[1]陈剑锋,文春华,黄建中.2021.幕阜山南缘仁里稀有金属矿区7号伟晶岩脉、辉石闪长岩脉特征及地质意义.大地构造与成矿学,优先出版:001-20.doi:10.16539/j.ddgzyckx.2021.05.018
 CHEN Jianfeng,WEN Chunhua,HUANG Jianzhong.2021.Characteristics of No.7 pegmatite and pyroxene diorite in Renli rare metal deposit, south margin of Mufushan batholiths and its geological implications.Geotectonica et Metallogenia,优先出版:001-20.doi:10.16539/j.ddgzyckx.2021.05.018
点击复制

幕阜山南缘仁里稀有金属矿区7号伟晶岩脉、辉石闪长岩脉特征及地质意义
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2021年优先出版
页码:
001-20
栏目:
出版日期:
2021-12-31

文章信息/Info

Title:
Characteristics of No.7 pegmatite and pyroxene diorite in Renli rare metal deposit, south margin of Mufushan batholiths and its geological implications
作者:
陈剑锋1 2 3 文春华2 黄建中2 张锦煦2 汪 程3 唐 勇4 吕正航4 周芳春5 陈 虎5 曹创华2 陈宇鹏2
1.湖南省煤炭地质勘查院, 湖南 长沙 410114; 2.湖南省地质调查院, 湖南 长沙 410116; 3.中南大学, 有色金属成矿预测与地质环境监测教育部重点实验室, 湖南 长沙 410083; 4.中国科学院地球化学研究所, 贵州 贵阳 550081; 5.湖南省核工业地质局三一一大队, 湖南 长沙 410100
Author(s):
CHEN Jianfeng123 WEN Chunhua2 HUANG Jianzhong2 ZHANG Jinxu2 WANG Cheng3 TANG Yong4 Lü Zhenghang4 ZHOU Fangchun5 CHEN Hu5 CAO Chuanghua2 and CHEN Yupeng2
1. Academy of Coal Geological Survey of Hunan Province, Changsha 410114, China; 2. Hunan Institute of Geological Survey, Changsha 410116, China; 3. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, Central South University, Changsha 410083, China; 4. Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; 5. 311 Brigade of Hunan Nuclear Geological Bureau, Changsha 410100, Hunan, China
关键词:
锆石U-Pb定年 Hf同位素组成 地球化学特征 伟晶岩脉 辉石闪长岩 仁里矿区
Keywords:
zircon U-Pb age Hf isotopes geochemical pegmatite pyroxene diorite Renl
分类号:
P597
DOI:
10.16539/j.ddgzyckx.2021.05.018
文献标志码:
A
摘要:
位于幕阜山南缘的仁里稀有金属矿床是国内近年新发现的一超大型伟晶岩型铌钽矿床, 针对矿区内二云母伟晶岩的形成年龄、物质来源、以及伟晶岩与花岗岩之间的关系等科学问题, 本文选择对仁里矿区最具典型的7号伟晶岩脉以及内部的辉石闪长岩脉进行锆石LA-ICPMS U-Pb定年、7号脉锆石Hf同位素分析、辉石闪长岩脉地球化学分析。结果显示, 仁里矿区7号伟晶岩脉和辉石闪长岩脉的锆石U-Pb年龄分别为141.5±0.8 Ma和137.2±0.6 Ma, 均形成于早白垩世; 综合7号脉、辉石闪长岩脉具有锆石的εHf(t)值和二阶段模式年龄tDM2相近的特征, 以及辉石闪长岩脉中稀有金属元素丰度很高, 且微量元素显示出不相容元素Rb、U、Nd富集和Ba、Nb、Sr、P、Ti明显亏损为特征, 认为矿区伟晶岩的成岩、成矿物源主要为地壳的部分熔融。伟晶岩与花岗岩在时空上的关系以及Hf同位素特征等显示矿区二云母伟晶岩的母岩为黑云母二长花岗岩。
Abstract:
