[1]解世雄,任 龙,张 健.2020.北秦岭地体西段草滩沟群流纹岩的成因及其地质意义.大地构造与成矿学,44(6):1239-1257.doi:10.16539/j.ddgzyckx.2020.06.014
 XIE Shixiong,REN Long,ZHANG Jian.2020.Petrogenesis of the Caotangou Group Rhyolite in the Western Part of North Qinling Terrane and its Geological Implication.Geotectonica et Metallogenia,44(6):1239-1257.doi:10.16539/j.ddgzyckx.2020.06.014
点击复制

北秦岭地体西段草滩沟群流纹岩的成因及其地质意义
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2020年44卷06期
页码:
1239-1257
栏目:
岩石大地构造与地球化学
出版日期:
2020-12-20

文章信息/Info

Title:
Petrogenesis of the Caotangou Group Rhyolite in the Western Part of North Qinling Terrane and its Geological Implication
文章编号:
1001-1552(2020)06-1239-019
作者:
解世雄1、2 任 龙1、2 张 健1、2 包志伟1 梁华英1*
1.中国科学院 广州地球化学研究所 矿物学与成矿学重点实验室, 广东 广州 510640; 2.中国科学院大学, 北京 100049
Author(s):
XIE Shixiong1、2 REN Long1、2 ZHANG Jian1、2 BAO Zhiwei1 and LIANG Huaying1*
1. Key Laboratory of Mineralogy and Metallogeney, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
草滩沟群 地球化学 板片后撤 大陆碰撞 北秦岭地体
Keywords:
Caotangou Group geochemistry slab roll-back continental collision North Qinling terrane
分类号:
P595; P597
DOI:
10.16539/j.ddgzyckx.2020.06.014
文献标志码:
A
摘要:
秦岭造山带发育一套与大洋俯冲有关的早古生代火山岩, 该火山岩套中赋存有大量VMS型Pb-Zn矿床。目前, 对这些赋矿火山岩形成的地球动力学背景仍存在争议。本文对北秦岭地体西段老厂地区的草滩沟群长英质火山岩(流纹岩)进行了锆石U-Pb定年、全岩主微量元素和Sr-Nd-Hf同位素分析。研究显示, 老厂地区草滩沟群流纹岩的LA-ICP-MS锆石U-Pb年龄为435±2.9 Ma, 与北部相邻的早古生代清水?红土堡火山岩的年龄相近。岩石具有高SiO2和Na2O, 低K2O和TiO2的特征, 属于准铝质低钾拉斑系列; 微量元素显示亏损高场强元素(HFSEs: Ti、Nb和Ta)、富集大离子亲石元素(LILEs: Sr、U和Ba), 显示岛弧岩浆的特征; 具有富集的Sr-Nd-Hf同位素组成((87Sr/86Sr)i=0.70612~0.70647, εNd(t)=1.03~1.61, εHf(t)=7.63~7.96), 综合判别其形成于岛弧环境, 岩浆源区为经历了俯冲洋壳脱水流体交代的富集地幔楔。结合北秦岭地体北部同时代的清水?红土堡弧后盆地火山岩研究, 暗示大洋板片后撤(下沉)引发的软流圈对流循环控制了草滩沟群火山岩和相关的VMS型铅锌矿床的形成。此外, 这些火山岩及北秦岭地体西段奥陶纪?志留纪变质作用和岩浆作用的年龄也说明华北板块和华南板块在秦岭造山带的早古生代大陆碰撞很可能发生于433 Ma。
Abstract:
The early Paleozoic subduction-related volcanic rocks in the Qinling orogenic belt host a large number of volcanogenic massive sulfide (VMS) deposits. However, the geodynamic setting of these volcanic rocks and related deposits is still controversial. In this paper, a combined study of zircon U-Pb age, whole-rock major and trace elements, and whole-rock Sr-Nd-Hf isotope compositions was carried out for the Caotangou Group rhyolites. Zircon U-Pb dating yielded a mean age of 435±2.9 Ma, which is similar to that of the Early Paleozoic Qingshui-Hongtubu volcanic rocks in the western part of the North Qinling terrane. The Caotangou Group rhyolites belong to metaluminous and low-K tholeiitic series, and are characterized by enriched large ion lithophile elements (Sr, U and Ba) and depleted high field-strength elements (Ti, Nb and Ta). The major and trace element signatures and enriched Sr-Nd-Hf isotopic compositions ((87Sr/86Sr)i = 0.70612 - 0.70647, εNd(t) = 1.03 - 1.61, εHf(t) = 7.63 - 7.96) imply that the Caotangou Group rhyolites were formed in an island arc environment and sourced from an enriched mantle wedge hybridized by slab-derived fluids. Integrated with the contemporary Qingshui-Hongtubu volcanic rocks located in the northern part of the North Qinling terrane, the crystallization age and isotopic compositions of the Caotangou Group volcanic rocks indicate that the asthenospheric convection triggered by slab rollback controlled the formation of the Caotangou Group volcanic rocks and related VMS-type Pb-Zn deposits. Besides, the geochronological data of the studied volcanic rocks and the Ordovician-Silurian metamorphism and magmatism in the western part of the North Qinling Terrane suggest that the early Paleozoic initial continental collision of the North China Craton and South China Block in the Qinling orogenic belt likely occurred at ca. 433 Ma.

