[1]谢玉洪.2021.浅表走滑构造系统砂箱物理模拟研究进展.大地构造与成矿学,优先出版:001-19.doi:10.16539/j.ddgzyckx.2021.02.015
 XIE Yuhong.2021.A Review on Analogue Modelling of Strike-slip Tectonics.Geotectonica et Metallogenia,优先出版:001-19.doi:10.16539/j.ddgzyckx.2021.02.015
点击复制

浅表走滑构造系统砂箱物理模拟研究进展
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2021年优先出版
页码:
001-19
栏目:
出版日期:
2021-12-31

文章信息/Info

Title:
A Review on Analogue Modelling of Strike-slip Tectonics
作者:
谢玉洪
中国海洋石油集团有限公司, 北京 100010
Author(s):
XIE Yuhong
China National Offshore Oil Corp., Beijing 100010, China
关键词:
砂箱物理模型 走滑变形 吕德尔剪切 弥散性剪切
Keywords:
Analogue modelling strike-slip deformation Riedel strike-slip shear distributed strike-slip shear
分类号:
P542
DOI:
10.16539/j.ddgzyckx.2021.02.015
文献标志码:
A
摘要:
地壳浅表走滑构造系统发育于多种类型的地球动力学背景, 不仅具有较强地震危害性、也富集油气矿产等资源。自20世纪初以来, 基于地质构造过程自相似性和“无理有效性”的砂箱物理模型为走滑构造系统演化特征与机制等提供了独立有效的手段。自然界走滑构造系统动力学上可分为板缘构造转换断层和板内走滑断层体制, 空间几何学上可分为走滑断层弯曲类和走滑断层叠置类。基于吕德尔剪切和弥散性剪切砂箱物理模型实验共同揭示出, 走滑剪切系统主走滑变形位移带发育五类断裂/破裂体系, 即R型破裂、R’型破裂、P型剪切、张破裂和Y型破裂, 尤其是在弥散性剪切变形过程中发育大量的RL和RL’型斜切剪破裂。浅表走滑剪切构造系统分段性及其走滑转换带差异变形特征受控于基底走滑断层应力-应变条件沿走向差异变化的特性, 基底断层几何学(弯曲/叠置性、间隔性等)、砂箱动力学特性(纯走滑剪切、拉分走滑和挤压走滑剪切)、非均质性砂箱物质特征(黏土和膏岩等)、基底非均一性(塑性基底物质几何学等)等对走滑构造变形过程具有明显的控制作用。砂箱物理模拟实验能为走滑构造系统运动学、变形特征与机制等提供较好的解释模型, 能有效再现走滑构造形成演化的四维过程与机制, 在地震灾害机理、油气勘探等方面将发挥越来越重要的作用。
Abstract:
Strike-slip deformation in the shallow crust occurred across much geodynamics combined with complex geological features, earthquakes and hydrocarbon accumulation etc. Since the 1900s, analogue modelling is a powerful and indispensable tool to help in providing a unid picture of the strike-slip deformation based on self-organization and unreasonable effectiveness of tectonics. In nature, the strike-slip system can be divided into the boundary transform, and intraplate strike-slip shears in geodynamics, and divided into bend-type and stepover-type stike-slip shears in geometry. Based on the analogue modelling of Riedel and distributed strike-slip deformation, it further suggests that there are characterized with five type shears or strike-slip faults across the principal displacement zone (PDZ), R-shears, R’-shears, P-shears, tensile shear and Y-shear. In particular, there are widespread RL-and RL’-shears with distributed strike-slip deformation. Furthermore, past analogue modeling have explored the role of main parameters governing strike-slip deformation, these parameters are the properties of basement fault (bend, stepover), kinematics (pure strike-slip, transpression and transtension), surface processes (erosion and sedimentation), the properties of material (wet-clay, silicone), and inhomogeneous basement etc. It should be noted that analogue modelling has grown increasingly bold in understanding mechanical and structural evolution of strike-slip system in the shallow crust, as well as in the earthquake and hydrocarbon exploration.