The Renli rare metal deposit located at the southern margin of Mufushan batholithsis a newly discovered, super-large sized granitic pegmatite type Nb-Ta deposit. In this study, a series of analyses, such as LAICP-MS zircon U-Pb isotopic dating and Hf isotopes analyses were performed for the No.7 pegmatite and pyroxene diorite respectively, as well as Major/trace elements testing for pyroxene diorite, to helps discuss some scientific problems targeted two-mica pegmatites such as its formation age, magmas source and its relationship with granite. The LA-ICP-MS Zircon U-Pb analysis of No.7 pegmatite and pyroxene diorite yielded 206Pb/238U ages of 141.5±0.8 Ma and 137.2±0.6 Ma, respectively, suggesting that both of them formed in Early Cretaceous. Both the No.7 pegmatite and pyroxene diorite has the same εHf(t) values and two-stage model ages tDM2, as well as the geochemical analysis show that the pyroxene diorite contains high rare metal elements is characterized depleted in Ba, Nb, Sr, P, Ti and enriched in Rb, U, Nd showed by primitive mantle-normalized trace element spider diagram, the results indicated that both the primary magma of pegmatite and ore-forming materials sources in Renli is likely derived from melting of the Proterozoic crust. The close spatio-temporal relationship between pegmatite and granites, as well as its zircon Hf isotope characters shows biotite monzogranite is the parental magma for two mica pegmatite viens in Renli.

参考文献/References:

白宜娜, 孙丰月, 钱烨, 刘洪川, 张德明. 2016. 青海东昆仑尕林格铁多金属矿床辉石闪长岩U-Pb年代学及地球化学特征. 世界地质, 35(1): 17-27.
陈剑锋, 张辉, 张锦煦, 马慧英. 2018. 新疆可可托海3号伟晶岩脉锆石U-Pb定年、Hf同位素特征及地质意义. 中国有色金属学报, 28(9): 1832-1844.
邓奇, 王剑, 汪正江, 崔晓庄, 施美凤, 杜秋定, 马龙, 廖世勇, 任光明. 2015. 江南造山带新元古代中期(830~750 Ma)岩浆活动及对构造演化的制约. 大地构造与成矿学, 40(4): 753-771.
高林志, 陈峻, 丁孝忠, 刘耀荣, 张传恒, 张恒, 刘燕学, 庞维华, 张玉海. 2011. 湘东北岳阳地区冷家溪群和板溪群凝灰岩SHRIMP锆石U-Pb年龄——对武陵运动的制约. 地质通报, 30(7): 1001-1008.
湖南省地质调查院. 2017. 中国区域地质志湖南志. 北京: 地质出版社, 579-622.
蒋昊原, 赵志丹, 祝新友, 杨尚松, 蒋斌斌, 杨朝磊, 茅椿伟. 2020. 内蒙古边家大院铅锌银矿床花岗斑岩及辉石闪长岩特征及对成矿的指示. 中国地质, 47(2): 450-471.
李乐广, 王连训, 田洋, 马昌前, 周芳春. 2019. 华南幕阜山花岗伟晶岩的矿物化学特征及指示意义. 地球科学, 44(7): 2532-2550.
李鹏, 李建康, 裴荣富, 冷双梁, 张旭, 周芳春, 李胜苗. 2017. 幕阜山复式花岗岩体多期次演化与白垩纪稀有金属成矿高峰: 年代学依据. 地球科学, 42(10): 1684-1696.
李鹏, 刘翔, 李建康, 黄志飚, 周芳春, 张立平. 2019. 湘东北仁里—传梓源矿床5号伟晶岩岩相学、地球化学特征及成矿时代. 地质学报, 93(6): 1374-1391.
李鹏, 周芳春, 李建康, 刘翔, 黄志飚, 张立平. 2020. 湘东北仁里—传梓源铌钽矿床隐伏花岗岩锆石U-Pb 年龄、Hf 同位素特征及其地质意义. 大地构造与成矿学, 44(3): 486-500.
