备注/Memo

备注/Memo:
收稿日期: 2020-01-04; 改回日期: 2020-08-06
项目资助: 国家重点研发计划(2016YFC0601002)、国家自然科学基金重大研究计划重点项目(91858215, 91958214)、青岛海洋科学与技术试点国家实验室鳌山科技创新计划项目(2017ASKJ02)、山东省泰山学者特聘教授项目(ts20190918)、鳌山卓越科学家计划(2015ASTP- 0S10)和青岛市创新领军人才计划(19-3-2-19-zhc)联合资助。
第一作者简介: 董昊(1995-), 男, 博士研究生, 海洋地质专业。Email: donghao10000@stu.ouc.edu.cn
通信作者: 戴黎明(1980-), 男, 副教授, 从事构造地质学及数值模拟研究。Email: dlming@ouc.edu.cn
更新日期/Last Update: 2021-07-20