[1]杨燕子,陈华勇.2021.大洋富钴结壳研究进展及展望.大地构造与成矿学,优先出版:001-19.doi:10.16539/j.ddgzyckx.2021.05.022
 YANG Yanzi and CHEN Huayong.2021.Oceanic Cobalt-rich Crust Formation: Progress and Future Study.Geotectonica et Metallogenia,优先出版:001-19.doi:10.16539/j.ddgzyckx.2021.05.022
点击复制

大洋富钴结壳研究进展及展望
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2021年优先出版
页码:
001-19
栏目:
出版日期:
2022-12-30

文章信息/Info

Title:
Oceanic Cobalt-rich Crust Formation: Progress and Future Study
作者:
杨燕子12 陈华勇1234
1.中国科学院广州地球化学研究所 中国科学院矿物学与成矿学重点实验室, 广东 广州 510640; 2.中国科学院大学 地球与行星科学学院, 北京 100049; 3.中国科学院深地科学卓越创新中心, 广东 广州 510640; 4.广东省矿物物理与材料研究开发重点实验室, 广东 广州 510640
Author(s):
YANG Yanzi12 and CHEN Huayong1234
1. CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, Guangdong, China; 4. Guangdong Provincial Key Laboratory of Mineral Physics and Minerals, Guangzhou 510640, Guangdong, China
关键词:
富钴结壳 铁锰氧化物 形成机制 研究进展 未来发展方向
Keywords:
cobalt-rich crust ferromanganese oxides ore-forming genesis research progress future study directions
分类号:
P67, P744
DOI:
10.16539/j.ddgzyckx.2021.05.022
文献标志码:
A
摘要:
富钴结壳是一种重要的海底矿产资源, 具有独特的经济价值和科学意义, 不仅富含Mn、Co、Ni、Cu、PGE和REY等金属, 而且在反演新生代以来古海洋环境记录等方面扮演着独特的角色。锰氧化物(MnO2·xH2O)和铁羟基氧化物(FeO(OH))是构成富钴结壳的主要矿物, 矿物颗粒十分微小(纳米级)。水羟锰矿和水钠锰矿具有层状结构且层电荷为负, 通过吸附阳离子来补偿。前人通过连续浸出实验、元素相关性统计分析、吸附实验和拓展X射线吸收精细结构(EXAFS)光谱广泛研究了微量元素在矿物中的赋存状态, 确定了微量元素在锰氧化物矿物中主要存在三种类型络合物:共六边(edge-sharing)、共双角(double-corner sharing)和共三角(triple-corner sharing)。综合研究表明, 在最低含氧带之下铁锰氧化物(氢氧化物)从海水中沉淀到周围海山坚硬基岩上形成富钴结壳的机制主要是无机胶体化学反应和矿物表面反应。最后针对已有的相关研究现状以及富钴结壳研究面临的挑战, 富钴结壳的成矿物质来源及演化、微量元素富集机制、蕴含的古海洋信息等问题仍需要进一步深入探讨。
Abstract:
Cobalt-rich crust is an important seafloor mineral resource with unique economic value and scientific significance. Cobalt-rich crust is significantly enriched in Mn, Co, Ni, Cu, PGE (Platinum Group Elements) and REY (Rare Earth Elements + Y), and has special implications on the paleo-marine environmental records since the Cenozoic. Mn oxide (MnO2·xH2O) and Fe oxyhydroxide (FeO(OH)) are the dominant minerals that compose cobalt-rich crust, with most of them are nanoscale minerals. Vernadite and birnessite have a layer structure and a negative layer charge, which is compensated by cation sorption. The previous studies have extensively focused on the location of trace elements in minerals in the cobalt-rich crust, with the help of sequential leaching experiments, statistical analysis of element correlation, adsorption experiments and extended X-ray absorption fine structure (EXAFS) spectrum. Three main types of complexes in Mn oxide have been identified, i.e., edge-sharing (E), double-corner sharing (DC) and triple-corner sharing (TC). Studies have shown that the process of hydrogenetic cobalt-rich crust precipitation is basically inorganic colloidal-chemical and surface-chemical. Finally, we proposed some suggestions for the future research directions in this field.

参考文献/References:

胡大千, 初凤友, 姚杰. 2009. 中太平洋富钴锰结壳水羟锰矿研究. 吉林大学学报(地球科学版), 39(4): 706-710+748.
李延河, 李金城, 宋鹤彬. 1999. 海底多金属结核和富钴结壳的He同位素对比研究. 地球学报, 20(4): 378-384.