刘翔, 周芳春, 黄志飚, 李建康, 周厚祥, 肖国强, 包云河, 李鹏, 谭黎明, 石威科, 苏俊男, 黄小强, 陈虎,汪宣民, 林跃, 刘晓敏. 2018. 湖南平江县仁里超大型伟晶岩型铌钽多金属矿床的发现及其意义. 大地构造与成矿学, 42(2): 235-243.
刘翔, 周芳春, 李鹏, 李建康, 黄志飚, 石威科, 黄小强, 张立平, 苏俊男. 2019. 湖南仁里稀有金属矿田地质特征、成矿时代及其找矿意义. 矿床地质, 38(4): 771-791.
陕亮, 柯贤忠, 庞迎春, 刘家军, 赵辛敏, 王晶, 康博, 张鲲. 2017. 湘东北栗山地区新元古代岩浆活动及其地质意义: 锆石U-Pb年代学、Lu-Hf同位素证据. 地质科技情报, 36(6): 32-42.
石威科, 周芳春, 刘翔, 李鹏, 黄志飚, 文春华, 陈阡然, 苏俊男, 黄小强, 张宗栋, 张立平, 陈虎, 刘俊峰, 胡小芳. 2020. 湖南仁里矿田锂辉石白云母伟晶岩地质特征及其找矿意义. 地质学报, 94(3): 817-835.
王连训, 马昌前, 张金阳, 陈玲, 刘园园. 2009. 湘东北晚中生代岩石圈挤压向伸展转换的启动: 幕阜山高镁闪长岩(赞岐岩)岩石学、年代学及地球化学制约. 全国岩石学与地球动力学研讨会: 211.
王臻, 陈振宇, 李建康, 李鹏, 熊欣, 杨晗, 周芳春. 2019. 云母矿物对仁里稀有金属伟晶岩矿床岩浆-热液演化过程的指示. 矿床地质, 38(5): 1039-1052.
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220.
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604.
杨晗, 陈振宇, 李建康, 李鹏, 熊欣, 王臻, 周芳春. 2019. 湘东北仁里-传梓源5号伟晶岩脉云母和长石成分的演化与成矿作用的关系. 矿床地质, 38(4): 851-866.
杨雪, 张玉芝, 崔翔, 虞鹏鹏, 徐文景. 2020. 湘东北新元古代冷家溪群沉积岩的地球化学特征和碎屑锆石U-Pb年代学. 地球科学, 45(9): 3461-3474.
叶柏庄. 2006. 中南铀矿资源特征及新一轮找矿前景探讨. 铀矿地质, 22(3): 129-135.
张辉, 吕正航, 唐勇. 2019. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向. 矿床地质, 38(3): 792-814.
周芳春, 刘翔, 黄志飚, 肖国强, 谭黎明, 包云河, 陈虎, 苏俊男, 汪宣民, 林跃, 王箭, 黄小强, 邹猛秋, 李旭明, 陈阡然, 张立平, 张宗栋, 李振红, 雒小荣, 胡小芳, 张神洲. 2017. 湖南省平江县仁里矿区铌钽多金属矿普查阶段性成果报告. 长沙: 湖南省核工业地质局311大队: 1-111.
周芳春, 刘翔, 李建康, 黄志飚, 肖国强, 李鹏, 周厚祥, 石威科, 谭黎明, 苏俊男, 陈虎, 汪宣民. 2019a. 湖南仁里超大型稀有金属矿床的成矿特征与成矿模型. 大地构造与成矿学, 42(2): 235-243.
周芳春, 李建康, 刘翔, 李鹏, 黄志飚, 石威科, 苏俊男, 陈虎, 黄小强. 2019b. 湖南仁里铌钽矿床矿体地球化学特征及其地质意义. 地质学报, 93(6): 1392-1404.
