[1]李孝文,曹淑云,刘建华.2021.北阿尔金余石山含金石英脉地质构造特征与流体作用.大地构造与成矿学,优先出版:001-33.doi:10.16539/j.ddgzyckx.2020.05.014
 LI Xiaowen,CAO Shuyun,LIU Jianhua.2021.Geological Structure Characteristics and Fluid Activity of the Gold-bearing Quartz Veins on the Yushishan Area, North Altyn Tagh.Geotectonica et Metallogenia,优先出版:001-33.doi:10.16539/j.ddgzyckx.2020.05.014
点击复制

北阿尔金余石山含金石英脉地质构造特征与流体作用
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2021年优先出版
页码:
001-33
栏目:
出版日期:
2021-12-31

文章信息/Info

Title:
Geological Structure Characteristics and Fluid Activity of the Gold-bearing Quartz Veins on the Yushishan Area, North Altyn Tagh
作者:
李孝文1 曹淑云1 刘建华1 周丁奎1 李文轩1 蒋少涌2 曹汉琛1 吴 玉3
1.中国地质大学(武汉)地质过程与矿产资源国家重点实验室和地球科学学院, 湖北 武汉430074; 2.中国地质大学(武汉)地质过程与矿产资源国家重点实验室和资源学院, 湖北 武汉430074; 3.核工业北京地质研究院, 北京 100029
Author(s):
LI Xiaowen1 CAO Shuyun1 LIU Jianhua1 ZHOU Dingkui1 LI Wenxuan1 JIANG Shaoyong2 CAO Hanchen1 and WU Yu3
1. State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, Hubei, China; 2. State Key Laboratory of Geological Processes and Mineral Resources, School of Resources, China University of Geosciences, Wuhan 430074, Hubei, China; 3. Beijing Research Institute of Uranium Geology, Beijing 100029, China
关键词:
含金石英脉 石英环带结构 流体包裹体 流体不混溶作用 氢氧同位素
Keywords:
gold-bearing quartz veins quartz zoning texture fluid inclusions fluid-immiscibility hydrogen-oxygen isotopes
分类号:
P542
DOI:
10.16539/j.ddgzyckx.2020.05.014
文献标志码:
A
摘要:
北阿尔金构造带东部余石山地区是近年来新发现的极具勘探潜力的稀有金属矿区, 区域内出露有含金石英脉矿化体, 矿化体的产出总体上受区域韧性剪切带和断层带共同控制。本文重点针对该矿化体, 在宏观和显微构造特征观测的基础上, 结合流体包裹体性质特征及流体来源进行了深入分析。研究表明, 含金石英脉矿化体经历了从成岩-矿到被改造的演化过程, 其在微观上保留有明显的原生和次生的结构特征。其中原生结构主要包括发育环带的石英及各类金属矿物, 而次生结构则为叠加于原生结构之上的蚀变和构造变形特征。石英呈现出明显的韧-性转换构造变形, 晶体内发育不同类型的流体包裹体, 指示着不同的流体演化环境。其中成矿期流体以富二氧化碳为主要特征, 温压环境约为P=125~250 MPa, T=300~365 ℃, 成矿深度约为9~12 km; 而改造期流体以贫二氧化碳的水-体系为主要特征, 温压环境约为P<100 MPa, T=165~235 ℃, 深度小于8.3 km。流体的不混溶作用在成岩成矿过程中扮演了重要角色, 韧-性构造转换所造成的流体压力降低是导致流体不混溶作用的关键因素。成矿流体主要以岩浆水为主, 但受后期改造作用的影响而混入了大气降水。总体上含金石英脉矿化体产于韧-性转换带并受剪切带及断裂带的控制, 呈现出与剪切带型金矿基本一致的特征。
Abstract:
The Yushishan area in the eastern of the North Altyn tectonic belt is a newly discovered rare metal ore belt with high exploration potential. The gold-bearing quartz veins are exposed in this area and controlled together by the regional ductile shear zone and brittle fault zone. This study focuses on the gold-bearing quartz vein, by macroscopic and microscopic structural observations, combined with the characteristics of fluid inclusions and fluid sources analysis. The results show that gold-bearing quartz veins have undergone an evolutionary process from diagenesis-mineralization to modification and alteration. Under the microscopy, the quartz vein exists obvious primary and secondary structural features. The primary structure mainly includes quartz zoning mineral texture and various metallic minerals, while the secondary structure is the characteristics of alteration and structural deformation superimposed on the primary structure. The gold-bearing quartz vein exhibits significant ductile-brittle transition deformation, and different types of fluid inclusions are developed within the quartz crystal, indicating different fluid evolution environments and stages. The fluid in the ore-forming stage is mainly characterized by carbon dioxide-rich, the temperature and pressure environment is P=125-250 MPa, T=300-365 ℃, with a mineralization depth of about 9-12 km. The fluids in the reformation stage are CO2-poor water-salt system, with P<100 MPa, T=165-235 ℃ and the depth<8.3 km. The ore-forming fluid is mainly dominated by magma water, but it is mixed with atmospheric precipitation due to the effects of later transformation. Fluid-immiscibility in the gold-bearing quartz veins plays an important role in the process of diagenesis and mineralization. The fluid pressure depression caused by the ductile-brittle transition is the key factor leading to fluid immiscibility. On the whole, the gold-bearing quartz vein mineralized body are controlled by the shear zone and fault zone, showing the characteristics basically consistent with that of shear zone type gold deposits.