刘永刚, 何高文, 姚会强, 杨永, 任江波, 郭丽华, 梅燕雄. 2013. 世界海底富钴结壳资源分布特征. 矿床地质, 32(6): 1275-1284
马维林. 2006. 海山类型与结壳成矿的关系研究. 浙江大学博士毕业论文: 90-91.
任江波, 何高文, 姚会强, 邓希光, 朱克超, 杨胜雄. 2017. 磷酸盐化作用对富钴结壳中稀土元素的影响. 海洋地质与第四纪地质, 37(2): 33-43.
王小明, 杨凯光, 孙世发, 徐剑, 李耀光, 刘凡, 冯雄汉. 2011. 水铁矿的结构、组成及环境地球化学行为. 地学前缘, 18(2): 339-347.
王洋, 方念乔, 刘景昱. 2021. 多金属结壳Os同位素组成区域性和阶段性偏高异常. 地球科学, 46(2): 719-728.
姚会强, 张晶, 李杰, 何高文, 任江波. 2018. 富钴铁锰结壳年代学研究方法进展. 地球化学, 47(6): 627-635.
张富元, 章伟艳, 任向文, 张霄宇, 朱克超. 2015. 全球三大洋海山钴结壳资源量估算. 海洋学报, 37(1): 88-105.
赵俐红, 齐君, 杨慧良. 2010. 火山岩浆活动与富钴结壳成矿间的关系——以中太平洋海山群和麦哲伦海山链所在的中西太平洋区为例. 海洋地质动态, 26(2): 1-7.
Banakar V K and Hein J R. 2000. Growth response of a deep-water ferromanganese crust to evolution of the Neogene Indian Ocean. Marine Geology, 162: 529-540.
Bargar J R, Tebo B M, Bergmann U, Webb S M, Glatzel P, Chiu V Q and Villalobos M. 2005. Biotic and abiotic products of Mn(II) oxidation by spores of the marine Bacillus sp. strain SG-1. American Mineralogist, 90: 143-154.
Bau M. 1999. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochimica Et Cosmochimica Acta, 63(1): 67-77.
Bau M, Koschinsky A, Dulski P and Hein J R. 1996. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater. Geochimica Et Cosmochimica Acta, 60(10): 1709-1725.
Bau M, Schmidt K, Koschinsky A, Hein J, Kuhn T and Usui A. 2014. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium. Chemical Geology, 381: 1-9.
Beard B L, Johnson C M, Von Damm K L and Poulson R L. 2003. Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans. Geology, 31(7): 629-632.
Belzile N, Chen Y-W and Wang Z. 2001. Oxidation of antimony (III) by amorphous iron and manganese oxyhydroxides. Chemical Geology, 174: 379-387.
Benites M, Hein J R, Mizell K, Blackburn T and Jovane L. 2020. Genesis and Evolution of Ferromanganese Crusts from the Summit of Rio Grande Rise, Southwest Atlantic Ocean. Minerals, 10(4): 349.
Bennett S A, Achterberg E P, Connelly D P, Statham P J, Fones G R and German C R. 2008. The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes. Earth and Planetary Science Letters, 270: 157-167.
Bennett S A, Rouxel O, Schmidt K, Garbe-Schonberg D, Statham P J and German C R. 2009. Iron isotope fractionation in a buoyant hydrothermal plume, 5°S Mid-Atlantic Ridge. Geochimica Et Cosmochimica Acta, 73: 5619-5634.
Bidoglio G, Gibson P N, O’Gorman M and Roberts K J. 1993. X-ray absorption spectroscopy investigation of surface redox transformations of thallium and chromium on colloidal mineral oxides. Geochimica Et Cosmochimica Acta, 57: 2389-2394.
Bolton B R, Exon N F, Ostwald J and Kudrass H R. 1988. Geochemistry of ferromanganese crusts and nodules from the South Tasman Rise, southeast of Australia. Marine Geology, 84: 53-80.
Bonatti E, Kraemer T and Rydell H. 1972. Classification and genesis of submarine iron-manganese deposits // Horn D. Ferromanganese deposits on the Ocean Floor. National Science Foundation, Washington DC: 149-166.
Brown G E, Parks G A and O’Day P A. 1995. Sorption at mineral-water interfaces: macroscopic and microscopic perspectives // Vaughan D J and Pattrick R A D. Mineral Sufaces. Chaoman & Hall, London: 129-183.
Burns R G. 1976. The uptake of cobalt into ferromanganese nodules, soils, and synthetic manganese (IV) oxides. Geochimica Et Cosmochimica Acta, 40: 95-102.
