[1]李生栋,杨永春,艾启兴.2021.金川铜镍硫化物矿床F1断裂系统演化及其意义.大地构造与成矿学,优先出版:001-20.doi:10.16539/j.ddgzyckx.2021.05.015
 LI Shengdong,YANG Yongchun,AI Qixing and DA Rui.2021.Evolution of F1 Fracture System in Jinchuan Cu-Ni Sulfide Deposit and Its Significance.Geotectonica et Metallogenia,优先出版:001-20.doi:10.16539/j.ddgzyckx.2021.05.015
点击复制

金川铜镍硫化物矿床F1断裂系统演化及其意义
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2021年优先出版
页码:
001-20
栏目:
出版日期:
2021-12-31

文章信息/Info

Title:
Evolution of F1 Fracture System in Jinchuan Cu-Ni Sulfide Deposit and Its Significance
作者:
李生栋1 杨永春1 艾启兴2 达 瑞1
1.甘肃省地质矿产勘查开发局第四地质矿产勘查院, 甘肃 酒泉 735000; 2.金川集团股份有限公司镍钴研究设计院, 甘肃 金昌 737104
Author(s):
LI Shengdong1 YANG Yongchun1 AI Qixing2 and DA Rui1
1. Forth Institute of Geological and Mineral Exploration of Gansu Provincial Bureau of Geology and Mineral Resources, Jiuquan 735000, Gansu, China; 2. Nickel Cobalt Research and Design Institute, Jinchuan Group., Ltd., Jinchan 737104, Gansu, China
关键词:
F1断裂系统 潮水盆地 断层反转 入字型构造 铜镍矿床 金川
Keywords:
F1 fracture system Chaoshui basin fault overturning λ-type structure copper-nickel deposit Jinchuan
DOI:
10.16539/j.ddgzyckx.2021.05.015
文献标志码:
A
摘要:
金川铜镍硫化物矿区构造活动频繁且复杂, 查明矿区构造规律, 是实现深部找矿突破的必经途径之一。文章在充分挖掘区域及以往勘查资料的基础上, 通过野外实地调查, 对矿区内成矿后断裂系统——F1断裂系统分析研究, 发现F1断层角砾岩呈棱角状, 深部产状北倾, 断层发育在龙首山岩群一侧, 无法仅靠现今的叠置关系解释F1的演化。结合潮水盆地研究成果, 总结出F1与潮水盆地同步演化和发展的特征和历程: 早-中侏罗世断陷成盆期, F1形成同生正断层, 后期受青藏高原隆起产生的水平挤压, 改造为左行逆断层; 其他断裂构造是F1的派生(次生)断裂, 是在统一的应力场作用下形成, 具内在的成生联系, F8是F1的分支断裂, 为“入”字型构造。研究表明, I、II、IV矿区地层及岩矿体, 浅部主要通过F1反转及次级断裂的形式, 由SSW向NNE发生位移, 产状由西向东逐渐变缓, 岩石完整性受到破坏; 深部超基性岩体则基本保持了其原始侵位形态, 受影响较小; 岩矿体深部连续延伸地段为找矿有利部位, 对深部勘查具重要指导意义。
Abstract:
Jinchuan deposit is the third largest Cu-Ni sulfide deposit in the world. With the continuous consumption of identified resource reserves, whether the deep resources can be replaced will affect the sustainable development and utilization prospects of copper-nickel resources in China. The tectonic activities in the mining area are frequent and complex, and there are serious differences in understanding the largest F1 fault in the mining area. One holds that F1 is a rock- and ore-controlling fault, which was formed in Lüliang period, and the other holds that F1 is a nappe structure, which is a SW-dipped listric fault in the upper crust. Therefore, it is one of the necessary ways to realize the breakthrough of deep prospecting to find out the structural rules of the mining area. On the basis of fully mining the previous exploration data and geophysical exploration achievements, combined with the development and evolution of regional structures, the post-metallogenic F1 fracture system in the mining area is systematically analyzed and studied through field investigation. It is found that the structural breccia of F1 fault zone is angular, subangular, and argillaceous cementation, and comes from Longshoushan Rock Group superimposed on Quaternary sandy gravel and Neogene sandstone and conglomerate. Two-dimensional seismic profile and other geophysical results show that the occurrence of F1 fault is steep in deep part, so it is difficult to explain this phenomenon reasonably and reveal its internal genetic relationship only by determining F1 fault as a reverse fault according to the superposition relationship. Combined with the research results of Chaoshui basin, the author firstly proposed the formation and evolution of the F1 fracture system and its genetic relationship with Chaoshui basin evolution , and holds that: ① F1 fault and Chaoshui basin evolved synchronously, and a series of contemporaneous normal faults were formed in the basin during the early and middle Jurassic rift basin period. During the depression period of late Jurassic, the basin scale was further expanded, and during the uplift and contraction period from the end of late Jurassic to Cretaceous, the stress in the mining area changed from tension to compression. Finally, during the Cenozoic extinction period, the stress was transmitted to the Chaoshui basin through the Yongchang uplift, and the F1 fault was strongly reversed and transformed into a left-lateral reverse fault by the SSW horizontal compression caused by the strong uplift of the Qinghai Tibet Plateau. ② Other fault structures are originated (secondary) from the F1 fault, which are formed under the action of unified stress field and had internal genetic relationship. F8 fault is a branch of F1 fracture system, showing λ-type structure. ③ F8 has left-lateral translation, which dislocated the tail of ore body in III mining area. Due to the inversion of F1 and secondary faults in the shallow part, the strata and rock/ore bodies in I, II and IV mining areas change from SSW to NNE and the change of occurrence causes the demage of rock integrity. The deep part of the ultrabasic rock body is less affected and basically keeps its original emplacement form, which indicates that the deep continuous extension section of the rock orebody is a favorable prospecting area.