参考文献/References:

陈柏林, 董法先, 李中坚. 1999. 韧性剪切带型金矿成矿模式. 地质论评, 45(2): 3-5.
陈广浩, 张湘炳, 王岳军, 彭渤, 肖拥军, 许德如. 2002. 构造成矿理论的研究进展及在金矿找矿中的应用. 地质科学, 37(4): 462-472.
陈威, 吕新彪, 曹晓峰, 杨文. 2019. 甘肃余石山变粒岩型铌钽矿矿床地质特征与成岩成矿年代学研究//中国矿物岩石地球化学学会矿床地球化学专业委员会, 中国地质学会矿床地质专业委员会, 中国科学院地球化学研究所矿床地球化学国家重点实验室. 第九届全国成矿理论与找矿方法学术讨论会论文摘要集. 北京: 《矿物学报》编辑部: 140-141.
陈小丹, 陈振宇, 程彦博, 叶会寿, 汪欢. 2011. 热液石英中微量元素特征及应用: 认识与进展. 地质论评, 57(5): 707-717.
陈衍景, 倪培, 范宏瑞, Pirajno F, 赖勇, 苏文超, 张辉. 2007. 不同类型热液金矿系统的流体包裹体特征. 岩石学报, 23(9): 2085-2108.
陈宇, 曹淑云, 邓友国, 程雪梅, 吕美霞, 董彦龙. 2019. 哀牢山-红河剪切带中流体记录及地质意义.地学前缘, 26(2): 42-57.
程雪梅, 曹淑云, 李俊瑜, 喻遵谱, 董彦龙, 吕美霞, 刘俊来. 2018. 滇西点苍山变质杂岩中叠加低温糜棱岩的变形-变质、流体及地质意义. 中国科学: 地球科学, 48(8): 997-1015.
池国祥, Jayanta Guha. 2011. 加拿大Abitibi绿岩带Donalda金矿近水平含金石英脉的显微构造分析及其对成矿流体动力学的指示. 地学前缘, 18(5): 43-54.
池国祥, 赖健清. 2009. 流体包裹体在矿床研究中的作用. 矿床地质, 28(6): 850-855.
池国祥, 林舸. 2015. 成矿流体动力学与大地构造环境的关系. 大地构造与成矿学, 39(3): 402-412.
池国祥, 卢焕章. 1991. 流体相分离的深度(压力)-温度场特征及其对热液矿床定位的意义. 矿物学报, 11(4): 355-362.
池国祥, 卢焕章. 2008. 流体包裹体组合对测温数据有效性的制约及数据表达方法. 岩石学报, 24(9): 1945-1953.
丁俊英, 倪培, Dubessy J, 张婷. 2008. 原位低温拉曼光谱技术在人工合成CaCl2-H2O和MgCl2-H2O体系流体包裹体分析中的应用I: 低温拉曼光谱研究. 岩石学报, 24(9): 1961-1967.
董彦龙, 曹淑云, 程雪梅, 刘俊来, 曹汉琛. 2019. 高黎贡剪切带变形花岗质岩石中的长石细粒化和岩石流动特性. 中国科学: 地球科学, 49(9): 1372-1393.
郭伟, 林贤, 胡圣虹. 2020. 单个流体包裹体LA-ICP-MS分析及应用进展. 地球科学, 45(4): 1362-1374.
韩吟文, 马振东. 2003. 地球化学. 北京: 地质出版社: 213-266.
贾志磊. 2016. 甘肃南祁连-北山铌钽铷等稀有金属成矿地质特征与成矿规律的研究. 兰州: 兰州大学博士学位论文: 1-164.
