[1]丁 一,刘吉强,李正刚.2020.橄榄石及其熔体包裹体地球化学约束冲绳海槽岩浆水含量.大地构造与成矿学,44(6):1208-1207.doi:10.16539/j.ddgzyckx.2020.06.012
 DING Yi,LIU Jiqiang,LI Zhenggang.2020.Geochemical Constraints on the H2O Contents of Magmas from the Okinawa Trough: A Study of Olivine and Melt Inclusions.Geotectonica et Metallogenia,44(6):1208-1207.doi:10.16539/j.ddgzyckx.2020.06.012
点击复制

橄榄石及其熔体包裹体地球化学约束冲绳海槽岩浆水含量
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2020年44卷06期
页码:
1208-1207
栏目:
岩石大地构造与地球化学
出版日期:
2020-12-20

文章信息/Info

Title:
Geochemical Constraints on the H2O Contents of Magmas from the Okinawa Trough: A Study of Olivine and Melt Inclusions
文章编号:
1001-1552(2020)06-1208-018
作者:
丁 一1、2 刘吉强1* 李正刚1 李小虎1 朱志敏1 宗 统1、3 朱继浩1
1.自然资源部海底科学重点实验室, 自然资源部第二海洋研究所, 浙江 杭州 310012; 2.浙江大学 地球 科学学院, 浙江 杭州 310027; 3.山东科技大学 地球科学与工程学院, 山东 青岛 266590
Author(s):
DING Yi1、2 LIU Jiqiang1* LI Zhenggang1 LI Xiaohu1 ZHU Zhimin1 ZONG Tong1、3 and ZHU Jihao1
1. Key Laboratory of Submarine Geosciences & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, Zhejiang, China; 2. School of Earth Sciences, Zhejiang University, Hangzhou 310027, Zhejiang, China; 3. College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
关键词:
H2O含量 橄榄石及其熔体包裹体 岩浆演化 岩浆源区 冲绳海槽
Keywords:
H2O content olivine and its melt inclusions magma evolution mantle source Okinawa Trough
分类号:
P575
DOI:
10.16539/j.ddgzyckx.2020.06.012
文献标志码:
A
摘要:
俯冲带是挥发分循环的重要场所, H2O在弧后盆地岩浆的产生和演化中起着至关重要的作用。目前为止, 关于冲绳海槽(OT)(一个新生的陆内弧后盆地)岩浆中H2O含量知之甚少。因此, 本文通过岩浆演化地球化学模拟结合矿物地球化学研究了H2O的含量及H2O在冲绳海槽南部(SOT)和中部(MOT)岩浆成因和演化中的作用。SOT和MOT中的岩浆演化主要受控于橄榄石、单斜辉石和斜长石的分离结晶。SOT岩浆中斜长石相对于MOT出现较晚, 暗示SOT岩浆初始H2O含量更高, 斜长石的结晶抑制作用更为明显。岩浆初始H2O含量较高使Ca在橄榄石和熔体中的分配系数降低形成低Ca的橄榄石, 而并非结晶于辉石岩源区熔融而形成的低Ca熔体。基于Ca在橄榄石及其熔体包裹体的分配系数, 本次研究发现MOT的原始岩浆中H2O含量高达~2%, 且SOT水含量更高。岩浆熔体的H2O含量由于结晶分异作用由2%增加至5%, 后岩浆去气作用造成H2O含量逐渐减少从而导致岩浆中斜长石剧烈结晶。SOT和MOT岩浆地球化学特征及H2O含量的差异主要受控于两个区域Wadati-Benioff带(WBZ)的深度(~100 km vs. ~200 km)。
Abstract:
Back-arc basins are important sites for the flux of volatiles from a subducting slab, and H2O plays a vital role in the generation and evolution of magmas in such basins. Little is known about the H2O contents of magmas in the Okinawa Trough (OT), a nascent intra-continental back-arc basin, so we investigated the role of H2O in magma genesis in the southern and middle parts of the Okinawa Trough (SOT and MOT, respectively) by geochemical modelling of the evolved and primitive magmas. Magma evolution in both the SOT and MOT was dominated by fractional crystallization of clinopyroxene, olivine and plagioclase. The relatively late appearance of plagioclase in the SOT implies the suppression of plagioclase crystallization due to the higher initial H2O content of the SOT magma. The extremely low Ca contents of the olivine indicate high initial H2O contents of the primitive magma rather than an olivine-free source. Using a geohygrometer based on the Ca contents of olivine and melt inclusions within, we found that the H2O contents of the primitive magmas from the MOT were as high as ~2% and more enriched in that from the SOT. The H2O contents of the evolved melts increased to 2% - 5% during magma differentiation. Subsequent magma degassing, reflected by gradual decrease of H2O, resulted in intensive crystallization of plagioclase in magmas with MgO<7%. The distinctive H2O contents of the SOT and MOT magmas can be attributed mainly to the different depth of the Wadati-Benioff Zone (WBZ) beneath the two regions (~100 km vs. ~200 km), which imposed a first-order control on magma-genesis in the OT.