周芳春, 黄志飚, 刘翔, 苏俊男, 黄小强, 王臻, 陈虎, 张宗栋, 雒小荣, 李建斌, 李振红, 张立平, 曾乐, 李旭明等. 2020. 湖南仁里铌钽矿床辉钼矿Re-Os同位素年龄及其地质意义. 大地构造与成矿学, 44(3): 476-485.
邹天人, 徐建国. 1975. 论花岗伟晶岩的成因和类型划分. 地球化学, 3: 162-174.
Amelin Y, Lee D C, Halliday A N and Pidgeon R T. 1999. Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons. Nature, 399(6733): 252-255.
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192: 59-79.
Bea F, Mazhari A, Montero P, Amini S and Ghalamghash J. 2011. Zircon dating, Sr and Nd isotopes, and element geochemistry of the Khalifan pluton, NW Iran: evidence for Variscan Magmatism in a supposedly Cimmerian superterrane. Journal of Asian Earth Sciences, 40: 172-179.
Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148: 243-258.
Boynton W V. 1984. Cosmo chemistry of the rare earth elements: meteorites studies // In: Henderson, P.(Ed.), Rare Earth Element Geochemistry. Elsevier, Amsterdam, pp. 63-114.
?rny P and Ercit T S. 2005. The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43: 2005-2026.
?rny P, London D and Novak M. 2012. Granitic pegmatites as reflections of their sources. Elements, 8: 289-294.
Dill H G. 2018. Geology and chemistry of Variscan-type pegmatites systems(SE Ger Many) with special reference to structural and chemical pattern recognition of felsic mobile components in the crust. Ore Geology Reviews, 92: 205-239.
Dong G C, Mo X X, Zhao Z D, Zhu D C, Goodman R C, Kong H L and Wang S. 2013. Zircon U-Pb dating and the petrological and geochemical constraints on Lincang granite in Western Yunnan, China: implications for the closure of the Paleo-Tethys Ocean. Journal of Asian Earth Sciences, 62: 282-294.
Fei G C, Menuge J F, Li Y Q, Yang J Y, Deng Y, Chen C S, Yang Y F, Yang Z, Qin L Y, Zheng L and Tang W C. 2020. Petrogenesis of the Lijiagou spodumene pegmatites in Songpan-Garze Fold Belt, West Sichuan, China: Evidence from geochemistry, zircon, cassiterite and coltan U-Pb geochronology and Hf isotopic compositions. Lithos, 364-365: 105865.
Karsli O, Dokuz A and Kandemir R. 2017. Zircon Lu-Hf isotope systematics and U-Pb geochronology, whole-rock Sr-Nd isotopes and geochemistry of the early Jurassic Gokcedere pluton, Sakarya zone-NE Turkey: a magmatic response to roll-back of the Paleo-Tethyan oceanic lithosphere. Contributions to Mineralogy and Petrology, 172(5): 31.
Knoll T, Schuster R and Huet B. 2018. Spodumene pegmatites and related leucogranites from the Austroalpine Unit(Eastern Alps, Central Europe): field relations, petrography, geochemistry and geochronology. The Canadian Mineralogist, 56: 489-528.
Griffin W L, Pearson N J, Belonsova E, Jackson S E, Achterbergh E, Reilly S and Shee R. 2000. The Hf isotope composition of cratonic mantle: LA-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64: 133-147.
Griffin W L, Wang X, Jackson S E, Pearson N J, Reilly S, Xu X S and Zhou X M. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61: 237-269.
Griffin W L, Pearson N J, Belousova E A and Seed A. 2006. Comment: Hf-isotope heterogeneity in zircon 91500. Chemical Geology, 23: 358-363.
Green T H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology, 120: 347-359.
Hoskin P W O and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews of Mineralogy and Geochemistry, 53: 27-62.
Irvine T N and Baragar W R A. 1971. A Guide to the chemical classification of the common volcanic rocks. Revue Canadienne Des Sciences De La Terre, 8: 523-548.