贾志磊, 窦小雨, 王金荣, 张岱, 侯荣娜. 2016. 甘肃南祁连余石山地区变粒岩原岩恢复. 甘肃地质, 25(2): 9-14.
蒋少涌, 温汉捷, 许成, 王焰, 苏慧敏, 孙卫东. 2019. 关键金属元素的多圈层循环与富集机理: 主要科学问题及未来研究方向. 中国科学基金, 33(2): 112-118.
刘斌. 2011. 简单体系水溶液包裹体pH和Eh的计算. 岩石学报, 27(5): 1533-1542.
刘景波. 2019. 俯冲带变质过程中的含碳流体. 岩石学报, 35(1): 95-104.
刘秀君. 1984. 氢氧同位素在矿床研究中的应用. 西北地质, 13(3): 56-78.
刘永江, Neubauer F, 葛肖虹, Genser J, 袁四化, 李伟民, 巩庆林, 陈元忠. 2007. 阿尔金断裂带年代学和阿尔金山隆升. 地质科学, 42(1): 134-146+188.
卢焕章. 2004. 流体包裹体. 北京: 科学出版社: 1-486.
卢焕章. 2011. 流体不混溶性和流体包裹体. 岩石学报, 27(5): 1253-1261.
卢焕章. 2019. 地球中的流体和穿越层圈构造. 地质力学学报, 25(6): 1003-1012.
卢焕章, 池国祥, 朱笑青, Guha J, Archambault G, 王中刚. 2018. 造山型金矿的地质特征和成矿流体. 大地构造与成矿学, 42(2): 244-265.
路增龙, 张建新, 毛小红, 周桂生, 彭银彪. 2017. 柴北缘欧龙布鲁克地块东段古元古代基性麻粒岩: 岩石学、锆石U-Pb年代学和Lu-Hf同位素证据. 岩石学报, 33(12): 3815-3828.
倪培, 范宏瑞, 丁俊英. 2014. 流体包裹体研究进展. 矿物岩石地球化学通报, 33(1): 1-5.
沈昆, 胡受奚, 孙景贵, 凌洪飞, 赵懿英, 孙明志. 2000. 山东招远大尹格庄金矿成矿流体特征. 岩石学报, 16(4): 542-550.
孙丰月, 金巍, 李碧乐. 2000. 关于脉状热液金矿床成矿深度的思考. 长春科技大学学报, 30(增刊): 27-29.
王军, 李小强, 梁明宏, 王玉玺, 张兵兵, 潘保田. 2018. 阿尔金山东段阿克塞蛇绿岩地质地球化学特征及形成时代. 地质通报, 37(4): 559-569.
魏春景, 郑永飞. 2020. 大洋俯冲带变质作用、流体行为与岩浆作用. 中国科学: 地球科学, 50(1): 1-27.
吴峻, 李继亮, 兰朝利, 俞良军. 2001. 阿尔金红柳沟蛇绿岩研究进展. 地质科学, 36(3): 342-349.
肖益林, 陈仁旭, 陈伊翔, 李继磊, 王洋洋, 郭顺, 夏春鹏. 2020. 自然界岩石样品中的超临界流体记录. 矿物岩石地球化学通报, 39(3): 448-462+440-441.
肖益林, 孙贺, 顾海欧, 黄建, 李王晔, 刘磊. 2015. 大陆深俯冲过程中的熔/流体成分与地球化学分异.中国科学: 地球科学, 45(8): 1063-1087.
肖益林, 余成龙, 王洋洋, 陆一敢. 2018. 变质作用与流体包裹体: 进展与展望.矿物岩石地球化学通报, 37(3): 424-440+561.
修群业, 于海峰, 刘永顺, 陆松年, 毛德宝, 李惠民, 李铨. 2007. 阿尔金北缘枕状玄武岩的地质特征及其锆石U-Pb年龄. 地质学报, 81(6): 787-794.
许志琴, 杨经绥, 张建新, 姜枚, 李海兵, 崔军文. 1999. 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制. 地质学报, 73(3): 193-205.
徐旺春, 张宏飞, 柳小明. 2007. 锆石U-Pb定年限制祁连山高级变质岩系的形成时代及其构造意义. 科学通报, 52(10): 1174-1180.
杨经绥, 史仁灯, 吴才来, 苏德辰, 陈松永, 王希斌, Wooden J. 2008. 北阿尔金地区米兰红柳沟蛇绿岩的岩石学特征和SHRIMP定年. 岩石学报, 24(7): 1567-1584.