参考文献/References:

陈发景, 汪新文, 陈昭年. 2011. 伸展断陷中的变换构造分析. 现代地质, 25(4): 617-625.
陈兴鹏, 李伟, 吴智平, 徐长贵, 任健. 2019. “伸展-走滑”复合作用下构造变形的物理模拟. 大地构造与成矿学, 43(6): 1106-1116.
邓宾, 黄瑞, 马华灵, 何宇, 赖东, 姜磊, 刘树根. 2018. “从源到汇”: 褶皱冲断带前陆盆地系统砂箱物理模型浅表作用研究. 大地构造与成矿学, 42(3): 431-444.
邓宾, 赵高平, 万元博, 黄瑞, 王兴建, 刘树根. 2016. 褶皱冲断带构造砂箱物理模型研究进展. 大地构造与成矿学, 40(3): 446-464.
邓起东, 程绍平, 马翼, 杜鹏. 2014. 青藏高原地震活动特征及当前地震活动形势. 地球物理学报, 57(7): 2025-2042.
宫伟, 李朝阳, 姜效典. 2017. 青藏高原隆升与南海开启: 南海西北部盆-山耦合体系. 地学前缘, 24(4): 268-283.
国土资源部矿产资源储量司. 2013 年全国油气矿产储量通报. 北京: 国土资源部信息中心.
李艳友, 漆家福, 周赏. 2017. 走滑构造差异变形特征及其主控因素分析——基于砂箱模拟实验. 石油实验地质, 39(5): 711-715.
马宝军, 漆家福, 牛树银, 孙爱群, 曹爱峰, 孙志信. 2009. 统一应力场中基底断裂对盖层复杂断块变形的影响——来自砂箱实验的启示. 地学前缘, 16(4): 105-116.
漆家福. 2007. 裂陷盆地中的构造变换带及其石油地质意义. 海相油气地质, 12(4): 43-52.
任健, 官大, 陈兴鹏, 刘朋波. 2017. 走滑断裂叠置拉张区构造变形的物理模拟及启示. 大地构造与成矿学, 41(3): 455-465.
孙向阳, 任建业. 2003. 莺歌海盆地形成与演化的动力学机制. 海洋地质与第四纪地质, 23(4): 45-50.
童亨茂, 龚发雄, 孟令箭, 赵宝银. 2018. 渤海湾盆地南堡凹陷边界断层的“跃迁”特征及其成因机制. 大地构造与成矿学, 42(3): 421-430.
童亨茂, 赵宝银, 曹哲, 刘国玺, 顿小妹, 赵丹. 2013. 渤海湾盆地南堡凹陷断裂系统成因的构造解析. 地质学报, 87(11): 1647-1661.
吴智平, 薛雁, 颜世永, 宿雯, 王昕, 徐长贵, 周心怀. 2013. 渤海海域渤东地区断裂体系与盆地结构. 高校地质学报, 19(3): 463-471.
肖阳, 邬光辉, 雷永良, 陈婷婷. 2017. 走滑断裂带贯穿过程与发育模式的物理模拟. 石油勘探与开发, 44(3): 340-349.
谢玉洪, 李绪深, 童传新, 刘平, 吴红烛, 黄志龙. 2015. 莺歌海盆地中央底辟带高温高压天然气富集条件、分布规律和成藏模式. 中国海上油气, 27(4): 1-12.
徐长贵. 2016. 渤海走滑转换带及其对大中型油气田形成的控制作用. 地球科学, 41(9): 1548-1560.
曾融生, 孙为国. 1992. 青藏高原及其邻区的地震活动性和震源机制以及高原物质东流的讨论. 地震学报, 14: 531-563.
Adam J, Klinkmuller M, Schreurs G and Wieneke B. 2013. Quantitative 3D strain analysis in analogue experiments simulating tectonic deformation: Integration of X-ray computed tomopgraphy and digital volume correlation techniques. Journal of Structural Geology, 55: 127-149.