Burton K W, Bourdon B, Birck J L, Allegre C J and Hein J R. 1999. Osmium isotope variations in the oceans recorded by Fe-Mn crusts. Earth and Planetary Science Letters, 171: 185-197.
Byrne R H. 2002. Inorganic speciation of dissolved elements in seawater: the influence of pH on concentration ratios. Geochemical Transactions, 3(2): 11-16.
Chester R. 1990. Trace elements in the oceans // Chester R. Marine Geochemistry. Springer, Dordrecht: 346-421. https://doi.org/10.1007/978-94-010-9488-7_11.
Christensen J N, Halliday A N, Godfrey L V, Hein J R and Rea D K. 1997. Climate and ocean dynamics and the lead isotopic records in Pacific ferromanganese crusts. Science, 277(5328): 913-918.
Chu N C, Johnson C M, Beard B L, German C R, Nesbitt R W, Frank M, Bohn M, Kubik P W, Usui A and Graham I. 2006. Evidence for hydrothermal venting in Fe isotope compositions of the deep Pacific Ocean through time. Earth and Planetary Science Letters, 245: 202-217.
Chukhrov F V, Gorshkov A I, Sivtsov A V and Beresovskaya V V. 1979. New data on natural todorokites. Nature, 278: 631-632.
Chukhrov F V, Zvyagin B B, Gorshkov A I, Yermilova L P, Korovushkin V V, Rudnitskaya Y S and Yakubovskaya N Y. 1977. Feroxyhyte, a new modification of FeOOH. International Geology Review, 19(8): 873-890.
Conrad T, Hein J R, Paytan A and Clague D A. 2017. Formation of Fe-Mn crusts within a continental margin environment. Ore Geology Reviews, 87: 25-40.
Drits V A, Sakharov B A and Manceau A. 1993. Structure of Feroxyhite as Determined by Simulation of X-Ray Diffraction Curves. Clay Minerals, 28: 209-222.
Ehrlich H L. 2000. Ocean manganese nodules: Biogenesis and bioleaching possibilities. Minerals & Metallurgical Processing, 17(2): 121-128.
Elderfield H and Schultz A. 1996. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annual Review of Earth and Planetary Sciences, 24: 191-224.
Exon N F. 1997. Ferromanganese crust and nodule deposits from the continental margin south and west of Tasmania. Australian Journal of Earth Sciences, 44: 701-710.
Feely R A, Baker E T, Marumo K, Urabe T, Ishibashi J, Gendron J, Lebon G T and Okamura K. 1996. Hydrothermal plume particles and dissolved phosphate over the superfast-spreading southern East Pacific Rise. Geochimica Et Cosmochimica Acta, 60(13): 2297-2323.
Feng X H, Tan W F, Liu F, Wang J B and Ruan H D. 2004. Synthesis of todorokite at atmospheric pressure. Chemistry of Materials, 16(22): 4330-4336.
Frank M. 2002. Radiogenic isotopes: Tracers of past ocean circulation and erosional input. Reviews of Geophysics, 40: 1-38.
Frank M, O’Nions R K, Hein J R and Banakar V K. 1999. 60 Myr records of major elements and Pb-Nd isotopes from hydrogenous ferromanganese crusts: Reconstruction of seawater paleochemistry. Geochimica Et Cosmochimica Acta, 63(11/12): 1689-1708.
Fu Y. 2020. Non-traditional stable isotope geochemistry of marine ferromanganese crusts and nodules. Journal of Oceanography, 76: 71-89.
Fu Y, Peng J, Qu W, Hu R, Shi X and Du A. 2005. Os isotopic compositions of a cobalt-rich ferromanganese crust profile in Central Pacific. Chinese Science Bulletin, 50: 2106-2112.
Gall L, Williams H M, Siebert C, Halliday A N, Herrington R J and Hein J R. 2013. Nickel isotopic compositions of ferromanganese crusts and the constancy of deep ocean inputs and continental weathering effects over the Cenozoic. Earth and Planetary Science Letters, 375: 148-155.
Giovanoli R. 1980. Vernadite is random-stacked birnessite - A discussion of the paper by F. V. Chukhrov et al.: "Contributions to the mineralogy of authigenic manganese phases from marine manganese deposits". Mineralium Deposita, 15: 251-253.
Glasby G P, Li J and Sun Z. 2015. Deep-Sea Nodules and Co-rich Mn Crusts. Marine Georesources & Geotechnology, 33(1): 72-78.
Golden D C, Chen C C and Dixon J B. 1986. Synthesis of Todorokite. Science, 231(4739): 717-719.