参考文献/References:

陈岳龙, 张本仁, 帕拉提?阿布都卡得尔. 1995. 北秦岭丹凤地区早古生代花岗岩的Pb、Sr、Nd同位素地球化学特征. 地质科学, 30(3): 247-258.
陈志宏, 陆松年, 李怀坤, 周红英, 郭进京. 2004. 秦岭造山带富水中基性侵入杂岩的成岩时代——锆石U-Pb及全岩Sm、Nd同位素年代学新证据. 地质通报, 23(4): 322-328.
崔智林, 孙勇, 王学仁. 1995. 秦岭丹凤蛇绿岩带放射虫的发现及其地质意义. 科学通报, 40(18): 1686-1688.
冯益民, 曹宣铎, 张二朋, 胡云绪, 潘晓萍, 杨军录, 贾群子, 李文明. 2003. 西秦岭造山带的演化、构造格局和性质. 西北地质, 36(1): 1-10.
何世平, 王洪亮, 徐学义, 张宏飞, 任光明. 2007a. 北祁连东段红土堡基性火山岩锆石LA-ICP-MS U-Pb年代学及其地质意义. 地球科学进展, 22(2): 143-151.
何世平, 王洪亮, 徐学义, 张宏飞, 任光明. 2007b. 北祁连东段红土堡基性火山岩和陈家河中酸性火山岩地球化学特征及构造环境. 岩石矿物学杂志, 26(4): 295-309.
李曙光. 1993. 华北与扬子陆块的碰撞时代及过程. 地球科学进展, 8(4): 83-84.
李王晔. 2008. 西秦岭-东昆仑造山带蛇绿岩及岛弧型岩浆岩的年代学和地球化学研究——对特提斯洋演化的制约. 合肥: 中国科学技术大学博士学位论文: 61-75.
李王晔, 李曙光, 裴先治, 张国伟. 2007. 西秦岭关子镇蛇绿混杂岩的地球化学和锆石SHRIMP U-Pb年龄. 岩石学报, 23(11): 2836-2844.
李亚林, 张国伟, 宋传中. 1998. 东秦岭二郎坪弧后盆地双向式俯冲特征. 高校地质学报, 4(3): 286-293.
李引劳, 苗遇春, 赵亚琴. 2010. 浅析凤县老厂铅锌矿区火山机构与成矿的关系. 陕西地质, 28(2): 23-27.
李源. 2011. 北秦岭造山带早古生代蛇绿岩与构造演化. 北京: 中国地质科学院博士学位论文: 32-41.
李源, 杨经绥, 裴先治, 张建, 陈隽璐, 陈松永, 徐向珍. 2012. 秦岭造山带早古生代蛇绿岩的多阶段演化: 从岛弧到弧间盆地. 岩石学报, 28(6): 1896-1914.
梁华英, 魏启荣, 许继峰, 胡光黔, Allen C. 2010. 西藏冈底斯矿带南缘矽卡岩型铜矿床含矿岩体锆石U-Pb年龄及意义. 岩石学报, 26(6): 1692-1698.
刘丙祥. 2014. 北秦岭地体东段岩浆作用与地壳演化. 合肥: 中国科学技术大学博士学位论文: 48-50.