参考文献/References:

丁一, 刘吉强, 宗统, 李正刚. 2019. 熔体包裹体挥发份应用的研究进展. 岩石矿物学杂志, 38(6): 897-913.
宗统, 翟世奎, 于增慧. 2016. 冲绳海槽岩浆作用的区域性差异. 地球科学, 41(6): 1031-1040.
Almeev R R, Ariskin A A, Kimura J I and Barmina G S. 2013. The role of polybaric crystallization in genesis of andesitic magmas: Phase equilibria simulations of the Bezymianny volcanic subseries. Journal of Volcanology and Geothermal Research, 263: 182-192.
Argus D F, Gordon R G and Demets C. 2011. Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochemistry, Geophysics, Geosystems, 12, Q11001.
Blundy J and Cashman K. 2005. Rapid decompression- driven crystallization recorded by melt inclusions from Mount St. Helens volcano. Geology, 33: 793-796.
Chen Y, Provost A, Schiano P and Cluzel N. 2013. Magma ascent rate and initial water concentration inferred from diffusive water loss from olivine-hosted melt inclusions. Contributions to Mineralogy and Petrology, 165: 525- 541.
Danyushevsky L V. 2001. The effect of small amounts of H2O on crystallisation of mid-ocean ridge and backarc basin magmas. Journal of Volcanology and Geothermal Research, 110: 265-280.
Danyushevsky L V, Della-Pasqua F N and Sokolov S. 2000. Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: Petrological implications. Contributions to Mineralogy and Petrology, 138: 68-83.
Danyushevsky L V and Plechov P. 2011. Petrolog3: Integrated software for modeling crystallization processes. Geoche?-mistry, Geophysics, Geosystems, 12, Q07021. doi: 10.1029/2011GC003516
Davis F A, Humayun M, Hirschmann M M and Cooper R S. 2013. Experimentally determined mineral/melt partitioning of first-row transition elements (FRTE) during partial melting of peridotite at 3 GPa. Geochimica et Cosmo-chimica Acta, 104: 232-260.
Edmonds M, Kohn S C, Hauri E H, Humphreys M C S and Cassidy M. 2016. Extensive, water-rich magma reservoir beneath southern Montserrat. Lithos, 252-253: 216-233.
Escrig S, Bézos A, Langmuir C H, Michael P J and Arculus R. 2012. Characterizing the effect of mantle source, subduction input and melting in the Fonualei Spreading Center, Lau Basin: Constraints on the origin of the boninitic signature of the back-arc lavas. Geochemistry, Geophysics, Geosystems, 13, Q10008.
Feig S T, Koepke J and Snow J E. 2006. Effect of water on tholeiitic basalt phase equilibria: An experimental study under oxidizing conditions. Contributions to Mineralogy and Petrology, 152: 611-638.
Ford C E, Russell D G, Craven J A and Fisk M R. 1983. Olivine-Liquid Equilibria: Temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn. Journal of Petrology, 24: 256-266.
Gaetani G A, O’leary J A, Shimizu N, Bucholz C E and Newville M. 2012. Rapid reequilibration of H2O and oxygen fugacity in olivine-hosted melt inclusions. Geology, 40: 915-918.