Goto K T, Shimoda G, Anbar A D, Gordon G W, Harigane Y, Senda R and Suzuki K. 2015. Molybdenum isotopes in hydrothermal manganese crust from the Ryukyu arc system: Implications for the source of molybdenum. Marine Geology, 369: 91-99.
Grangeon S, Fernandez-Martinez A, Claret F, Marty N, Tournassat C, Warmont F and Gloter A. 2017. In-situ determination of the kinetics and mechanisms of nickel adsorption by nanocrystalline vernadite. Chemical Geology, 459: 24-31.
Grangeon S, Lanson B, Lanson M and Manceau A. 2008. Crystal structure of Ni-sorbed synthetic vernadite: a powder X-ray diffraction study. Mineralogical Magazine, 72(6): 1279-1291.
Grangeon S, Lanson B, Miyata N, Tani Y and Manceau A. 2010. Structure of nanocrystalline phyllomanganates produced by freshwater fungi. American Mineralogist, 95(11-12): 1608-1616.
Grangeon S, Manceau A, Guilhermet J, Gaillot A-C, Lanson M and Lanson B. 2012. Zn sorption modifies dynamically the layer and interlayer structure of vernadite. Geochimica Et Cosmochimica Acta, 85: 302-313.
Gueguen B, Rouxel O, Rouget M-L, Bollinger C, Ponzevera E, Germain Y and Fouquet Y. 2016. Comparative geochemistry of four ferromanganese crusts from the Pacific Ocean and significance for the use of Ni isotopes as paleoceanographic tracers. Geochimica Et Cosmochimica Acta, 189: 214-235.
Halbach P, Hebisch U and Scherhag C. 1981. Geochemical variations of ferromanganese nodules and crusts from different provinces of the Pacific Ocean and their genetic control. Chemical Geology, 34(1-2): 3-17.
Halbach P, Manheim F T and Otten P. 1982. Co-rich ferromanganese deposits in the marginal seamount regions of the Central Pacific Basin, results of the Midpac 1981. Erzmetall, 35(9): 447-453.
Halbach P and Puteanus D. 1984. The Influence of the Carbonate Dissolution Rate on the Growth and Composition of Co-Rich Ferromanganese Crusts from Central Pacific Seamount Areas. Earth and Planetary Science Letters, 68: 73-87.
Halbach P E, Jahn A and Cherkashov G. 2017. Marine Co-Rich Ferromanganese Crust Deposits: Description and Formation, Occurrences and Distribution, Estimated World-wide Resources // Sharma R. Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations. Springer International Publishing, Switzerland: 65-141.
Hannington M, Jamieson J, Monecke T, Petersen S and Beaulieu S. 2011. The abundance of seafloor massive sulfide deposits. Geology, 39(12): 1155-1158.
Hein J. 2004. Cobalt-Rich Ferromanganese Crusts: Global Distribution, Composition, Origin and Research Activities // Minerals Other than Polymetallic Nodules of the International Seabed Area. Chapter: 5. International Seabed Authority, Jamaica: 188-256.
Hein J R, Koschinsky A, Bau M, Manheim F T, Kang J-K, and Roberts L. 2000. Cobalt-Rich Ferromanganese Crusts in the Pacific // Cronan D S. Handbook of Marine Mineral Deposits. Routledge, Boca Raton: 239-279.
Hein J R. 2014. Co-Rich Manganese Crusts // Harff J, Meschede M, Petersen S, Thiede J. Encyclopedia of Marine Geosciences. Springer, Dordrecht: 1-7. https://doi.org/10.1007/978-94-007-6644-0_25-3.
Hein J R, Conrad T A and Dunham R E. 2009. Seamount Characteristics and Mine-Site Model Applied to Exploration- and Mining-Lease-Block Selection for Cobalt-Rich Ferromanganese Crusts. Marine Georesources & Geotechnology, 27: 160-176.
Hein J R, Kirschenbaum H, Schwab W C, Usui Taggart A, Olson K L, Pickthorn L G, Schulz M S and Morgan C L. 1990. Mineralogy and geochemistry of Co-rich ferromanganese crusts and substrate rocks from Karin Ridge and Johnston Island, Farnella Cruise F7-86-HW, Open-File Report: 90-298.
Hein J R and Koschinsky A. 2014. Deep-ocean ferromanganese crusts and nodules. Treatise on geochemistry, 13: 273-291.
Hein J R, Koschinsky A and Halliday A N. 2003. Global occurrence of tellurium-rich ferromanganese crusts and a model for the enrichment of tellurium. Geochimica Et Cosmochimica Acta, 67(6): 1117-1127.