陆松年, 陈志宏, 李怀坤, 郝国杰, 相振群. 2005. 秦岭造山带中两条新元古代岩浆岩带. 地质学报, 79(2): 165-173.
陆松年, 陈志宏, 李怀坤, 郝国杰, 周红英, 相振群. 2004. 秦岭造山带中?新元古代(早期)地质演化. 地质通报, 23(2): 107-112.
陆松年, 李怀坤, 陈志宏, 郝国杰, 周红英, 郭进京, 牛光华, 相振群. 2003. 秦岭中?新元古代地质演化及对RODINIA超级大陆事件的响应. 北京: 地质出版社: 1-19.
裴先治, 丁仨平, 李佐臣, 刘战庆, 李瑞保, 冯建赟, 孙雨, 张亚峰, 刘智刚, 张晓飞, 陈国超, 陈有炘. 2009. 西秦岭北缘早古生代天水?武山构造带及其构造演化. 地质学报, 83(11): 1547-1564.
宋志高, 贾群子, 张治洮, 张苺. 1991. 北秦岭?北祁连(天水?宝鸡)间早古生代火山岩系及其构造连接关系的研究. 中国地质科学院西安地质矿产研究所所刊, 34: 1-82.
宋子季, 张维吉, 安三元. 1988. 北秦岭北部早古生代断陷带古海相火山岩特征及其形成环境. 中国地质科学院西安地质矿产研究所所刊, (24): 51-63.
涂湘林, 张红, 邓文峰, 凌明星, 梁华英, 刘颖, 孙卫东. 2011. Resolution激光剥蚀系统在微量元素原位微区分析中的应用. 地球化学, 40(1): 83-98.
孙民生. 1998. 草滩沟群火山岩特征及其形成环境分析. 陕西地质, 16(1): 42-50.
孙勇, 卢欣祥, 韩松, 张国伟, 杨司祥. 1996. 北秦岭早古生代二郎坪蛇绿岩片的组成和地球化学. 中国科学(D辑), 26(S1): 51-57.
王德耀. 2002. 草滩沟群、丹凤岩群火山岩对比及其构造环境分析. 西北地质, 35(3): 59-66.
王洪亮, 陈亮, 孙勇, 柳小明, 徐学义, 陈隽璐, 张红, 第五春荣. 2007. 北秦岭西段奥陶纪火山岩中发现近4.1 Ga的捕虏锆石. 科学通报, 52(14): 1685-1693.
王雪, 黄小龙, 马金龙, 钟军伟, 杨启军. 2015. 华北克拉通中部造山带南段早前寒武纪变质杂岩的Hf-Nd同位素特征及其地壳演化意义. 大地构造与成矿学, 39(6): 1108-1118.
王焰, 钱青, 刘良, 张旗. 2000. 不同构造环境中双峰式火山岩的主要特征. 岩石学报, 16(2): 169-173.
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1598.
胥晓春, 裴先治, 刘成军, 李瑞保, 李佐臣, 魏博, 王元元, 刘图杰, 任厚州, 陈伟男. 2014. 西秦岭天水阴崖沟早古生代草滩沟群火山岩地球化学特征及其地质意义. 中国地质, 41(3): 851-865.
徐鸣. 2009. 陕西老厂块状硫化物型铅锌矿床硫铅同位素特征及其地质意义. 资源环境与工程, 23(2): 114-118.
徐夕生, 邱检生. 2010. 火成岩岩石学. 北京: 科学出版社: 296-309.
徐勇航, 赵太平, 陈伟. 2009. 东秦岭二郎坪群长英质火山岩成因及其对VMS型矿床成矿环境的制约. 岩石学报, 25(2): 399-412.
闫全人, 王宗起, 陈隽璐, 闫臻, 王涛, 李秋根, 姜春发, 张宗清. 2007. 北秦岭斜峪关群和草滩沟群火山岩成因的地球化学和同位素约束、SHRIMP年代及其意义. 地质学报, 81(4): 488-500.
闫全人, 王宗起, 闫臻, 王涛, 陈隽璐, 向忠金, 张宗清, 姜春发. 2008. 秦岭造山带宽坪群中的变铁镁质岩的成因、时代及其构造意义. 地质通报, 27(9): 1475-1492.
