[1]李五福,李善平,王秉璋.2021.青海三江北段草陇(绿柱石-)锂辉石花岗伟晶岩的发现及其Li-Be找矿意义.大地构造与成矿学,优先出版:001-23.doi:10.16539/j.ddgzyckx.2021.05.021
 LI Wufu,LI Shanping,WANG Bingzhang.2021.Discovery of the (Beryl-bearing) Spodumene Pegmatite in the Caolong Area in the Sanjiang Northern Section of the Qinghai: Implications for Li-Be Mineralization.Geotectonica et Metallogenia,优先出版:001-23.doi:10.16539/j.ddgzyckx.2021.05.021
点击复制

青海三江北段草陇(绿柱石-)锂辉石花岗伟晶岩的发现及其Li-Be找矿意义
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2021年优先出版
页码:
001-23
栏目:
出版日期:
2022-12-30

文章信息/Info

Title:
Discovery of the (Beryl-bearing) Spodumene Pegmatite in the Caolong Area in the Sanjiang Northern Section of the Qinghai: Implications for Li-Be Mineralization
作者:
李五福1 李善平1 王秉璋1 王春涛1 刘金恒2 张新远1 曹锦山1 许传兵2 刘建栋1 金婷婷1
1.青海省地质调查院, 青海省青藏高原北部地质过程与矿产资源重点实验室, 青海 西宁810012; 2.中国科学院广州地球化学研究所, 同位素地球化学国家重点实验室, 广东 广州 510640
Author(s):
LI Wufu1 LI Shanping1 WANG Bingzhang1 WANG Chuntao1 LIU Jinheng2 ZHANG Xinyuan1 CAO Jingshan1 XU Chuanbing2 LIU Jiandong1 and JIN Tingting1
1. Qinghai Provincial Key Laboratory of the Northern Qinghai-Tibet Plateau Geological Processes and Mineral Resources, Qinghai Geological Survey Institute, Xining 810012, Qinghai, China; 2. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China
关键词:
(含绿柱石Li-Be-)锂辉石伟晶岩 Li-Be成矿 成矿时代 高分异花岗岩伟晶岩 三江北段
Keywords:
(beryl-bearing) spodumene pegmatite Li-Be mineralization mineralization age highly fractionated granitic pegmatite northern Sanjiang region
分类号:
P595, P597
DOI:
10.16539/j.ddgzyckx.2021.05.021
文献标志码:
A
摘要:
马尔康-雅江-喀喇昆仑巨型锂矿带是一条Li-Be-Ta稀有元素超常富集带。该成矿带西段西昆仑和东段川西地区均已发现伟晶岩型锂-铍-钽矿床, 但其间还未有此类型矿床的发现。本文对该成矿带中段新发现的青海三江北段草陇(绿柱石-)锂辉石花岗伟晶岩开展了系统的岩石学、地球化学及年代学研究。伟晶岩Li2O和BeO品位分别为0.95%~3.8%和0.05%~1.48%, 显示了良好的含矿性。伟晶岩具有高SiO2含量(69.88%~79.77%)、低P2O5含量(0.05%~0.58%)和高分异指数(DI=93.7~97.5)以及低铁、镁、钙、钛含量地球化学特征; 微量元素表现为富集K、Rb、Th、U、Pb等大离子亲石元素, 亏损Ba、Nb、Sr、Ce、Eu和Ti, Zr含量低(7.49×10-6~55.6×10-6), 且Zr/Hf比值(13~28)低和Rb/Sr比值(2.4~76)高; 稀土元素总量较低, 具轻稀土元素富集配分曲线, 轻、重稀土元素分馏弱, 发育Ce、Eu呈负异常, 显示出岩浆演化晚期高度分异特性。锆石206 Pb/238 U年龄为110~138 Ma; 独居石U-Pb年龄介于204~200 Ma, 表明花岗伟晶岩是晚三叠世岩浆活动的产物。锆石εHf(t)值为-7.97~-13.6, 一阶段模式年龄(tDM1)为0.98~1.58 Ga, 地壳模式年龄(tDMC)为1.58~1.94 Ga, 源区可能为古老地壳。草陇(绿柱石-)锂辉石花岗伟晶与西昆仑大红柳、白龙山和川西甲基卡、马尔康等晚三叠世含锂辉石花岗伟晶伟晶岩的形成时代一致, 共同构成了完整的马尔康-雅江-喀喇昆仑巨型锂矿带印支期Li-Be-Ta稀有金属成矿带。草陇(绿柱石-)锂辉石伟晶岩的发现, 进一步说明马尔康-雅江-喀喇昆仑巨型锂矿带成矿潜力巨大, 同时也拓展了青藏高原北部伟晶岩型 Li-Be 矿的找矿空间。
Abstract:
Songpan-Garzê orogenic belt is a super-large lithium (Li) ore zone that is extremely enriched in lithium-beryllium-tantalum rare elements. The study area (i.e., Caolong area) is located in the central part of Songpan-Garzê orogenic belt. Fifteen beryl- and spodumene-bearing pegmatite veins with average Li2O grade of 0.95% to 3.8%, BeO grade of 0.05% to 1.48% have been discovered. We conducted petrographic, geochemical, and geochronological analyses of the Caolong beryl- and spodumene-bearing pegmatite veins in the northern Sanjiang section. The results show that the granitic pegmatite dikes have high SiO2 contents (69.88% to 79.77%), high differentiation index (DI=93.7 to 97.5) and low P2O5 contents (0.05% to 0.58%). They are characterized by high Si, calc-alkaline, high differentiation, and low contents of Fe, Mg, Ca, and Ti. They are enriched in large ion lithophile elements (e.g., K, Rb, Th, U, and Pb) and are depleted in Ba, Nb, Sr, Ce, Eu, and Ti. They also have low Zr contents (7.49×10-6 to 55.6×10-6), Zr/Hf ratios (13 to 28), and high Rb/Sr ratios (2.4 to 76). In addition, they contain low rare earth element contents. They have rare earth element (LREE) enrichment with obvious fractionation between light and heavy rare earth elements, negative Ce anomaly, and negative Eu anomaly. These characteristics collectively suggest that their magma is highly differentiated during late-stage magma evolution. Zircons contain high contents of U and Th and have wide range of 206Pb/238U, yielding peak ages of 110 to 138 Ma. Monazites yield U-Pb age of 204 to 200 Ma, indicating that the pegmatites were the products of the Late Triassic magmatic activity.The analyzed zircons have low initial εHf(t) values of -7.97 to -13.6, with one-stage model ages of 0.98 to 1.58 Ga and crustal model ages of 1.58 to 1.94 Ga, suggesting that they were derived from an ancient crustal source. These results show that the granitic pegmatites were mainly formed in the Late Triassic under a relatively stable tectonic background after the Indosinian movement. The discovery of the Caolong beryl- and spodumene-bearing pegmatites indicates that the northern Sanjiang region is a new and important Li-Be metallogenic belt in the northern Tibetan Plateau. The exploration space of pegmatite-type Li-Be deposits in the northern Tibetan Plateau has been greatly expanded.