杨文, 曹晓峰, 陈威. 2019. 甘肃余石山铌钽矿赋矿变粒岩年代学与原岩恢复//中国矿物岩石地球化学学会矿床地球化学专业委员会, 中国地质学会矿床地质专业委员会, 中国科学院地球化学研究所矿床地球化学国家重点实验室. 第九届全国成矿理论与找矿方法学术讨论会论文摘要集. 北京: 《矿物学报》编辑部: 185.
杨再朝, 校培喜, 高晓峰, 康磊, 谢从瑞, 余君鹏. 2014. 阿尔金山东端余石山铌钽矿区霓辉正长岩的LA-ICP-MS定年及对成矿时代的制约. 西北地质, 47(4): 187-197.
杨子江, 马华东, 王宗秀, 肖伟峰. 2012. 阿尔金山北缘冰沟蛇绿混杂岩中辉长岩锆石SHRIMP U-Pb定年及其地质意义. 岩石学报, 28(7): 2269-2276.
张德会, 徐九华, 余心起, 李健康, 毛世德, 王科强, 李泳泉. 2011. 成岩成矿深度: 主要影响因素与压力估算方法. 地质通报, 30(1): 112-125.
张建新, 孟繁聪, 于胜尧, 陈文, 陈松永. 2007. 北阿尔金HP/LT蓝片岩和榴辉岩的Ar-Ar年代学及其区域构造意义. 中国地质, 34(4): 558-564.
张建新, 于胜尧, 李云帅, 喻星星, 林宜慧, 毛小红. 2015. 原特提斯洋的俯冲、增生及闭合: 阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用. 岩石学报, 31(12): 3531-3554.
张江苏, 吕志成, 刘明强, 刘铮. 2016. 中祁连湟源群中片麻岩的岩石学成因及构造意义. 科学技术与工程, 16(30): 182-186.
张志诚, 郭召杰, 宋彪. 2009. 阿尔金山北缘蛇绿混杂岩中辉长岩锆石SHRIMP U-Pb定年及其地质意义. 岩石学报, 25(3): 568-578.
Anderson M R, Rankin A H and Spiro B. 1992. Fluid mixing in the generation of mesothermal gold mineralization in the Transvaal Sequence, Transvaal, South Africa. European Journal of Mineralogy, 4(5): 933-948.
Bakker R J. 2009. Package Fluids. Part 3: Correlations Between Equations Of State, Thermodynamics And Fluid Inclusions. Geofluids, 9(1): 63-74.
Bakker R J and Jansen J B H. 1990. Preferential water leakage from fluid inclusions by means of mobile disloations. Nature, 345(6270): 58-60.
Bebout G E and Penniston-Dorland S C. 2016. Fluid and mass transfer at subduction interfaces—The field metamorphic record. Lithos, 240-243: 228-258.
Bodnar R J. 2003. Reequilibration of fluid inclusions. Fluid inclusions: Analysis and interpretation. Mineralogical Association of Canada, 32(8): 213-230.
Bowers T S and Helgeson H C. 1983. Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O-CO2-NaCl on phase relations in geologic systems: Equation of state for H2O-CO2-NaCl fluids at high pressures and temperatures. Geochimica et Cosmochimica Acta, 47(7): 1247-1275.
Cao S Y and Neubauer F. 2016. Deep crustal expressions of exhumed strike-slip fault systems: Shear zone initiation on rheological boundaries. Earth-Science Reviews, 162: 155-176.
Cao S Y and Neubauer F. 2019. Graphitic material in fault zones: Implications for fault strength and carbon cycle. Earth-Science Reviews, 194: 109-124.
Chi G and Xue C. 2011. An overview of hydrodynamic studies of mineralization. Geoscience Frontiers, 2(3): 423-438.
Clayton R N, O’Neil J R and Mayeda T K. 1972. Oxygen isotope exchange between quartz and water. Journal of Geophysical Research, 77(17): 3057-3067.
Coulibaly Y, Boiron M C and Cathelineau M. 2008. Fluid immiscibility and gold deposition in the Birimian quartz veins of the Angovia deposit (Yaouré, Ivory Coast). Journal of African Earth Sciences, 50(2-4): 234-254.
Cox S F. 1995. Faulting processes at high id pressures: An example of fault valve behaviour from the Wattle Gully Fault, Victoria, Australia. Geophysical Research Letters, 100(b7): 12841-12859.