杨婧, 王金荣, 张旗, 陈万峰, 潘振杰, 焦守涛, 王淑华. 2016. 弧后盆地玄武岩(BABB)数据挖掘: 与MORB及IAB的对比. 地球科学进展, 31(1): 66-77.
杨士杰, 陈丹玲, 宫相宽, 赵姣. 2015. 北秦岭东段二郎坪群基性火山岩中浅色岩体的地球化学、年代学及其地质意义. 岩石学报, 31(7): 2009-2022.
喻学惠, 莫宣学, 赵志丹, 和文言, 李勇. 2011. 西秦岭新生代双峰式火山作用及南北构造带成因初探. 岩石学报, 27(7): 2195-2202.
张本仁, 高山, 张宏飞, 韩吟文. 2002. 秦岭造山带地球化学. 北京: 科学出版社: 9-13.
张本仁, 张宏飞, 赵志丹, 凌文黎. 1996. 东秦岭及邻区壳、幔地球化学分区和演化及其大地构造意义. 中国科学(D辑), 26(3): 201-208.
张国伟, 董云鹏, 姚安平. 2001. 造山带与造山作用及其研究的新起点. 西北地质, 34(1): 1-9.
张国伟, 郭安林, 姚安平. 2004. 中国大陆构造中的西秦岭?松潘大陆构造结. 地学前缘, 11(3): 23-32.
张旗, 周国庆. 2001. 中国蛇绿岩. 北京: 科学出版社: 1-182.
张宗清, 宋彪, 唐索寒, 张寿广, 杨永成, 王进辉. 2004. 秦岭佛坪变质结晶岩系年龄和物质组成特征—— SHRIMP锆石U-Pb年代学和全岩Sm-Nd年代学数据. 中国地质, 31(2): 161-168.
张宗清, 张国伟, 唐索寒, 王进辉. 2001. 鱼洞子群变质岩年龄及秦岭造山带太古宙基底. 地质学报, 75(2): 198-204.
周金城, 蒋少涌, 王孝磊, 杨竞红, 张孟群. 2005. 华南中侏罗世玄武岩的岩石地球化学研究——以福建藩坑玄武岩为例. 中国科学(D辑), 35(10): 927-936.
朱赖民, 李犇, 熊潇, 郑俊, 姜航, 李金祥. 2013. 北秦岭铜峪VHMS型铜矿床赋矿火山岩地球化学、锆石U-Pb年龄及其地质意义. 矿物学报, 33(S2): 382-383.
朱涛, 董云鹏, 王伟, 徐静刚, 马海勇, 查理. 2008. 草滩沟群火山岩的地球化学特征及其形成构造环境. 西北地质, 41(1): 59-66.
Bacon C R and Druitt T H. 1988. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contributions to Mineralogy and Petrology, 98(2): 224-256.
Brenan J M, Shaw H F, Phinney D L and Ryerson F J. 1994. Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: Implications for high field strength element depletions in island-arc basalts. Earth and Planetary Science Letters, 128: 327-339.
Cabanis B and Thiéblemont D. 1988. La discrimination des tholéiites continentals et des basalts arrièrearc: proposition d’un nouveau diagramme: Le triangle Th-3×Tb-2×Ta. Bulletin de la Société Géologique de France, 8: 927-935.
Cao M P, Yao J M, Deng X H, Yang F J, Mao G Z and Mathur R. 2016. Diverse and multistage Mo, Au, Ag-Pb-Zn and Cu deposits in the Xiong’er Terrane, East Qinling: From Triassic Cu mineralization. Ore Geology Reviews, 81: 565-574.
Condie K C. 1989. Geochemical changes in basalts and andesites across the Archean-Proterozoic boundary: Identification and significance. Lithos, 23(1): 1-18.
Condie K C. 1999. Mafic crustal xenoliths and the origin of the lower continental crust. Lithos, 46(1): 95-101.
Davies G R and Macdonald R. 1987. Crustal influences in the petrogenesis of the Naivasha basalt — Comendite complex: Combined trace element and Sr-Nd-Pb isotope constraints. Journal of Petrology, 28(6): 1009-1031.
Dong Y P and Santosh M. 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1-40.