参考文献/References:

丁坤, 梁婷, 凤永刚, 张泽, 丁亮, 李侃. 2020. 西昆仑大红柳滩黑云母二长花岗岩岩石成因: 来自锆石U-Pb年龄及Li-Hf同位素的证据. 西北地质, 53(1): 24-34.
付小方, 侯立玮, 王登红, 袁蔺平, 梁斌, 郝雪峰, 潘蒙. 2014. 四川甘孜甲基卡锂辉石矿矿产调查评价成果.中国地质调查, 1(3): 37-43.
付小方, 侯立玮, 梁斌. 2017. 甲基卡式花岗伟晶岩型锂矿床成矿模式与三维勘查找矿模型. 北京: 科学出版社: 227.
付小方, 黄韬, 郝雪峰, 邹付戈, 肖瑞卿, 杨荣, 潘蒙, 唐屹, 张晨. 2019. 综合找矿模型在甲基卡隐伏区稀有锂金属找矿中的应用. 矿床地质, 38(4): 751-770.
郝雪峰, 付小方, 梁 斌, 袁蔺平, 潘蒙, 唐屹. 2015. 川西甲基卡花岗岩和新三号矿脉的形成时代及意义. 矿床地质, 34(6): 1199-1208.
李名则, 秦宇龙, 赵春, 詹涵钰, 周雄, 孙光银. 2020. 川西甲基卡矿床外围中酸性侵入岩LA-ICP-MS锆石U-Pb年龄及地球化学特征. 中国地质调查, 7(5): 1-9.
李贤芳, 田世洪, 王登红, 张慧娟, 张玉洁, 付小方, 郝雪峰, 侯可军, 赵悦, 秦燕, 于扬, 王海. 2020. 川西甲基卡锂矿床花岗岩与伟晶岩成因关系: U-Pb定年、Hf-O同位素和地球化学证据. 矿床地质, 39(2): 273-304.
刘丽君, 付小方, 王登红, 郝雪峰, 袁蔺平, 潘蒙. 2015. 甲基卡式稀有金属矿床的地质特征与成矿规律. 矿床地质, 34(6): 1187-1198.
刘丽君, 王登红, 侯可军, 田世洪, 赵悦, 付小方, 袁蔺平, 郝雪峰. 2017. 锂同位素在四川甲基卡新三号矿脉研究中的应用. 地学前缘, 24(5): 167-171.
刘丽君, 王登红, 高娟琴, 于沨, 王伟. 2019. 国外锂矿找矿的新突破(2017-2018)对我国关键矿产勘查的启示.地质学报, 93(6): 1479-1488.
柳政甫, 李秋根, 王宗起, 汤好书, 陈衍景, 朱杰, 肖兵. 2017. 西昆仑慕士塔格岩体锆石U-Pb和黑云母 40 Ar- 39Ar年龄及其地质意义. 地球科学与环境学报, 39(3): 344-356.
卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文准. 2004. 流体包裹体. 北京: 科学出版社: 32-65.
乔耿彪, 伍跃中. 2018. 新疆西昆仑东南部泉水沟岩体的年龄、成因及构造意义. 地球科学, 43(12): 4283-4299.
时章亮, 张宏飞, 蔡宏明. 2009. 松潘造山带马尔康强过铝质花岗岩的成因及其构造意义. 地球科学, 34(4): 569-584.
唐国凡, 吴盛先. 1984. 四川省康定县甲基卡花岗伟晶岩锂矿床地质研究报告. 西昌: 四川省地质矿产局攀西地质大队.
王核, 李沛, 马华东, 朱炳玉, 邱林, 张晓宇, 董瑞, 周楷麟, 王敏, 王茜, 闫庆贺, 魏小鹏, 何斌, 卢鸿, 高昊. 2017. 新疆和田县白龙山超大型伟晶岩型锂铷多金属矿床的发现及其意义. 大地构造与成矿学, 41(6): 1053-1062.
王登红, 陈毓川, 徐志刚, 李天德, 傅旭杰. 2002. 阿尔泰成矿省的成矿系列及成矿规律研究. 北京: 原子能出版社: 1-492.
王登红, 邹天人, 徐志刚, 余金杰, 付小方. 2004. 伟晶岩矿床示踪造山过程的研究进展. 地球科学进展, 19(4): 614-620.
王登红, 李红阳, 邹天人. 1998. 阿尔泰稀有金属矿床的类型与造山过程. 矿床地质, 17(增刊): 25-28.
王登红, 李建康, 付小方. 2005. 四川甲基卡伟晶岩型稀有金属矿床的成矿时代及其意义. 地球化学, 34(6): 541-547.
王登红, 刘丽君, 代鸿章, 刘善宝, 侯江龙, 吴西顺. 2017. 试论国内外大型超大型锂辉石矿床的特殊性与找矿方向. 地球科学, 42(12): 2243-2257.
王登红, 刘丽君, 侯江龙, 代鸿章, 于扬, 代晶晶, 田世洪. 2017. 初论甲基卡式稀有金属矿床“五层楼+地下室”勘查模型. 地学前缘, 24(5): 1-7.
王登红, 郑绵平, 王成辉, 高树学, 商朋强, 杨献忠, 樊兴涛, 孙艳. 2019. 大宗急缺矿产和战略性新兴产业矿产调查工程进展与主要成果. 中国地质调查, 6(6): 1-11.
吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238.
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220.
许志琴, 侯立玮, 王宗秀. 1992. 中国松潘-甘孜造山带的造山过程. 北京: 地质出版社: 1-190.
许志琴, 王汝成, 赵中宝, 付小方. 2018. 试论中国大陆“硬岩型”大型锂矿带的构造背景. 地质学报, 92(6): 1091-1106.
许志琴, 付小方, 赵中宝, 李广伟, 郑艺龙, 马泽良. 2019. 片麻岩穹窿与伟晶岩型锂矿的成矿规律探讨. 地球科学, 44(5): 1452-1463.