参考文献/References:

艾启兴, 曾认宇, 和秋姣, 赖健清, 毛先成. 2018. 金川矿区变基性岩锆石U-Pb年代学及地质意义. 矿物学报, 38(2): 185-195.
陈发景, 汪新文. 2000. 中国西北地区早-中侏罗世盆地原型分析. 地学前缘, 7(4): 459-469.
陈静, 荣骁, 杨昆, 郭长林. 2015. 潮水盆地西部半槽河地区砂岩型铀矿成矿潜力分析. 世界核地质科学, 32(2): 85-90.
陈列锰, 宋谢炎, Danyushevsky L V, 肖加飞, 朱丹, 周国富, 官建祥, 刘世荣, 郑文勤. 2009. 金川岩体母岩浆成分及其分离结晶过程的熔浆热力学模拟. 地质学报, 83(9): 1302-1315.
陈宣华, 邵兆刚, 熊小松, 高锐, 徐盛林, 张义平, 李冰, 王叶. 2019. 祁连山北缘早白垩世榆木山逆冲推覆构造与油气远景. 地球学报, 40(3): 377-392.
陈正乐, 万景林, 王小凤, 陈宣华, 潘锦华.2002. 阿尔金断裂带8Ma左右的快速走滑及其地质意义. 地球学报, 23(4): 295-300.
长安大学.2015. 甘肃省金昌市金川铜镍硫化物矿床深部及东湾异常区资源潜力评价.
甘肃省地矿局.1995. 西坡幅、河西堡幅、东寨乡幅1:50000区域地质调查报告.
甘肃省地质矿产局第六地质队. 1984. 白家咀子硫化铜镍矿床地质. 北京: 地质出版社, 1-17.
甘肃省祁连山地质队. 1961. 甘肃省永昌县白家嘴咀子铜镍矿第一矿区地质勘探最终报告.
甘肃省祁连山地质队. 1963. 甘肃永昌白家咀子地区断层及竖井工程地质性质勘察中间报告.
高辉, Hronsky J, 曹殿华, 李瑞萍, 张鹏. 2009. 金川铜镍矿床成矿模式、控矿因素分析与找矿. 地质与勘探, 45(3): 218-228.
何继善. 2019. 大深度高精度广域电磁勘探理论与技术. 中国有色金属学报, 29(9) :1809-1816.
何鹏举.2015. 碎屑磷灰石裂变径迹热年代学记录的青藏高原东北缘祁连山新生代构造变形过程.兰州: 兰州大学博士学位论文: 1-113.
和秋姣, 赖健清, 毛先成, 肖文舟, 艾启兴, 刘烨, 杜日俊. 2019. 甘肃金川矿区构造应力场与构造演化研究. 地质找矿论丛, 34(2): 265-273.
贾恩环. 1986. 甘肃金川硫化铜镍矿床地质特征. 矿床地质, 5(1): 27-38.
姜枚, 谭捍东, 钱辉, 张立树, 李庆庆, 彭淼, 王伟. 2012. 金川铜镍矿床的地球物理深部结构与成因模式. 矿床地质, 31(2): 207-215.
姜少飞. 2011.北祁连山磷灰石裂变径迹热年代学初步研究. 兰州: 兰州大学硕士学位论文: 1-55.
李清洋.2010 祁连山东段磷灰石裂变径迹热年代学初步研究. 兰州: 兰州大学硕士学位论文: 1-40.
李文渊. 2006. 祁连山岩浆作用有关金属硫化物矿床成矿与找矿. 北京: 地质出版社, 1-150.
李雄. 2010. 潮水盆地构造特征及其对油气成藏条件的控制. 石油地质与工程, 24(2): 17-20.
刘高, 韩文峰, 聂德新, 2002. 金川矿区地应力场特征.天津城市建设学院学报, 8(2): 81-85
罗开平, 范小林. 2004. 河西走廊及邻区中新生代成盆背景与盆地原型. 石油实验地质, 26(5): 432-436.
马关宇, 高军平, 杜丁丁, 白永波, 潘星. 2014. 金川铜镍矿床成矿后的抬升破坏: 来自热年代学的证据. 世界地质, 33(3): 581-590.
戚帮申, 胡道功, 杨肖肖, 张耀玲, 谭成轩, 张鹏, 丰成君. 2016. 祁连山中段白垩纪以来阶段性构造抬升过程的磷灰石裂变径迹证据. 地球学报, 37(1):46-58.
宋鸿林, 张长厚, 王根厚. 2013. 构造地质学. 北京: 地质出版社, 175-186.
宋谢炎, 陈列锰, 邓宇峰, 颉炜. 2011. 金川两个岩体的识别及其深边部找矿意义. 矿物学报, 31(S1): 389-390.
孙桂玉. 1990. 脆-韧性剪切带控矿的初步探讨——对金川铜镍矿控岩控矿构造的新见解. 矿床地质, 9(4): 352-362 .
汤中立, 杨杰东, 徐士进, 陶仙聪, 李文渊. 1992. 金川含矿超镁铁岩的Sm-Nd定年. 科学通报, 37(10): 918-920 .