An L J. 1998. Development of fault discontinuities in shear experiments. Tectonophysics, 293: 45-59.
An L J and Sammis C G. 1996. Development of strike-slip faults: Shear experiments in granular materials and clay using a new technique. Journal of Structural Geology, 18: 1061-1077.
Arch J, Maltman A J and Knipe R J. 1988. Shear zone geometries in experimentally deformed clays: The in?ence of water content, strain rate and primary fabric. Journal of Structural Geology, 10: 91-99.
Arzmuller G, Buchta S, Ralbovsky E and Wessely G. 2006. The Vienna Basin // Golonka J and Picha FJ. The Carpa?hians and Their Foreland: Geology and Hydrocarbon Resources. AAPG Memoir, 84: 191-204.
Atmaoui N, Kukowski N, Stockhert B and Konig D. 2006. Initiation and development of pull-apart basins with Riedel shear mechanism: Insights from scaled clay experiments. International Journal of Earth Sciences, 95: 225-238.
Bartlett W L, Friedman M and Logan J M. 1981. Experimental folding and faulting of rocks under confining pressure, Part IX. Wrench faults in limestone layers. Tectonophysics, 79: 255-277
Cloos H. 1928. Experimente zur inneren Tektonik. Zentralblatt für Mineralogie, Geologie und Pal?ntologie Abhan-dlungen B, 12: 609-621.
Colletta B, Letouzey J, Ballard J F and Balle P. 1991. Computerized X-ray tomography analysis of sandbox models: examples of thin-skinned thrust systems. Geology, 19(11): 1063-1067.
Davis D, Suppe J and Dahlen F A. 1983. Mechanics of fold-and-thrust belts and accretionary wedges. Journal of Geophysical Research, 88(B12): 1153-1172.
Dooley T and McClay K R. 1997. Analog modeling of pull-apart basins. AAPG Bulletin, 81: 1804-1826.
Dooley T, Monastero F, Hall B, McClay K R and Whitehouse P. 2004. Scaled sandbox modelling of transtensional pull-apart basins: Applications to the Cosogeothermal system. Geothermal Research Council Transactions, 28: 637-641.
Dooley T and Schreurs G. 2012. Analogue modelling of intraplate strike-slip tectonics: A review and new experimental results. Tectonophysics, 574-575: 1-71.
Dufrechou G, Odonne F and Viola G. 2011. Analogue models of second-order faults genetically linked to a circular strike-slip system. Journal of Structural Geology, 33: 1193-1205.
Eisenstadt G and Sims D. 2005. Evaluating sand and clay models: Do rheological differences matter. Journal of Structural Geology, 27: 1399-1412.
Gapais D, Fiquet G and Cobbold P R. 1991. Slip system domains, 3. New insights in fault kinematics from plane-strain sandbox experiments. Tectonophysics, 188: 143-157.
Guerroue E L and Cobbold P R. 2006. Influence of erosion and sedimentation on strike-slip fault systems: Insights from analogue models. Journal of Structural Geology, 28: 421-430.
Harding T P. 1974. Petroleum traps associated with wrench faults. American Association of Petroleum Geologists Bulletin, 58: 1290-1304.
Hinsch R, Decker K and Peresson H. 2005. 3-D seismic interpretation and structural modeling in the Vienna Basin: Implications for Miocene to recent kinematics. Austrian Journal of Earth Sciences, 97: 38-50.
Holohan E P, van Wyk de Vries B and Troll V R. 2008. Analogue models of caldera collapse in strike-slip tectonic regimes. Bulletin of Volcanology, 70(7): 773-796.
Horvath F and Clotingh S. 1996. Stress-induced late-stage subsidence anomalies in the Pannonian Basin. Tectono-physics, 266: 287-300.
Hubbert M K. 1937. Theory of scale models as applied to the study of geologic structures. Geological Society of America Bulletin, 48: 1459-1520.