许志琴, 王汝成, 朱文斌, 秦宇龙, 付小芳, 李广伟. 2020. 川西花岗-伟晶岩型锂矿科学钻探:科学问题和科学意义. 地质学报, 94(8): 2177-2189.
杨卉芃, 柳林, 丁国峰. 2019. 全球锂矿资源现状及发展趋势. 矿产保护与利用, 5: 26-40.
叶亚康, 周家云, 周雄. 2020. 川西塔公松林口岩体LA-ICP-MS锆石U-Pb年龄与地球化学特征. 岩矿测试, 39(6): 346-359.
燕洲泉, 王怀涛, 李元茂, 王记周, 李侃, 王玉玺, 任文秀, 余超, 周煜祺. 2018. 西昆仑大红柳滩伟晶岩型锂铍矿产资源潜力评价. 甘肃地质, 27(3-4): 42-48.
赵振华. 1997. 微量元素地球化学原理. 北京: 科学出版社: 113-138.
周雄, 周玉, 张怡, 李名则, 徐云峰, 叶亚康. 2018. 松潘-甘孜造山带中部年轮寺北岩体锆石LA-ICP-MS年代学及地质意义.桂林理工大学学报, 38(4): 647-653.
周玉, 周雄, 张怡, 秦志鹏, 贾志泉. 2019. 川西长征穹窿高分异花岗岩地球化学、锆石U-Pb定年、Lu-Hf同位素特征: 对区域稀有金属成矿背景的限定. 矿床地质, 38(4): 815-836.
Deschamps F, Duchêne S, de Sigoyer J, Bosse V, Benoit M and Vanderhaeghe O. 2017. Coeval mantle-derived and crustderived magmas forming two neighbouring plutons in the Songpan Ganze accretionary orogenic wedge (SW China). Journal of Petrology, 58(11): 2221-2256.
Druschke P, Hanson A D, Yan Q, Wang Z and Wang T. 2006. Stratigraphic and U-Pb SHRIMP detrital zircon evidence for a Neoproterozoic continental arc, central China: Rodinia implications. The Journal of Geology, 114(5): 627-636.
Evensen J M, London D and Wendlandt R F. 1999. Solubility and stability of beryl in granitic melts. American Mineral, 84(5): 733-745.
Griffin W L, Pearson N J and Belousova E. 2000. The Hf isotope composition of cratonic mantle: LA-MC-ICPMS analysis of Zircons megacrysts in kimber-lites-Kimberlites and related rocks. Geochimica et Cosmochimica Acta, 64(1): 133-147.
Hu Z C, Liu Y S, Gao S, Xiao S Q, Zhao L S, Günther D, Li M, Zhang W and Zong K Q. 2012. A “wire” signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis. Spectrochimica Acta Part B, 78: 50-57.
Irber W. 1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu, Sr /Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochimica et Cosmochimica Acta, 63(3-4): 489-508.
Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q and Wang D B. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571.
Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G and Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43.
Ludwig K R. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley, California: Berkeley Geochronology Center: 1-70.
Peccerillo A and Taylor S R. 1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81.
Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22: 247-263.