Deng J and Wang Q F. 2015. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework. Gondwana Research, 36: 219-274.
Gammons C H, Williams-Jones A E, Yu Y. 1994. New data on the stability of gold (I) chloride complexes at 300 ℃. Mineralogical Magazine, 58(1): 309-310.
Goldstein R H. 2001. Fluid inclusions in sedimentary and diagenetic systems. Lithos, 55(1): 159-193.
Hayashi K I and Ohmoto H. 1991. Solubility of gold in NaCl-and H2S-bearing aqueous solutions at 250-350 ℃. Geochim Cosmochim Acta, 55(8): 2111-2126.
Hedenquist J W and Lowenstern J B. 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature, 370(6490): 519-527.
Hollister L S. 1990. Enrichment of CO2 in id inclusions in quartz by removal of H2O during crystal-plastic deformation. Journal of Structural Geology, 12(7): 895-901.
Jamtveit B, Moulas E, Andersen T B, Austrheim H, Corfu F, Petley-Ragan A and Schmalholz S M. 2018. High pressure metamorphism caused by fluid induced weakening of deep continental crust. Scientific Reports, 8(1): 12173-12185.
Kesler S E. 2005. Ore-forming fluids. Elements, 1(1): 13-18.
Kolb J. 2008. The role of fluids in partitioning brittle deformation and ductile creep in auriferous shear zones between 500 and 700 ℃. Tectonophysics, 446(1-4): 1-15.
Lambrecht G and Diamond L W. 2014. Morphological ripening of fluid inclusions and coupled zone-refining in quartz crystals revealed by cathodoluminescence imaging: Implications for CL-petrography, fluid inclusion analysis and trace-element geothermometry. Geochimica et Cosmochimica Acta, 141(15): 381-406.
Lawrence D M, Treloar P J, Rankin A H, Boyce A and Harbidge P. 2013. A id inclusion and stable isotope study at the Loulo mining district, Mali, West Africa: Implications for multiid sources in the generation of orogenic gold deposits. Economic Geology, 108(2): 229-257.
Ling M X, Liu Y L, Williams I S, Teng F Z, Yang X, Ding X, Wei G J, Xie L H, Deng W F and Sun W D. 2013. Formation of the world’s largest REE deposit through protracted fluxing of carbonatite by subduction-derived fluids. Scientific Reports, 3(1): 429-442.
Mao S D, Shi L L, Peng Q B and Lü M X. 2016. Thermodynamic modeling of binary CH4-CO2 fluid inclusions. Applied Geochemistry, 66: 65-72.
Matthew S M. 2018. Fluid inclusions in the system H2O-NaCl-CO2: An algorithm to determine composition, density and isochore. Chemical Geology, 498(20): 31-44.
Matthew S M, Lecumberri-Sanchez P and Bodnar R J. 2012. HokieFlincs H2O-NaCl: A microsoft excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O-NaCl. Computers and Geosciences, 49: 334-337.
Mikucki E J. 1998. Hydrothermal transport and depositional processes in Archean lode-gold systems: A review. Ore Geology Reviews, 13(1-5): 307-321.
Naden J and Shepherd T J. 1989. Role of methane and carbon dioxide in gold deposition. Nature, 342(6251): 793-795.
Ni H W, Zhang L, Xiong X L, Mao Z and Wang J Y. 2017. Supercritical fluids at subduction zones: Evidence, formation condition, and physicochemical properties. Earth-Science Reviews, 167: 62-71.
Ni P, Ding J Y and Rao B. 2006. Insitucryogenic Raman spectroscopic studies on the synthetic fluid inclusions in the systems H2O and NaCl-H2O. Chinese Science Bulletin, 51(1): 108-114.
Olsen S N. 1988. High-density CO2 inclusions in the Colorado Front Range. Contributions to Mineralogy and Petrology, 100(2): 226-235.
Pal D, Chinnasamy S S, Goon S, John M M and Ghosh S. 2019. Alteration mineralogy, fluid inclusions and stable isotope studies from Chigargunta and Bisanatham gold deposits, South Kolar Greenstone Belt, Dharwar Craton, India: Implications on genesis of gold mineralization. Ore Geology Reviews, 111: 102946-102946.
Penniston-Dorland S C. 2001. Illumination of vein quartz textures in a porphyry copper ore deposit using scanned cathodoluminescence: Grasberg Igneous Complex, Irian Jaya, Indonesia. American Mineralogist, 86(5-6): 652-666.