Koyi H. 1997. Analogue modelling: From a qualitative to a quantitative technique—A historical outline. Journal of Petroleum Geology, 20(2): 223-238.
Leever K A, Cabrielsen R H, Sokoutis D and Willingshofer E. 2011. The effect of convergence angle on the kinematic evolution of strain partitioning in transpressional brittle wedges: Insight from analog modeling and high-resolution digital image analysis. Tectonics, 30, TC2013, doi: 10.1029/2010TC002823
Leloup P H, Lacassin R, Tapponnier P, Scharer U, Zhong D L, Liu X H, Zhang L S, Ji S C and Trinh P T. 1995. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics, 251: 3-84.
Lohrmann J, Kukowski N, Adam J and Oncken O. 2003. The impact of analogue material properties on the geometry, kinematics, and dynamics of convergent sand wedges. Journal of Structural Geology, 25(10): 1691-1711.
Mann P, Demets C and Wiggins-Grandison M. 2007. Toward a better understanding of the Late Neogene strike-slip restraining bend in Jamaica: Geodetic, geological and seismic constraints // Cunningham W D and Mann P. Tectonics of Strike-slip Restraining and Releasing Bends. Geological Society, London, Special Publications, 290: 239-253.
Marone C. 1998. Laboratory-derived friction laws and their application to seismic faulting. Annual Review of Earth and Planetary Sciences, 26: 643-696.
McClay K R and Bonora M. 2001. Analog models of restraining stepovers in strike-slip fault systems. AAPG Bulletin, 85: 233-260.
Misra S, Mandal N and Chakraborty C. 2009. Formation of Riedel shear fractures in granular materials: Findings from analogueshear experiments and theoretical analyses. Tectonophysics, 471: 253-259.
Mitra S and Paul D. 2011. Structural geometry and evolution of releasing and restraining bends: Insights from laser-scanned experimental models. AAPG Bulletin, 95(7): 1147-1180.
Morgenstern N R and Tchalenko J S. 1967. Microscopic structures in kaolin subjected to direct shear. Géotechnique, 17: 309-328.
Moustafa A R and Khalil S M. 2017. Control of compressional transfer zones on syntectonic and post-tectonic sedimen-tation: Implications for hydrocarbon exploration. Journal of the Geological Society, 174: 336-352.
Naylor M, Mandl G and Sijpesteijn C K. 1986. Fault geometries in basement-induced wrench faulting under different initial stress states. Journal of Structural Geology, 8: 737-752.
Panien N, Schreurs G and Pfiffner A. 2006. Mechanical behaviour of granular materials used in analogue modelling: Insights from grain characterisation, ring-shear tests and analogue experiments. Journal of Structural Geology, 28: 1710-1724.
Rangin C, Klein M, Roques D, Le Pichon X and Trong L V. 1995. The Red River Fault system in the Tonkin Gulf, Vietnam. Tectonophysics, 243: 209-222.
Richard P and Cobbold P R. 1990. Experimental insights into partitioning of fault motions in continental convergent wrench zones. Annales Tectonicae, 4(2): 35-44.
Richard P, Naylor M A and Koopman A. 1995. Experimental models of strike-slip tectonics. Petroleum Geoscience, 1: 71-80.
Riedel W. 1929. Zur Mechanik geologischer Brucherscheinungen. Centralblatt Mineralogie, Abteilung B: 354-368.
Rosas F M, Duarte J C, Schellart W P, Tomas R, Grigorova V and Terrinha P. 2012. Thrust-wrench interference between major active faults in the Gulf of Cadiz (Africa-Eurasia plate boundary, offshore SW Iberia): Tectonic implications from coupled analog and numerical modeling. Tectonophysics, 548-549: 1-21.
Schellart W P and Nieuwland D A. 2003. 3-D evolution of a pop-up structure above a double basement strike-slip fault: Some insights from analogue modeling // Nieuwland D A. New insights into Structural Interpretation and Modelling. Geological Society, London, Special Publi?a?ion: 169-179.