Dong Y P, Zhang G W, Hauzenberger C, Neubauer F, Yang Z and Liu X M. 2011. Palaeozoic tectonics and evolutionary history of the Qinling orogen: Evidence from geochemistry and geochronology of ophiolite and related volcanic rocks. Lithos, 122(1-2): 39-56.
Duan M, Niu Y L, Kong J J, Sun P, Hu Y, Zhang Y, Chen S and Li J Y. 2016. Zircon U-Pb geochronology, Sr-Nd-Hf isotopic composition and geological significance of the Late Triassic Baijiazhuang and Lvjing granitic plutons in West Qinling Orogen. Lithos, 260: 443-456.
Ewart A, Milner S C, Armstrong R A and Dungan A R. 1998. Etendeka volcanism of the Goboboseb Mountains and Messum igneous complex, Namibia. Part I: Geochemical evidence of early Cretaceous Atristan plume melts and the role of crustal contamination in the Paraná-Etendeka CFB. Journal of Petrology, 39(2): 227-253.
Gaffney A M, Blichert-Toft J, Nelson B K, Bizzarro M, Rosing M and Albarède F. 2013. Constraints on source- forming processes of West Greenland kimberlites inferred from Hf-Nd isotope systematics. Geochimica et Cosmochimica Acta, 71(11): 2820-2836.
Geist D, Howard K A and Larson P. 1995. The generation of oceanic rhyolites by crystal fractionation: The basalt-rhyolite association at Volcán Alcedo, Galápagos Archipelago. Journal of Petrology, 36(4): 965-982.
Grove T L and Donnelly-Nolan J M. 1986. The evolution of young silicic lavas at Medicine Lake Volcano, California: Implications for the origin of compositional gaps in calc-alkaline series lavas. Contributions to Mineralogy and Petrology, 92(3): 281-302.
Guo F, Fan W M, Li C W, Wang C Y, Li H X, Zhao L and Li J Y. 2014. Hf-Nd-O isotopic evidence for melting of recycled sediments beneath the Sulu Orogen, North China. Chemical Geology, 381: 243-258.
Kepezhinskas P, Mcdermott F, Defant M J, Hochstaedter A, Drummond M S, Hawkesworth C J, Koloskov A, Maury R C and Bellon H. 1997. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochimica et Cosmochimica Acta, 61(3): 577-600.
Lapen T J, Medaris L G, Johnson C M and Beard B L. 2005. Archean to Middle Proterozoic evolution of Baltica subcontinental lithosphere: Evidence from combined Sm-Nd and Lu-Hf isotope analyses of the Sandvik ultramafic body, Norway. Contributions to Mineralogy and Petrology, 150(2): 131-145.
Lee B, Zhu L M, Zhang G W, Bo G, Gong H J and Yao A P. 2010. Geological characteristics, metallogenic background, and genesis of the Tongyu VHMS copper deposit in the west part of the North Qinling, Shaanxi Province. Science China: Earth Sciences, 53(10): 1460-1485.
Li X H, Liu D Y, Sun M, Li W X, Liang X R and Liu Y. 2004. Precise Sm-Nd and U-Pb isotopic dating of the supergiant Shizhuyuan polymetallic deposit and its host granite, SE China. Geological Magazine, 141(2): 225-231.
Li X Y, Li S Z, Yu S Y, Santosh M, Zhao S J, Guo X Y, Cao H H, Wang Y M and Huang Z B. 2018. Early Paleozoic arc-back-arc system in the southeastern margin of the North Qilian Orogen, China: Constraints from geochronology, and whole-rock elemental and Sr-Nd-Pb-Hf isotopic geochemistry of volcanic suites. Gondwana Research, 59: 9-26.
Ling W L, Duan R C, Liu X M, Cheng J P, Mao X W, Peng L H, Liu Z X, Yang H M and Ren B F. 2010. U-Pb dating of detrital zircons from the Wudangshan Group in the South Qinling and its geological significance. Chinese Science Bulletin, 55(22): 2440-2448.
Liu L, Liao X Y, Wang Y W, Wang C, Santosh M, Yang M, Zhang C L and Chen D L. 2016. Early Paleozoic tectonic evolution of the North Qinling Orogenic Belt in Central China: Insights on continental deep subduction and multiphase exhumation. Earth-Science Reviews, 159: 58-81.
Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G and Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1): 34-43.
Ludwig K R. 2003. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special publication: 1-70.
Mao X H, Zhang J X, Yu S Y, Li Y S, Yu X X and Lu Z L. 2017. Early Paleozoic granulite-facies metamorphism and anatexis in the northern West Qinling orogen: Monazite and zircon U-Pb geochronological constraints. Science China: Earth Sciences, 60(5): 943-957.
Mcdonough W F and Sun S S. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253.
Niu Y L and O’Hara M J. 2003. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations. Journal of Geophysical Research: Solid Earth, 108(B4): 283-299.
Pearce J. 1982. Trace element characteristics of lavas from destructive plate boundaries // Thorpe R S. Andesites: Orogenic Andesites and Related Rocks. Chichester: John Wiley and Sons: 525-548.
Pearce J A. 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins // Hawkesworth C J and Norry M J. Continental Basalts and Mantle Xenoliths: 230-272.
Pearce J A and Cann J R. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19(2): 290-300.
Plank T, Langmuir C H, Albarede F, Blicherttoft J, Staudigel H and White W M. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3-4): 325-394.
Ren L, Liang H Y, Bao Z W, Zhang J, Li K X and Huang W T. 2018. The petrogenesis of early Paleozoic high-Ba-Sr intrusions in the North Qinling terrane, China, and tectonic implications. Lithos, 314: 534-550.
Shervais J W. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, 59(1): 101-118.
Shi Y, Yu J H and Santosh M. 2013. Tectonic evolution of the Qinling orogenic belt, Central China: New evidence from geochemical, zircon U-Pb geochronology and Hf isotopes. Precambrian Research, 231: 19-60.
Su B X, Qin K Z, Lu Y H, Sun H and Sakyi P A. 2015. Decoupling of whole-rock Nd-Hf and zircon Hf-O isotopic compositions of a 284 Ma mafic-ultramafic intrusion in the Beishan Terrane, NW China. International Journal of Earth Sciences, 104(7): 1-17.
Sun S S and Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313-345.
Tamura Y, Ishizuka O, Stern R J, Nichols A R L, Kawabata H, Hirahara Y, Chang Q, Miyazaki T, Kimura J I, Embley R W and Tatsumi Y. 2014. Mission immiscible: Distinct subduction components generate two primary magmas at Pagan Volcano, Mariana Arc. Journal of Petrology, 55(1): 63-101.
Toks?z M N and Bird P. 1977. Modelling of temperatures in continental convergence zones. Tectonophysics, 41(1): 181-193.
Van Achterbergh E, Ryan C G, Jackson S E and Griffin W L. 2001. Data reduction software for LA-ICP-MS. Laser- Ablation-ICPMS in the earth sciences: Principles and applications. Mineralogical Association of Canadian (Short Course Series), 29: 239-243.
Vervoort J D, Plank T and Prytulak J. 2011. The Hf-Nd isotopic composition of marine sediments. Geochimica et Cosmochimica Acta, 75(20): 5903-5926.
Wang H, Wu Y B, Li C R, Zhao T Y, Qin Z W, Zhu L Q, Gao S, Zheng J P, Liu X M, Zhou L, Zhang Y and Yang S H. 2014. Recycling of sediment into the mantle source of K-rich mafic rocks: Sr-Nd-Hf-O isotopic evidence from the Fushui complex in the Qinling orogen. Contributions to Mineralogy and Petrology, 168(4): 1-19.
Wang H, Wu Y B, Qin Z W, Zhu L Q, Liu Q, Liu X C, Gao S, Wijbrans J R, Zhou L and Gong H J. 2013. Age and geochemistry of Silurian gabbroic rocks in the Tongbai orogen, central China: Implications for the geodynamic evolution of the North Qinling arc-back-arc system. Lithos, 179(4): 1-15.
Wang T, Wang X X, Tian W, Zhang C L, Li W P and Li S. 2009. North Qinling paleozoic granite associations and their variation in space and time: Implications for orogenic processes in the orogens of central China. Science in China (Series D), 52(9): 1359-1384.
Wood D A. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Provinc. Earth and Planetary Science Letters, 50(1): 11-30.