Gavrilenko M, Herzberg C, Vidito C, Carr M J, Tenner T and Ozerov A. 2016. A calcium-in-olivine geohygrometer and its application to subduction zone magmatism. Journal of Petrology, 57: 1811-1832.
Grove T L, Till C B and Krawczynski M J. 2012. The role of H2O in subduction zone magmatism. Annual Review of Earth and Planetary Sciences, 40: 413-439.
Guo K, Zeng Z G, Chen S, Zhang Y X, Qi H Y and Ma Y. 2017. The influence of a subduction component on magmatism in the Okinawa Trough: Evidence from thorium and related trace element ratios. Journal of Asian Earth Sciences, 145: 205-216.
Guo K, Zhai S K, Yu Z H, Cai Z W and Zhang X. 2016. Sr-Nd-Pb isotopic geochemistry of phenocrysts in pumice from the central Okinawa Trough. Geological Journal, 51: 368-375.
Han B, Zhang X H, Pei J X and Zhang W G. 2007. Characteristics of crust-mantle in East China sea and adjacent regions. Progress in Geophysics, 22: 376-382.
Hartley M E, Bali E, Maclennan J, Neave D A and Halldórsson S A. 2018. Melt inclusion constraints on petrogenesis of the 2014-2015 Holuhraun eruption, Iceland. Contributions to Mineralogy and Petrology, 173, 10. https: //doi.org/10.1007/s00410-017-1435-0
Herzberg C. 2011. Identification of source lithology in the Hawaiian and Canary Islands: Implications for origins. Journal of Petrology, 52: 113-146.
Herzberg C, Cabral R A, Jackson M G, Vidito C, Day J and Hauri E H. 2014. Phantom Archean crust in Mangaia hotspot lavas and the meaning of heterogeneous mantle. Earth and Planetary Science Letters, 396: 97-106.
Hesse M and Grove T L. 2003. Absarokites from the western Mexican Volcanic Belt: Constraints on mantle wedge conditions. Contributions to Mineralogy and Petrology, 146: 10-27.
Hofmann A W. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385: 219-229.
Hughes E C, Buse B, Kearns S L, Blundy J D, Kilgour G and Mader H M. 2019. Low analytical totals in EPMA of hydrous silicate glass due to sub-surface charging: Obtaining accurate volatiles by difference. Chemical Geology, 505: 48-56.
Humphreys M C S, Kearns S L and Blundy J D. 2006. SIMS investigation of electron-beam damage to hydrous, rhyolitic glasses: Implications for melt inclusion analysis. American Mineralogist, 91: 667-679.
Keller N S, Arculus R J, Hermann J and Richards S. 2008. Submarine back-arc lava with arc signature: Fonualei Spreading Center, northeast Lau Basin, Tonga. Journal of Geophysical Research: Solid Earth, 113, B08S07.
Kelley K A and Cottrell E. 2009. Water and the oxidation state of subduction zone magmas. Science, 325: 605-607.
Kelley K A, Plank T, Grove T L, Stolper E M, Newman S and Hauri E. 2006. Mantle melting as a function of water content beneath back-arc basins. Journal of Geophysical Research: Solid Earth, 111, B09208.
Kent A J R. 2008. Melt inclusions in basaltic and related volcanic rocks. Reviews in Mineralogy and Geochemistry, 69: 273-331.
Kent A J R, Peate D W, Newman S, Stolper E M and Pearce J A. 2002. Chlorine in submarine glasses from the Lau Basin: Seawater contamination and constraints on the composition of slab-derived fluids. Earth and Planetary Science Letters, 202: 361-377.
Klein E M and Langmuir C H. 1987. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. Journal of Geophysical Research: Solid Earth, 92: 8089-8115.
Lange R L and Carmichael I S E. 1990. Thermodynamic properties of silicate liquids with emphasis on density, thermal expansion and compressibility. Modern Methods of Igneous Petrology Understanding Magmatic Processes, 24: 25-64.