Roger F, Arnaud N, Gilder S, Tapponnier P, Jolivet M, Brunel M, Malavieille J, Xu Z and Yang J. 2003. Geochronological and geochemical constraints on Mesozoic suturing in east central Tibet. Tectonics, doi: 10.1029/2002TC001466.
Roger F, Jolivet M, Cattin R and Malavieille J. 2011. Mesozoic-Cenozoic tectonothermal evolution of the eastern part of the Tibetan Plateau (Songpan-Garzê, Longmen Shan area): Insights from thermochronological data and simple thermal modelling. Geological Society, London, Special Publications, 353(1): 9.
Roger F, Malavieille J, Leloup P H, Calassou S and Xu Z. 2004. Timing of granite emplacement and cooling in the Songpan-Garzêfold belt (eastern Tibetan Plateau) with tectonic implications. Journal of Asian Earth Science, 22(5): 465-481.
Song S G, Niu Y L, Wei C J, Ji J Q and Su L. 2010. Metamorphism, anatexis, zircon ages and tectonic evolution of the Gongshan block in the northern Indochina continent-An eastern extension of the Lhasa Block. Lithos, 120: 327-346.
Wu F Y, Liu X C, Ji W Q, Wang J M and Yang L. 2017. Highlyfractionated granites: Recognition and research. Science China (Earth Sciences), 60: 1201-1219.
Xiao L, Zhang H F, Clemens J D, Wang Q W, Kan Z Z, Wang K M, Ni P Z and Liu X M. 2007. Late Triassic granitoids of the eastern margin of the Tibetan Plateau: geochronology, petrogenesis and implications for tectonic evolution. Lithos, 96(3-4): 436-452.
Xu Z, Fu X, Wang R, Li G, Zheng Y, Zhao Z and Lian D. 2020. Generation of lithium-bearing pegmatite deposits within the Songpan-Ganze orogenic belt, East Tibet. Lithos, 354-355: 105281.
Xu Z, Ji S, Li H, Hou L, Fu X and Cai Z. 2008. Uplift of the Longmen Shan range and the Wenchuan earthquake. Episodes, 31(3): 291-301.
Yuan C, Zhou M, Sun M, Zhao Y, Wilde S, Long X and Yan D. 2010. Triassic granitoids in the eastern Songpan Ganzi fold belt, SW China:magmatic response to geodynamics of the deep lithosphere. Earth and Planetary Science Letters, 290(3-4): 481-492.
Zhang H, Zhang L, Harris N, Jin L and Yuan H. 2006. U-Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan-Garze fold belt, eastern Tibetan Plateau:constraints on petrogenesis and tectonic evolution of the basement. Contributions to Mineralogy and Petrology, 152(1): 75-88.
Zhou M, Yan D, Kennedy A K, Li Y and Ding J. 2002. SHRIMP U-Pbzircon geochronological and geochemical evidence forNeoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1): 51-67.