Hein J R, Mizell K, Koschinsky A and Conrad T A. 2013. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geology Reviews, 51: 1-14.
Hein J R and Morgan C L. 1999. Influence of substrate rocks on Fe-Mn crust composition. Deep-Sea Research Part I, 46: 855-875.
Hein J R, Schwab W C and Davis A S. 1988. Cobalt-Rich and Platinum-Rich Ferromanganese Crusts and Associated Substrate Rocks from the Marshall-Islands. Marine Geology, 78: 255-283.
Hiemstra T. 2018. Ferrihydrite interaction with silicate and competing oxyanions: Geometry and Hydrogen bonding of surface species. Geochimica Et Cosmochimica Acta, 238: 453-476.
Hodkinson R A and Cronan D S. 1991. Regional and Depth Variability in the Composition of Cobalt-Rich Ferromanganese Crusts from the Sopac Area and Adjacent Parts of the Central Equatorial Pacific. Marine Geology, 98: 437-447.
Hu R, Chen T Y and Ling H F. 2012. Late Cenozoic history of deep water circulation in the western North Pacific: Evidence from Nd isotopes of ferromanganese crusts. Chinese Science Bulletin, 57(31): 4077-4086.
Ingram B L, Hein J R and Farmer G L. 1990. Age determinations and growth rates of Pacific ferromanganese deposits using strontium isotopes. Geochimica Et Cosmochimica Acta, 54: 1709-1721.
Jambor J L and Dutrizac J E. 1998. Occurrence and Constitution of Natural and Synthetic Ferrihydrite, a Widespread Iron Oxyhydroxide. Chemical Reviews, 98(7): 2549-2585.
Jiang X D, Sun X M and Guan Y. 2017. Biogenic mineralization in the ferromanganese nodules and crusts from the South China Sea. Journal of Asian Earth Sciences, 171: 46-59.
Josso P, Parkinson I, Horstwood M, Lusty P, Chenery S and Murton B. 2019. Improving confidence in ferromanganese crust age models: A composite geochemical approach. Chemical Geology, 513: 108-119.
Josso P, Pelleter E, Pourret O, Fouquet Y, Etoubleau J, Cheron S and Bollinger C. 2017. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements. Ore Geology Reviews, 87: 3-15.
Josso P, van Peer T, Horstwood M S A, Lusty P and Murton B. 2021. Geochemical evidence of Milankovitch cycles in Atlantic Ocean ferromanganese crusts. Earth and Planetary Science Letters, 553: 116651.
Kashiwabara T, Mitsunobu S, Das A, Itai T, Tanimizu M and Takahashi Y. 2008. Oxidation states of antimony and arsenic in marine ferromanganese oxides related to their fractionation in oxic marine environment. Chemistry Letters, 37(7): 756-757.
Kashiwabara T, Oishi Y, Sakaguchi A, Sugiyama T, Usui A and Takahashi Y. 2014. Chemical processes for the extreme enrichment of tellurium into marine ferromanganese oxides. Geochimica Et Cosmochimica Acta, 131: 150-163.
Kashiwabara T, Takahashi Y, Marcus M A, Uruga T, Tanida H, Terada Y and Usui A. 2013. Tungsten species in natural ferromanganese oxides related to its different behavior from molybdenum in oxic ocean. Geochimica Et Cosmochimica Acta, 106: 364-378.
Kashiwabara T, Takahashi Y, Tanimizu M and Usui A. 2011. Molecular-scale mechanisms of distribution and isotopic fractionation of molybdenum between seawater and ferromanganese oxides. Geochimica Et Cosmochimica Acta, 75: 5762-5784.
Klemm V, Levasseur S, Frank M, Hein J R and Halliday A N. 2005. Osmium isotope stratigraphy of a marine ferromanganese crust. Earth and Planetary Science Letters, 238: 42-48.
Koppers A A P, Staudigel H, Pringle M S and Wijbrans J R. 2003. Short-lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism? Geochem. Geophys. Geosyst., 4(10): 1089.
Koschinsky A and Halbach P. 1995. Sequential leaching of marine ferromanganese precipitates: Genetic implications. Geochimica Et Cosmochimica Acta, 59(24): 5113-5132.
Koschinsky A and Hein J R. 2003. Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation. Marine Geology, 198: 331-351.
Koschinsky A and Hein J R. 2017. Marine Ferromanganese Encrustations: Archives of Changing Oceans. Elements, 13: 177-182.
Koschinsky A, Stascheit A, Bau M and Halbach P. 1997. Effects of phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts. Geochimica Et Cosmochimica Acta, 61(19): 4079-4094.