Langmuir C H, Bézos A, Escrig S and Parman S W. 2006. Chemical systematics and hydrous melting of the mantle in back-arc basins. Geophysical Monograph- American Geophysical Union, 166: 87.
Lanzafame G and Ferlito C. 2014. Degassing driving crystallization of plagioclase phenocrysts in lava tube stalactites on Mount Etna (Sicily, Italy). Lithos, 206- 207: 338-347.
Laumonier M, Gaillard F, Muir D, Blundy J and Unsworth M. 2017. Giant magmatic water reservoirs at mid-crustal depth inferred from electrical conductivity and the growth of the continental crust. Earth and Planetary Science Letters, 457: 173-180.
Lee C S, Jr G G S, Bibee L D, Lu R S and Hilde T W C. 1980. Okinawa trough: Origin of a back-arc basin. Marine Geology, 35: 219-241.
Li X H, Zeng Z G, Wang X Y, Chen S, Ma Y, Yang H X, Zhang Y X and Chen Z X. 2018. Petrogenesis of basalt from the middle Okinawa Trough: New insights from olivine-hosted melt inclusions. Geological Journal, 53: 3129-3146.
Li X H, Zeng Z G, Yang H X, Yin X B, Wang X Y, Chen S, Ma Y and Guo K. 2019a. Geochemistry of silicate melt inclusions in middle and southern Okinawa Trough rocks: Implications for petrogenesis and variable subducted sediment component injection. Geological Journal, 54(3): 1160-1189.
Li Z G, Chu F Y, Zhu J H, Ding Y, Zhu Z M, Liu J Q, Wang H, Li X H, Dong Y H and Zhao D N. 2019b. Magmatic sulfide formation and oxidative dissolution in the SW Okinawa Trough: A precursor to metal-bearing magmatic fluid. Geochimica et Cosmochimica Acta, 258: 138-155.
Métrich N and Deloule E. 2014. Water content, δD and δ11B tracking in the Vanuatu arc magmas (Aoba Island): Insights from olivine-hosted melt inclusions. Lithos, 206-207: 400-408.
Nakamura M and Shimakita S. 1998. Dissolution origin and syn-entrapment compositional change of melt inclusion in plagioclase. Earth and Planetary Science Letters, 161: 119-133.
Newman S, Epstein S and Stolper E. 1988. Water, carbon dioxide, and hydrogen isotopes in glasses from the ca. 1340 A.D. eruption of the Mono Craters, California: Constraints on degassing phenomena and initial volatile content. Journal of Volcanology and Geothermal Research, 35: 75-96.
Pearce J A, Stern R J, Bloomer S H and Fryer P. 2005. Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components. Geochemistry, Geophysics, Geosystems, 6, Q07006.
Pi J L, You C F and Wang K L. 2016. The influence of Ryukyu subduction on magma genesis in the northern Taiwan volcanic zone and middle okinawa trough — Evidence from Boron isotopes. Lithos, 260: 242-252.
Portnyagin M, Mironov N, Botcharnikov R, Gurenko A, Almeev R R, Luft C and Holtz F. 2019. Dehydration of melt inclusions in olivine and implications for the origin of silica-undersaturated island-arc melts. Earth and Planetary Science Letters, 517: 95-105.
Qin Z W, Lu F Q and Anderson Jr T. 1992. Diffusive reequilibration of melt and fluid inclusions. American Mineralogist, 77: 565-576.
Ribeiro J M and Lee C T A. 2017. An imbalance in the deep water cycle at subduction zones: The potential importance of the fore-arc mantle. Earth and Planetary Science Letters, 479: 298-309.
Roedder E. 1979. Origin and significance of magmatic inclusions. Bulletin de Mineralogie, 102: 487-510.
Seligman A N, Bindeman I N, Watkins J M and Ross A M. 2016. Water in volcanic glass: From volcanic degassing to secondary hydration. Geochimica et Cosmochimica Acta, 191: 216-238.
Seno T, Stein S and Gripp A E. 1993. A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geological data. Journal of Geophysical Research: Solid Earth, 98: 17941-17948.