Li P, Li J K , Liu X, Li C, Huang Z B and Zhou F C. 2020. Geochronology and source of the rare-metal pegmatites in the Mufushan area of the Jiangnan orogenic belt: A case study of the giant Renli Nb-Ta deposit in Hunan, China. Ore Geology Reciews, 116: 103237.
Li X H, Long W G, Li Q L, Liu Y, Zheng Y F, Yang Y H, Chamberlain K R, Wan D F, Guo C H, Wang X C, and Tao H. 2010. Penglai zircon megacrysts: a potential new working reference material for microbeam determination of Hf-O isotopes and U-Pb ages. Geostandards and Geoanalytical Research, 34: 117-134.
Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G and Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257: 34-43.
Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q and Wang D B. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-North China orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51: 537-571.
London D. 2014. A petrologic assessment of internal zonation in granitic pegmatites. Lithos, 184: 74-104.
London D. 2018. pegmatites. The Canadian Mineralogist, Special Publication 10. Quebec, Mineralogical Association of Canada, 1-12.
London D. 2018. Ore-forming processes within granitic pegmatites. Ore Geology Reviews, 101: 349-383.
London D, Hunt L, Schwing C R and Guttery B M. 2020. Feldspar thermometry in pegmatites: truth and consequences. Contributions to Mineralogy and Petrology, 175: 8
Ludwig K. 2003. ISOPLOT 3.00: A geochronological toolkit for microsoft excel. Berkeley Geochronological Center Special Publication, 4: 1-70.
Lü Z H, Zhang H. Tang Y, Liu Y L and Zhang X. 2018. Petrogenesis of syn-orogenic rare metal pegmatites in the Chinese Altai: Evidences from geology, mineralogy, zircon U-Pb age and Hf isotope. Ore Geological Reviews, 95: 161-181.
Lü Z H, Zhang H and Tang Y. 2019. Anatexis origin of rare metal/earth pegmatites: Evidences from the Permian pegmatites from the Permian pegmatites Chinese Altai. Lithos, 369: 105865.
Middlemost E A K. 1994. Naming materials in the Magma/igneous rock system. Annual Review of Earth and Planetary Sciences, 37: 215-224.
Pati? Douce A E. 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. Journal of Petrology, 36: 707-738.
Pati? Douce A E. 1997. Generation of metaluminous A-type granites by low-pressure melting of calcalkaline granitoids. Geology. 25: 743-746.
Peccerllo A and Taylor S R. 1976. Geochemistry of eocene calcalkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58: 63-81.
Rapp R P and Watson E B. 1995. Dehydration melting of metabasalt at 8~32 kbar: implication for continental growth and crust- Mantle recycling. Journal of Petrology, 36(4): 891-931.
Rapp R P. 1995. Amphibole-out phase boundary in partially melted metabasalt, its control over liquid fraction and composition, and source permeability. Journal of Geophysical Research, 100: 15601-15610.
Roda-Robles E, Villaseca C, Pesquera A. Gil-Crespo P P, Vieira R, Li Ma A and Olave I. 2018. Petrogenetic relationships between Variscan granitoids and Li-(F-P)-rich aplite-pegmatites in the Central Iberian Zone: Geological and geochemical constraints and implications for other regions from the European Variscides. Ore Geology Reviews, 95: 408-430.
Rudnick R L, Gao S, Ling W L, Liu Y S and Mcdonough W F. 2004. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos, 77: 609-637.
Segal I, Halicz L and Platzner I T. 2003. Accurate isotope ratio measurements of ytterbium by multiple collection inductively coupled plas Ma mass spectrometry applying erbium and hafnium in an improved double external nor Malization procedure. Journal of Analytical Atomic Spectrometry, 18: 1217-1223.
Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes // Geological Society, London, Special Publications, 42: 313-345.