Kwon K D, Refson K and Sposito G. 2010. Surface complexation of Pb(II) by hexagonal birnessite nanoparticles. Geochimica Et Cosmochimica Acta, 74: 6731-6740.
Levasseur S, Frank M, Hein J R and Halliday A N. 2004. The global variation in the iron isotope composition of marine hydrogenetic ferromanganese deposits: implications for seawater chemistry? Earth and Planetary Science Letters, 224: 91-105.
Li J, Fang N, Qu W, Ding X, Gao L, Wu C and Zhang Z. 2008. Os isotope dating and growth hiatuses of Co-rich crust from central Pacific. Science in China Series D: Earth Sciences, 51(10): 1452-1459.
Ling H F, Jiang S Y, Frank M, Zhou H Y, Zhou F, Lu Z L, Chen X M, Jiang Y H and Ge C D. 2005. Differing controls over the Cenozoic Pb and Nd isotope evolution of deepwater in the central North Pacific Ocean. Earth and Planetary Science Letters, 232(3-4): 345-361.
Little S H, Vance D, Walker-Brown C and Landing W M. 2014. The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments. Geochimica Et Cosmochimica Acta, 125: 673-693.
Lopano C L, Heaney P J, Bandstra J Z, Post J E and Brantley S L. 2011. Kinetic analysis of cation exchange in birnessite using time-resolved synchrotron X-ray diffraction. Geochimica Et Cosmochimica Acta, 75: 3973-3981.
Lusty P A J, Hein J R and Josso P. 2018. Formation and occurrence of Ferromanganese Crusts: Earth’s Storehouse for Critical Metals. Elements, 14: 313-318.
Maeno M Y, Ohashi H, Yonezu K, Miyazaki A, Okaue Y, Watanabe K, Ishida T, Tokunaga M and Yokoyama T. 2016. Sorption behavior of the Pt(II) complex anion on manganese dioxide (δ-MnO2): a model reaction to elucidate the mechanism by which Pt is concentrated into a marine ferromanganese crust. Mineralium Deposita, 51: 211-218.
Manceau A and Drits V A. 1993. Local Structure of Ferrihydrite and Feroxyhite by Exafs Spectroscopy. Clay Minerals, 28: 165-184.
Manceau A, Drits V A, Silvester E, Bartoli C and Lanson B. 1997. Structural mechanism of Co2+ oxidation by the phyllomanganate buserite. American Mineralogist, 82: 1150-1175.
Manceau A, Lanson M and Geoffroy N. 2007. Natural speciation of Ni, Zn, Ba, and As in ferromanganese coatings on quartz using X-ray fluorescence, absorption, and diffraction. Geochimica Et Cosmochimica Acta, 71: 95-128.
Manceau A, Lanson M and Takahashi Y. 2014. Mineralogy and crystal chemistry of Mn, Fe, Co, Ni, and Cu in a deep-sea Pacific polymetallic nodule. American Mineralogist, 99: 2068-2083.
McMurtry G M, VonderHaar D L, Eisenhauer A, Mahoney J J and Yeh H W. 1994. Cenozoic accumulation history of a Pacific ferromanganese crust. Earth and Planetary Science Letters, 125: 105-118.
Michel F M, Barrón V, Torrent J, Morales M P, Serna C J, Boily J-F, Liu Q S, Ambrosini A, Cismasu A C and Brown J G E. 2010. Ordered ferrimagnetic form of ferrihydrite reveals links among structure, composition, and magnetism. Proceedings of the National Academy of Sciences of the United States of America, 107(7): 2787-2792.
Michel F M, Ehm L, Antao S M, Lee P L, Chupas P J, Liu G, Strongin D R, Schoonen M A A, Phillips B L and Parise J B. 2007. The structure of ferrihydrite, a nanocrystalline material. Science, 316: 1726-1729.
Mizell K, Hein J R, Lam P J, Koppers A A P and Staudigel H. 2020. Geographic and Oceanographic Influences on Ferromanganese Crust Composition Along a Pacific Ocean Meridional Transect, 14 N to 14S. Geochemistry Geophysics Geosystems, 21(2): 1-19.
Murray J W and Dillard J G. 1979. The oxidation of cobalt(II) adsorbed on manganese dioxide. Geochimica Et Cosmochimica Acta, 43: 781-787.
Nakada R, Takahashi Y and Tanimizu M. 2016. Cerium stable isotope ratios in ferromanganese deposits and their potential as a paleo-redox proxy. Geochimica Et Cosmochimica Acta, 181: 89-100.