Wu Y B and Zheng Y F. 2013. Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong’an-Dabie-Sulu orogenic belt in central China. Gondwana Research, 23(4): 1402-1428.
Wu Y B, Zhou G Y, Gao S, Liu X C, Qin Z W, Wang H, Yang J Z and Yang S H. 2014. Petrogenesis of Neoarchean TG rocks in the Yangtze Craton and its implication for the formation of Archean TTGs. Precambrian Research, 254: 73-86.
Xiang H, Zhang L, Zhong Z Q, Santosh M, Zhou H W, Zhang H F, Zheng J P and Zheng S. 2012. Ultrahigh-temperature metamorphism and anticlockwise P-T-t path of Paleozoic granulites from north Qinling- Tongbai orogen, Central China. Gondwana Research, 21(2-3): 559-576.
Xiong X, Zhu L M, Li B, Zhang G W, Gong H J, Zheng J and Jiang H. 2016. Zircon U-Pb geochronology and geochemical characteristics of the volcanic host rocks from the Tongyu VHMS Copper Deposit in the western North Qinling Orogen and their geological significance. Acta Geologica Sinica, 89(6): 1926-1946.
Yan Z, Chen L, Buckman S, Fu C L and Guo X Q. 2016. Stratigraphy and tectonic setting of laochang massive sulfide deposit in the North Qinling belt, central China. Ore Geology Reviews, 81: 96-111.
Yang L M, Song S G, Allen M B, Su L, Dong J L and Wang C. 2018. Oceanic accretionary belt in the West Qinling Orogen: Links between the Qinling and Qilian orogens, China. Gondwana Research, 64: 137-162.
Zhang H F, Zhang B R, Harris N, Zhang L, Chen Y L, Chen N S and Zhao Z D. 2006. U-Pb zircon SHRIMP ages, geochemical and Sr-Nd-Pb isotopic compositions of intrusive rocks from the Longshan-Tianshui area in the southeast corner of the Qilian orogenic belt, China: Constraints on petrogenesis and tectonic affinity. Journal of Asian Earth Sciences, 27(6): 751-764.
Zhao S J, Li S Z, Li X Y, Somerville I, Cao H H, Liu X and Wang P C. 2017. Structural analysis of ductile shear zones in the North Qinling Orogen and its implications for the evolution of the Proto-Tethys Ocean. Geological Journal, 52(S1): 202-214.
Zheng Y F. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chemical Geology, 328: 5-48.
Zhu X Y, Chen F K, Liu B X, Zhang H and Zhai M G. 2015. Geochemistry and zircon ages of mafic dikes in the South Qinling, central China: Evidence for late Neoproterozoic continental rifting in the northern Yangtze block. International Journal of Earth Sciences, 104(1): 27-44.
Zi J W, Cawood P A, Fan W M, Wang Y J, Tohver E, Mccuaig T C and Peng T P. 2012. Triassic collision in the Paleo-Tethys Ocean constrained by volcanic activity in SW China. Lithos, 144-145(7): 145-160.

相似文献/References:

[1]刘讲锋,徐义刚.河北阳原新生代玄武岩中两类辉石岩包体的矿物学和地球化学特征.大地构造与成矿学,2006.3(1):052.
 LIU Jiangfeng and Xu Yigang.MINERAL CHEMISTRY AND GEOCHEMISTRY OF THE TWO SUITES OF PYROXENITE XENOLITHS IN CENOZOIC BASALTS FROM YANGYUAN, HEBEI.Geotectonica et Metallogenia,2006.44(6):052.
[2]肖龙,周海民,董月霞.广东三水盆地火山岩: 地球化学特征及成因——兼论火山岩性质的时空演化和南海形成的深部过程.大地构造与成矿学,2006.3(1):072.
 XIAO Long,ZHOU Haiming,DONG Yuexia.GEOCHEMISTRY AND PETROGENESIS OF CENOZOIC VOLCANIC ROCKS FROM SANSHUI BASIN: IMPLICATIONS FOR SPATIAL AND TEMPORAL VARIATION OF ROCK TYPES AND CONSTRAINTS ON THE FORMATION OF SOUTH CHINA SEA.Geotectonica et Metallogenia,2006.44(6):072.