相似文献/References:

[1]王秉璋,韩 杰,谢祥镭.青藏高原东北缘茶卡北山印支期(含绿柱石)锂辉石伟晶岩脉群的发现及Li-Be成矿意义.大地构造与成矿学,2021.优先出版:001.doi:10.16539/j.ddgzyckx.2019.02.016
 WANG Bingzhang,HAN Jie,XIEXianglei.The Discovery of the Indosinian (Beryl-bearing) Spodumene Pegmatitic Dike Swarm in the Chakaibeishan Area on the Northeastern Margin of the Tibetan Plateau: Implications for Li-Be Mineralziation.Geotectonica et Metallogenia,2021.优先出版:001.doi:10.16539/j.ddgzyckx.2019.02.016
[2]王秉璋,韩 杰,谢祥镭.青藏高原东北缘茶卡北山印支期(含绿柱石)锂辉石伟晶岩脉群的发现及Li-Be成矿意义.大地构造与成矿学,2020.44(1):069.doi:10.16539/j.ddgzyckx.2019.02.016
 WANG Bingzhang,HAN Jie,XIE Xianglei.Discovery of the Indosinian (Beryl-bearing) Spodumene Pegmatitic Dike Swarm in the Chakaibeishan Area in the Northeastern Margin of the Tibetan Plateau: Implications for Li-Be Mineralization.Geotectonica et Metallogenia,2020.优先出版:069.doi:10.16539/j.ddgzyckx.2019.02.016

备注/Memo

备注/Memo:
收稿日期: 2021-10-31; 改回日期: 2021-12-02
项目资助: 第二次青藏高原综合科学考察研究项目(2019QZKK0702)、青海省地质矿产勘查开发局项目(青地矿科[2021]59号)资助。
第一作者简介: 李五福(1982-), 男, 硕士, 高级工程师, 从事区域地质调查研究。Email: 15422504@qq.com
通信作者: 李善平(1972-), 男, 硕士, 教授级高工, 从事区域地质调查研究。Email: lishanping@163.com
更新日期/Last Update: 2021-12-07