Nath B N, Roelandts I, Sudhakar M, Pluger W L and Balaram V. 1994. Cerium Anomaly Variations in Ferromanganese Nodules and Crusts from the Indian-Ocean. Marine Geology, 120: 385-400.
Nielsen S G, Mar-Gerrison S, Gannoun A, LaRowe D, Klemm V, Halliday A N, Burton K W and Hein J R. 2009. Thallium isotope evidence for a permanent increase in marine organic carbon export in the early Eocene. Earth and Planetary Science Letters, 278(3-4): 297-307.
Noguchi A, Yamamoto Y, Nishi K, Usui A and Oda H. 2017. Paleomagnetic study of ferromanganese crusts recovered from the northWest Pacific - Testing the applicability of the magnetostratigraphic method to estimate growth rate. Ore Geology Reviews, 87: 16-24.
Nozaki T, Takaya Y, Toyofuku T, Tokumaru A, Goto K T, Chang Q, Kimura J, Kato Y, Suzuki K, Augustin A H and Kitazato H. 2017. Depositional Age of a Fossil Whale Bone from Sao Paulo Ridge, South Atlantic Ocean, Based on Os Isotope Stratigraphy of a Ferromanganese Crust. Resource Geology, 67(4): 442-450.
Oda H, Nakasato Y and Usui A. 2018. Characterization of marine ferromanganese crust from the Pacific using residues of selective chemical leaching: identification of fossil magnetotactic bacteria with FE-SEM and rock magnetic methods. Earth Planets and Space, 70: 165.
Peacock C L. 2009. Physiochemical controls on the crystal-chemistry of Ni in birnessite: Genetic implications for ferromanganese precipitates. Geochimica Et Cosmochimica Acta, 73(12): 3568-3578.
Peacock C L and Sherman D M. 2007. Crystal-chemistry of Ni in marine ferromanganese crusts and nodules. American Mineralogist, 92(7): 1087-1092.
Pe? J, Bargar J R and Sposito G. 2015. Copper sorption by the edge surfaces of synthetic birnessite nanoparticles. Chemical Geology, 396: 196-207.
Peuckerehrenbrink B, Ravizza G and Hofmann A W. 1995. The marine 187Os/(186Os) record of the past 80 million years. Earth and Planetary Science Letters, 130(1): 155-167.
Pichocki C and Hoffert M. 1987. Characteristics of Co-rich ferromanganese nodules and crusts sampled in French Polynesia. Marine Geology, 77(1-2): 109-119.
Post J E, Heaney P J and Hanson J. 2003. Synchrotron X-ray diffraction study of the structure and dehydration behavior of todorokite. American Mineralogist, 88(1): 142-150.
Qin H B, Uesugi S, Yang S T, Tanaka M, Kashiwabara T, Itai T, Usui A and Takahashi Y. 2019. Enrichment mechanisms of antimony and arsenic in marine ferromanganese oxides: Insights from the structural similarity. Geochimica Et Cosmochimica Acta, 257: 110-130.
Ren X, Pulyaeva I, Lu H, Shi X and Cao D. 2017. Calcareous nannofossil biostratigraphy of a Co-rich ferromanganese crust from seamount MK of Magellan Seamount Cluster. Earth Science Frontiers, 24: 276-296.
Resing J A, Sedwick P N, German C R, Jenkins W J, Moffett J W, Sohst B M and Tagliabue A. 2015. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature, 523: 200-203.
Sander S G and Koschinsky A. 2011. Metal flux from hydrothermal vents increased by organic complexation. Nature Geoscience, 4: 145-150.
Sharma M, Polizzotto M and Anbar A D. 2001. Iron isotopes in hot springs along the Juan de Fuca Ridge. Earth and Planetary Science Letters, 194(1-2): 39-51.
Slack J F, Kimball B E and Shedd K B. 2017. Cobalt // Schulz K J, DeYoung J J H, Seal II R R, Bradley D C. Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply. U.S. Geological Survey, Reston, VA: Chapter F.
Takahashi Y, Manceau A, Geoffroy N, Marcus M A and Usui A. 2007. Chemical and structural control of the partitioning of Co, Ce, and Pb in marine ferromanganese oxides. Geochimica Et Cosmochimica Acta, 71(4): 984-1008.
Takahashi Y, Shimizu H, Usui A, Kagi H and Nomura M. 2000. Direct observation of tetravalent cerium in ferromanganese nodules and crusts by X-ray-absorption near-edge structure (XANES). Geochimica Et Cosmochimica Acta, 64(17): 2929-2935.