Vervoort J D, Patchett P J, Soderlund U and Baker M. 2004. Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf by isotope dilution using MC-ICPMS. Geochemistry Geophysics Geosystems, 5: 1-15.
Wang T, Tong Y, Jahn B M, Zou T R, Wang Y B, Hong D W and Han B F. 2007. SHRIMP U-Pb Zircon geochronology of the Altai No. 3 pegmatites, NW China, and its implications for the origin and tectonic setting of the pegmatite. Ore Geology Reviews, 32: 325-336.
Wang L X, Ma C Q, Zhang C, Zhang J Y and Marks M A W. 2014. Genesis of leucogranite by prolonged fractional crystallization: A case study of the Mufushan complex, South China. Lithos, 206-207(1): 147-163.
Wolf M B and Wyllie P J. 1994. Dehyddration-melting of amphibolite at 10 kbar: the effects of temperature and time. Contributions to Mineralogy and Petrology, 115(4) : 369-383.
Wu F Y, Yang Y H, Xie L W, Yang J H and Ping X. 2006. Hf isotopic compositions of the standard zircons and badeleyites used in U-Pb geochronology. Chemical Geology, 234: 105-126.
Vervoot J D, Pachelt P J, Gehrels G E and Nut Man A P. 1996. Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature, 379: 624-627.
Soderlund U, Patchett P J, Vervoort J D and Isachsen C E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope syste Matics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219: 311-324.
Xiong Y Q, Jiang S Y, Wen C H and Yu H Y. 2020. Granite-pegmatite connection and mineralization age of the giant Renli Ta—Nb deposit in South China: Constraints from U-Th-Pb geochronology of coltan, monazite, and zircon. Lithos, 358-359: 105422.
Yuan H L, Gao S, Dai M N, Zong C L, Günther D, Fontaine G H, Liu X M and Diwu R C. 2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chemical Geology, 247: 100-118.

相似文献/References:

[1]全铁军,孔华,王高.黄沙坪矿区花岗岩岩石地球化学、U-Pb年代学及Hf同位素制约.大地构造与成矿学,2012.36(4):597.
 QUAN Tiejun,KONG Hua.Petrogenesis of the Granites in the Huangshaping Area: Constraints from Petrochemistry, Zircon U-Pb Chronology and Hf Isotope.Geotectonica et Metallogenia,2012.优先出版:597.
[2]温淑女.海南岛乐东地区志仲岩体锆石U-Pb年代学、Hf同位素研究及其构造意义.大地构造与成矿学,2013.37(2):294.
 WEN Shunv,LIANG Xinquan.Zircon U-Pb Ages, Hf Isotopic Composition of Zhizhong Granitic Intrusion in Ledong Area of Hainan Island and Their Tectonic Implications.Geotectonica et Metallogenia,2013.优先出版:294.
[3]周 云,梁新权,梁细荣.湖南锡田含W-Sn A型花岗岩年代学与地球化学特征.大地构造与成矿学,2013.37(3):511.
 ZHOU Yun,LIANG Xinquan,LIANG Xirong.Geochronology and Geochemical Characteristics of the Xitian Tungsten-Tin-Bearing A-type Granites, Hunan Province, China.Geotectonica et Metallogenia,2013.优先出版:511.
[4]蔡永丰.哀牢山新元古代斜长角闪岩的形成时代、 地球化学特征及其大地构造意义.大地构造与成矿学,2014.38(1):168.
 CAI Yongfeng,WANG Yuejun.Geochronological and Geochemical Characteristics of the Neoprote-rozoi?c Amphibolite from Ailaoshan Zone, Western Yunnan and its Tectonic Implications.Geotectonica et Metallogenia,2014.优先出版:168.
[5]彭建堂,胡阿香,张龙升.湘中锡矿山矿区煌斑岩中捕获锆石 U-Pb定年及其地质意义.大地构造与成矿学,2014.38(3):686.