[3]卜国民,李华启,李文铅.新疆塔克札勒蛇绿混杂岩中玄武质熔岩地球化学特征及其成因讨论.大地构造与成矿学,2005.29(2):252.
 BU Guomin,LI Huaqi,LI Wenqian.GEOCHEMICAL CHARACTERISTICS AND TECTONIC SETTINGS FOR BASALTS IN TAKEZHALE OPHIOLITE IN EAST JUNGGAR, XINJIANG.Geotectonica et Metallogenia,2005.44(6):252.
[4]蔡明海,梁婷,吴德成.桂西北丹池成矿带花岗岩地球化学特征及其构造环境.大地构造与成矿学,2004.28(3):306.
 CAI Minghai,LIANG Ting,WU Decheng and HUANG Huimin.GEOCHEMICAL CHARACTERISTICS OF GRANITES AND ITS STRUCTURAL GENETIC ENVIRONMENT IN THE NANDANHECHI METALLOGENETIC BELT, NORTHWEST GUANGXI.Geotectonica et Metallogenia,2004.44(6):306.
[5]刘 燊、,胡瑞忠,迟效国.羌塘岩带碰撞后超钾质火山岩地球化学特征及成因探讨.大地构造与成矿学,2003.27(2):167.
 LIU Shen,HU Rui-zhong,CHI Xiao-guo.GEOCHEMICAL CHARACTERISTICS AND PETROGENESIS DISCUSS OF THE POST-COLLISION ULTRA-POTASSIUM VOLCANIC ROCKS IN QIANGTANG ROCK ZONE.Geotectonica et Metallogenia,2003.44(6):167.
[6]张照伟.青海省化隆县下什堂岩体地质-地球化学特征及其含矿性研究.大地构造与成矿学,2011.35(4):596.
 ZHANG Zhaowei,LI Wenyuan.Geology and Geochemistry Characteristics and Ore-bearing Potential of the Xiashentang Intrusive Rocks in Hualong County, Qinghai Province.Geotectonica et Metallogenia,2011.44(6):596.
[7]张旗,王焰,王元龙.埃达克岩与构造环境.大地构造与成矿学,2003.27(2):101.
 ZHANG Qi,WANG Yan and WANG Yuan long.ON THE RELATIONSHIP BETWEEN ADAKITE AND ITS TECTONIC SETTING.Geotectonica et Metallogenia,2003.44(6):101.
[8]匡永生.胶莱盆地晚白垩世玄武岩的年代学和地球化学特征及其对华北岩石圈减薄-增生的制约.大地构造与成矿学,2012.36(4):559.
 KUANG Yongsheng,PANG Chongjin.Geochronology and Geochemistry of the Late Cretaceous Basalts in the Jiaolai Basin: Constraints on Lithospheric Thinning and Accretion Beneath North China Craton.Geotectonica et Metallogenia,2012.44(6):559.
[9]张 峰,陈建平,徐 涛.东准噶尔晚古生代依旧存在俯冲消减作用 ——来自石炭纪火山岩岩石学、地球化学及年代学证据.大地构造与成矿学,2014.38(1):140.
 ZHANG Feng,CHEN Jianping,XU Tao.Late Paleozoic Subduction in the Eastern Junggar: Evidence from the Petrology, Geochemistry and Geochronology of Carboniferous Volcanic Rocks.Geotectonica et Metallogenia,2014.44(6):140.
[10]姜 海,李文铅.粤北梅子窝钨矿二长花岗岩的发现 及其地球化学特征.大地构造与成矿学,2014.38(1):197.
 JIANG Hai,and LI Wenqian.Geochemistry of the Meiziwo Monzogranite, Northern Guangdong.Geotectonica et Metallogenia,2014.44(6):197.

备注/Memo

备注/Memo:
收稿日期: 2019-05-10; 改回日期: 2019-07-31
项目资助: 国家自然科学基金项目(41772065、41421062)和中陕核广州地球化学研究所合作项目联合资助。
第一作者简介: 解世雄(1992-), 男, 博士研究生, 矿物学、岩石学、矿床学专业。Email: 875793511@qq.com
通信作者: 梁华英(1962-), 男, 研究员, 博士生导师, 从事矿床地质及矿床地球化学研究。Email: lianghy@gig.ac.cn
更新日期/Last Update: 2020-12-20