汤中立, 李文渊. 1995. 金川铜镍硫化物(含铂)矿床成矿模式及地质对比. 北京:地质出版社: 1-37.
汤中立, 闫海卿, 焦建刚, 王泸文, 陈克娜, 邱根雷, 赵晓燕 . 2010. 金川铜镍矿集区大陆深钻选址研究现状与进展. 矿床地质, 29(S1): 889-890.
汤中立. 1990. 金川硫化铜镍矿床成矿模式. 现代地质, 4(4): 55-64.
汤中立. 1996. 中国岩浆硫化物矿床的主要成矿机制. 地质学报, 70(3): 237-243.
万景林, 王瑜, 李齐, 王非, 王二七.2001. 阿尔金山北段新生代山体抬升的裂变径迹证据. 矿物岩石地球化学通报, 20(4): 222-224.
万景林, 郑文俊, 郑德文, 王伟涛, 王志才. 2010. 祁连山北缘晚新生代构造活动的低温热年代学证据. 地球化学, 39(5): 439-446.
汪劲草, 汤静如. 2011. 金川超基性岩体形态演变对矿区构造的制约. 地质学报, 85(3): 323-329.
王瑜, 万景林, 李齐, 王非, 王二七. 2002. 阿尔金山北段阿克塞-党金山口一带新生代山体抬升和剥蚀的裂变径迹证据. 地质学报, 76(2): 191-198.
杨刚, 杜安道, 卢记仁, 屈文俊, 陈江峰. 2005. 金川镍-铜-铂矿床块状硫化物矿石的Re-Os (ICP-MS)定年. 中国科学(D辑), 35(3): 241-245.
杨经绥, 许志琴, 汤中立, 刘嘉麒, 戚学祥, 张泽明, 吴才来, 薛怀民, 张金昌, 张晓西, 姜枚, 曾载淋 . 2011. 大陆科学钻探选址与钻探实验. 地球学报, 32(S1): 84-112.
杨敏芳, 2011. 潮水盆地侏罗纪煤炭资源赋存规律研究.北京: 中国地质大学(北京)博士学位论文: 1-150.
玉门石油地质志编写组. 1989. 中国石油地质志(卷十三)玉门石油地质志. 北京:石油工业出版社: 313-355.
曾南石, 汪劲草, 罗先熔, 张建辉. 2013. 金川地区构造序列及与铜镍硫化物矿床的关系. 地学前缘, 20(6): 210-218.
曾认宇, 赖健清, 毛先成, 陶斤金. 2013. 金川铜镍矿床中断裂系统的形成演化及对矿体的控制. 中国有色金属学报, 23(9): 2574-2582.
张北航.2016 .河西走廊北缘晚中生代-新生代构造演化.中国地质大学(北京)硕士学位论文: 1-50.
赵宏波, 何昕睿, 王筱烨, 谷道会. 2013. 潮水盆地构造特征. 岩性油气藏, 25(2): 36-40.
郑孟林, 曹春潮, 李明杰, 张军勇. 2003. 北山-阿拉善地区侏罗纪盆地构造特征及其演化. 世界地质, 22(2): 124-128.
朱志澄, 韦必则, 张旺生, 曾佐勋, 索书田 . 1990. 构造地质学. 北京: 地质出版社, 1-9.
Yang X Z, Ishihara S and Matsueda H. 1998. Multiphase melt inclusions in the Jinchuan complex, China: implications for petrogenic and metallogenic physico-chemical conditions. International Geology Review, 40(4): 335-349.
Zhang M J, Kamo S L, Li C, Hu P Q and Ripley E M. 2010. Precise U-Pb zircon-baddeleyite age of the Jinchuan sulfide ore-bearing ultramafic intrusion, western China. Mineralium Deposita, 45(1): 3-9.

备注/Memo

备注/Memo:
收稿日期: 2020-08-29; 改回日期: 2021-01-11
项目资助: 金川集团股份有限公司(金科地2020-05)资助。
第一作者简介: 李生栋(1969-, 男, 高级工程师, 主要从事矿产勘查与构造地质研究工作。Email: 462977890@qq.com
更新日期/Last Update: 2021-11-03