 PENG Jiantang,HU Axiang,ZHANG Longsheng.Zircon U-Pb Dating of the Lamprophyre in the Xikuangshan Mining District, Central Hunan and its Geological Implications.Geotectonica et Metallogenia,2014.优先出版:686.
[6]高 成,李德威,刘德民.西藏冈底斯南缘中新世含矿斑岩源区组成与成因.大地构造与成矿学,2014.38(4):962.
 GAO Cheng,LI Dewei,LIU Deming.Petrogenesis of the Miocene Ore-Bearing Granite Porphyries in the Southern Gang?d?ese, Tibet.Geotectonica et Metallogenia,2014.优先出版:962.
[7]张国瑞,徐九华,林龙华.小秦岭东桐峪金矿Q8501脉锆石U-Pb年龄及其地质意义.大地构造与成矿学,2015.39(4):743.doi:10.16539/j.ddgzyckx.2015.04.016
 ZHANG Guorui,XU Jiuhua,LIN Longhua.Zircon U-Pb Ages and Their Geological Significance of the Dongtongyu Gold Deposit, Xiaoqinling Area, China.Geotectonica et Metallogenia,2015.优先出版:743.doi:10.16539/j.ddgzyckx.2015.04.016
[8]苏 晔,李光来,唐 傲.赣中聚源钨矿区花岗斑岩锆石U-Pb年代学、岩石地球化学和Sr-Nd-Hf同位素特征及成因探讨.大地构造与成矿学,2020.44(5):971.doi:10.16539/j.ddgzyckx.2020.05.010
 SU Ye,LI Guanglai,TANG Ao.Zircon U-Pb Age, Petrochemistry, Sr-Nd-Hf Isotopic Features and Genesis of Granite Porphyry from Juyuan Tungsten Deposit in Central Jiangxi Province.Geotectonica et Metallogenia,2020.优先出版:971.doi:10.16539/j.ddgzyckx.2020.05.010
[9]孙载波,周 坤,周家喜.三江南段勐海布朗山地区早古生代变火成岩岩石成因及其大地构造意义.大地构造与成矿学,2021.45(3):586.doi:10.16539/j.ddgzyckx.2021.03.008
 SUN Zaibo,ZHOU Kun,ZHOU Jiaxi.Petrogenesis and Tectonic Implication of the Early Paleozoic Metaigeneous Rocks in the Bulangshan Area, Menghai County, Southern Sanjiang Tectonic Zone.Geotectonica et Metallogenia,2021.优先出版:586.doi:10.16539/j.ddgzyckx.2021.03.008
[10]赵 锴,蔡永丰,冯佐海.扬子地块西缘中元古代A型花岗岩的形成时代、地球化学特征及其大地构造意义.大地构造与成矿学,2021.45(5):1007.doi:10.16539/j.ddgzyckx.2021.05.010
 ZHAO Kai,CAI Yongfeng,FENG Zuohai.Geochronological and Geochemical Characteristics of the Mesoproterozoic A-type Granite in the Western Yangtze Block and its Tectonic Implications.Geotectonica et Metallogenia,2021.优先出版:1007.doi:10.16539/j.ddgzyckx.2021.05.010

备注/Memo

备注/Memo:
收稿日期: 2021-01-28; 改回日期: 2021-05-17
项目资助: 湖南省重点领域研发计划资助项目(2019SK2261)、国家重点研发计划资助项目(2017YFC0601402)、湖南省自然科学基金(2021JJ30387)、湖南省专项科普专题(2020ZK4082)和有色金属成矿预测与地质环境监测教育部重点实验室基金(2021YSJS04)联合资助。
第一作者简介: 陈剑锋(1985-), 男, 高级工程师, 博士, 从事地质找矿及矿床研究工作。Email: chenjianfeng021041@163.com
通信作者:文春华(1982-), 男, 高级工程师, 博士, 从事稀有金属矿床成矿作用研究。Email: herowch2004@163.com
更新日期/Last Update: 2021-11-17