Templeton A S, Knowles E J, Eldridge D L, Arey B W, Dohnalkova A C, Webb S M, Bailey B E, Tebo B M and Staudigel H. 2009. A seafloor microbial biome hosted within incipient ferromanganese crusts. Nature Geoscience, 2: 872-876.
Turner S and Buseck P R. 1981. Todorokites: A New Family of Naturally Occurring Manganese Oxides. Science, 212(4498): 1024-1027.
Usui A, Hino H, Suzushima D, Tomioka N, Suzuki Y, Sunamura M, Kato S, Kashiwabara T, Kikuchi S, Uramoto G I, Suzuki K and Yamaoka K. 2020. Modern precipitation of hydrogenetic ferromanganese minerals during on-site 15-year exposure tests. Scientific Reports, 10: 3558.
Usui A, Nishi K, Sato H, Nakasato Y, Thornton B, Kashiwabara T, Tokumaru A, Sakaguchi A, Yamaoka K, Kato S, Nitahara S, Suzuki K, Iijima K and Urabe T. 2017. Continuous growth of hydrogenetic ferromanganese crusts since 17 Myr ago on Takuyo-Daigo Seamount, NW Pacific, at water depths of 800-5500 m. Ore Geology Reviews, 87: 71-87.
Usui A and Okamoto N. 2010. Geophysical and Geological Exploration of Cobalt-rich Ferromanganese Crusts: An Attempt of Small-Scale Mapping on a Micronesian Seamount. Marine Georesources & Geotechnology, 28(3): 192-206.
Usui A and Terashima S. 1997. Deposition of hydrogenetic and hydrothermal manganese minerals in the Ogasawara (Bonin) Arc Area, Northwest Pacific. Marine Georesources & Geotechnology, 15(2): 127-154.
Varentsov I M, Drits V A and Gorshkov A I. 1991. Rare-Earth Element Indicators of Mn-Fe Oxyhydroxide Crust Formation on Krylov Seamount, Eastern Atlantic. Marine Geology, 96(1-2): 71-84.
Verlaan P A. 2008. The Role of Primary-Producer-Mediated Organic Complexation in Regional Variation in the Supply of Mn, Fe, Co, Cu, Ni and Zn to Oceanic, Non-Hydrothermal Ferromanganese Crusts and Nodules. Marine Georesources & Geotechnology, 26(4): 214-230.
Villalobos M, Bargar J and Sposito G. 2005. Mechanisms of Pb(II) Sorption on a Biogenic Manganese Oxide. Environmental Science & Technology, 39(2): 569-576.
Villalobos M, Lanson B, Manceau A, Toner B and Sposito G. 2006. Structural model for the biogenic Mn oxide produced by Pseudomonas putida. American Mineralogist, 91(4): 489-502.
Villalobos M, Toner B, Bargar J and Sposito G. 2003. Characterization of the manganese oxide produced by Pseudomonas putida strain MnB1. Geochimica Et Cosmochimica Acta, 67(14): 2649-2662.
Wang X, Wiens M, Schr?er H C, Schlo?acher U and Müller W E G. 2011. Molecular Biomineralization: Toward an Understanding of the Biogenic Origin of Polymetallic Nodules, Seamount Crusts, and Hydrothermal Vents // Müller W E G. Molecular Biomineralization: Aquatic Organisms Forming Extraordinary Materials. Springer Berlin Heidelberg, Berlin, Heidelberg: 77-110.
Yuan W, Zhou H, Zhao X, Yang Z, Yang Q and Zhu B. 2017. Magnetic stratigraphic dating of marine hydrogenetic ferromanganese crusts. Scientific Reports, 7: 16748.
Yucel M, Gartman A, Chan C S and Luther G W. 2011. Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean. Nature Geoscience, 4: 367-371.
Zhu X K, O’Nions R K, Guo Y and Reynolds B C. 2000. Secular variation of iron isotopes in North Atlantic Deep Water. Science, 287(5460): 2000-2002.

备注/Memo

备注/Memo:
收稿日期: 2021-06-24; 改回日期: 2021-11-16
项目资助: 中国科学院战略性先导科技专项(B类)子课题“印太交汇区热液矿床成矿机理”(XDB42020404)和国家杰出青年科学基金(41725009)联合资助。
第一作者简介: 杨燕子(1997-), 女, 硕士研究生, 矿物学、岩石学、矿床学专业。Email: yangyanzi@gig.ac.cn
通信作者: 陈华勇(1976-), 男, 研究员, 博士生导师, 主要从事金属矿床成因及勘查方法研究。Email: huayongchen@gig.ac.cn
更新日期/Last Update: 2021-12-09