Phillips G N and Evans K A. 2004. Role of CO2 in the formation of gold deposits. Nature, 429(6994): 860-863.
Roedder E. 1992. Fluid inclusions evidence for immiscibility in magmatic differentiation. Geochim Cosmochim Acta, 56(1): 5-20.
Rusk B G, Lowers H A and Reed M H. 2008. Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and insights into vein formation. Geology, 36(7): 547-550.
Sibson R H. 1994. Crustal stress, faulting and fluid flow. Geological Society London Special Publications, 78(1): 69-84.
Sun Z J, Wang Z Q, Yu H N, Wang C Y, Liu G H and Bai X D. 2019. Fluid inclusions and C-H-O-S-Pb isotopes: Implications for the genesis of the Zhuanshanzi gold deposit on the Northern margin of the North China Craton. Resource Geology, 69(1): 1-21.
Tarantola A, Caumon M C and Francis F. 2019. Advances in fluid and melt inclusion research -European Current Research On Fluid Inclusions ECROFI 2017 -Nancy, France. Chemical Geology, 508(20): 1-2.
Taylor H P. 1979. Oxygen and Hydrogen Isotope Relationship in Hydrothermal Mineral Deposits // Barnes H L. Geochemistry of Hydrothermal Ore Deposits. 2nd ed. New York: John Wiley: 236-277.
Tuba G, Kontak D J, Zajacz Z and Petrus J A. 2019. Bulk microanalysis of assemblages of small fluid inclusions by LA-ICP-MS: Methodology and application to orogenic gold systems. Chemical Geology, 529(20): 119-326.
Tumiati S, Tiraboschi C, Sverjensky D A, Pettke T, Recchia S, Ulmer P, Miozzi F and Poli S. 2017. Silicate dissolution boosts the CO2 concentrations in subduction fluids. Nature Communications, 8(1): 616-627.
Vry J, Powell R, Golden K M and Petersen K. 2010. The role of exhumation in metamorphic dehydration and fluid production. Nature Geoscience, 3(1): 31-35.
Wang Y Y and Xiao Y L. 2018. Fluid-controlled element transport and mineralization in subduction zones. Solid Earth Sciences, 3(4): 87-104.
Wang Z, Yang L, Guo L, Marsh E, Wang J, Liu Y, Zhang C, Li R, Zhang L, Zheng X and Zhao R. 2015. Fluid immiscibility and gold deposition in the Xincheng deposit, Jiaodong Peninsula, China: A fluid inclusion study. Ore Geology Reviews, 65(3): 701-717.
Wilkinson J J. 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1-4): 229-272.
Xavier R P and Foster R P. 1999. Fluid evolution and chemical controls in the Fazenda Maria Preta (FMP) gold deposit, Rio Itapicuru Greenstone Belt, Bahia, Brazil. Chemical Geology, 154(1): 133-154.
Zheng Y F, Mao J W, Chen Y J, Sun W D, Ni P and Yang X Y. 2019. Hydrothermal ore deposits in collisional orogens. Science Bulletin, 64(3): 205-212.
Zhou L, Mernagh T P, Lan T G, Tang Y W and Wygralak A. 2019. Intrusion related gold deposits in the Tanami and Kurundi-Kurinelli goldfields, Northern Territory, Australia: Constraints from LA-ICPMS analysis of fluid inclusions. Ore Geology Reviews, 115: 103189-103189.

相似文献/References:

[1]刘宝山,吕军.黑河市三道湾子金矿床地质、地球化学和成因探讨.大地构造与成矿学,2006.3(4):481.
 LIU Baoshan and LU Jun.GEOLOGICAL, GEOCHEMICAL AND GENETIC STUDY OF THE SANDAOWANZI QUARTZ VEINTYPE GOLD DEPOSIT IN HEIHE CITY, HEILONGJIANG PROVINCE.Geotectonica et Metallogenia,2006.优先出版:481.

备注/Memo

备注/Memo:
收稿日期: 2020-06-27; 改回日期: 2020-09-07
项目资助: 国家重点研发计划(2017YFC0602401)、优秀青年基金项目(41722207)、国家自然科学基金面上项目(41472188, 41430211, 41802218)联合资助。
第一作者简介: 李孝文(1995-), 男, 硕士研究生, 构造地质学专业。Email: lixiaowen@cug.edu.cn
通信作者: 曹淑云(1978-), 女, 教授、博导, 主要从事构造解析、显微构造和流变学、热年代学方面研究。Email: shuyun.cao@cug.edu.cn
更新日期/Last Update: 2021-04-27