Schreurs G. 2003. Fault development and interaction in distributed strike-slip shear zones: An experimental approach // Storti F, Holdsworth R E and Salvini F. Intraplate Strike-slip Deformation Belts. Geological Society, London, Special Publications, 210: 35-52.
Schreurs G and Colletta B. 1998. Analogue modelling of faulting in zones of continental transpression and transtension // Holdsworth R E, Strachan R A and Dewey J F. Continental Transpressional and Transtensional Tectonics. Geological Society Special Publications, 135: 59-79.
Soto R, Martinod J and Odonne F. 2006. Influence of early strike-slip deformation on subsequent perpendicular shortening: An experimental approach. Journal of Structural Geology, 29: 59-72.
Storti F, Holdsworth R E and Salvini F. 2003. Intraplate strike-slip deformation belts. Geological Society, London, Special Publicaitons, 210: 1-14.
SyLvester A G. 1988. Strike-slip faults. Geological Society of America Bulletin, 100: 1666-1703.
Tchalenko J S. 1970. Similarities between shear zones of different magnitudes. Geological Society of America Bulletin, 81: 1625-640.
Tong H M, Koyi H, Huang S and Zhao H T. 2014. The effect of multiple pre-exiting weaknesses on formation and evolution of faults in extended sandbox models. Tectonophysics, 626: 197-212.
Ueta K, Tani K and Kato T. 2000. Computerized X-ray tomography analysis of three-dimensional fault geometries in basement-induced wrench faulting. Engineering Geology, 56: 197-210.
Wigner E P. 1960. The unreasonable effectiveness of mathematics in the natural sciences. Communications in Pure and Applied Mathematics, 13(I): 1-14.
Wilcox R E, Harding T P and Seely D R. 1973. Basic wrench tectonics. American Association of Petroleum Geologists Bulletin, 57: 74-96.
Withjack M O, Schlische R and Henza A A. 2007. Scaled experimental models of extension: Dry sand vs. wet clay. Houston Geological Society Bulletin, 49(8): 31-49.
Woodcock N H. 1986. The role of strike-slip fault systems at plate boundaries. Royal Society of London Philosophical Transactions, ser. A. 317: 13-29.
Woodcock N H and Schubert C. 1994. Continental strike-slip tectonics // Hancock P L. Continental Tectonics. Pergamon Press, Oxford: 251-263.
Wu J E, McClay K, Whitehouse P and Dooley T. 2009. 4D analogue modelling of transtensional pull-apart basins. Marine and Petroleum Geology, 26: 1608-1623.
Zhu M Z, Graham S and McHargue T. 2009. The Red River Fault zone in the Yinggehai Basin, South China Sea. Tectonophysics, 476: 397-417.
Zuza A V, Yin A, Lin J and Sun M. 2017. Spacing and strength of active continental strike-slip faults. Earth and Planetary Science Letters, 457: 49-62.
Zwaan F and Schreurs G. 2016. How oblique extension and structural inheritance influence rift segment interaction: Insights from 4D analog models. Interpretation, 5(1): 119-138.
Zwaan F, Schreurs G and Adam J. 2018. Effects of sedimentation on rift segment evolution and rift interaction in orthogonal and oblique extensional settings: Insights from analogue models analysed with 4D X-ray computed tomography and digital volume correlation techniques. Global and Planetary Change, 171: 110-133.
Zwaan F, Schreurs G, Naliboff J and Buiter S. 2016. Insights into the effects of oblique extension on continental rift interaction from 3D analogue and numerical models. Tectonophysics, 693: 239-260.

备注/Memo

备注/Memo:
收稿日期: 2020-05-26; 改回日期: 2020-11-01
项目资助: 国家科技重大专项(2016ZX05024)资助。
第一作者简介: 谢玉洪(1961-), 男, 教授级高级工程师, 从事海洋油气勘探、开发生产科研与工程管理工作。Email: xieyh@cnooc.com.cn
更新日期/Last Update: 2021-04-27