Shaw A M, Hauri E H, Fischer T P, Hilton D R and Kelley K A. 2008. Hydrogen isotopes in Mariana arc melt inclusions: Implications for subduction dehydration and the deep-Earth water cycle. Earth and Planetary Science Letters, 275: 138-145.
Shinjo R, Chung S L, Kato Y and Kimura M. 1999. Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: Implications for the evolution of a young, intracontinental back arc basin. Journal of Geophysical Research: Solid Earth, 104: 10591-10608.
Shu Y C, Nielsen S, Zeng Z G, Shinjo R, Blusztajn J, Wang X Y and Chen S. 2017. Tracing subducted sediment inputs to the Ryukyu arc-Okinawa Trough system: Evidence from thallium isotopes. Geochimica et Cosmochimica Acta, 217: 462-491.
Sibuet J C, Hsu S K, Shyu C T and Liu C S. 1995. Structural and Kinematic Evolutions of the Okinawa Trough Backarc Basin. Boston, M A, Springer: 343-379.
Sibuet J C, Letouzey J, Barbier F, Charvet J, Foucher J P, Hilde T W C, Kimura M, Chiao L Y, Marsset B, Muller C and Stéphan J F. 1987. Back arc extension in the Okinawa trough. Journal of Geophysical Research: Solid Earth, 92: 14041-14063.
Sisson T W and Grove T L. 1993. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contributions to Mineralogy and Petrology, 113: 143-166.
Sisson T W and Layne G D. 1993. H2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes. Earth and Planetary Science Letters, 117: 619-635.
Sobolev A V, Hofmann A W, Kuzmin D V, Yaxley G M, Arndt N T, Chung S L, Danyushevsky L V, Elliott T, Frey F A and Garcia M O. 2007. The amount of recycled crust in sources of mantle-derived melts. Science, 316: 412-417.
Sobolev A V, Hofmann A W, Sobolev S V and Nikogosian I K. 2005. An olivine-free mantle source of Hawaiian shield basalts. Nature, 434: 590-597.
Stolper E and Newman S. 1994. The role of water in the petrogenesis of Mariana trough magmas. Earth and Planetary Science Letters, 121: 293-325.
Thompson R N and Gibson S A. 2000. Transient high tem?pera-tures in mantle plume heads inferred from mag?nesian olivines in Phanerozoic picrites. Nature, 407: 502-506.
Wade J A, Plank T, Hauri E H, Kelley K A, Roggensack K and Zimmer M. 2008. Prediction of magmatic water contents via measurement of H2O in clinopyroxene phenocrysts. Geology, 36: 799-802.
Wallace P J. 2005. Volatiles in subduction zone magmas: Concentrations and fluxes based on melt inclusion and volcanic gas data. Journal of Volcanology and Geothermal Research, 140: 217-240.
Xia Q K, Liu J, Liu S C, Kovács I, Feng M and Dang L. 2013. High water content in Mesozoic primitive basalts of the North China Craton and implications on the destruction of cratonic mantle lithosphere. Earth and Planetary Science Letters, 361: 85-97.
Zhang X, Zhai S K, Yu Z H, Guo K and Wang S J. 2019. Subduction contribution to the magma source of the Okinawa Trough — Evidence from boron isotopes. Geological Journal, 54: 605-613.
Zimmer M M, Plank T, Hauri E H, Yogodzinski G M, Stelling P, Larsen J, Singer B, Jicha B, Mandeville C and Nye C J. 2010. The role of water in generating the calc-alkaline trend: New volatile data for Aleutian magmas and a new tholeiitic index. Journal of Petrology, 51: 2411-2444.

备注/Memo

备注/Memo:
收稿日期: 2019-05-22; 改回日期: 2019-07-19
项目资助: 浙江省自然科学基金重点项目(LZ16D060001)、中国大洋矿产资源开发协会十三五项目(DY135-E2-2-01)、国家自然科学基金项目(41506073)和自然资源部第二海洋研究所基本科研业务费专项(JG1405)联合资助。
第一作者简介: 丁一(1995-), 男, 博士研究生, 构造地质学专业。Email: dingyi@sio.org.cn
通信作者: 刘吉强(1981-), 男, 副研究员, 主要从事海底矿物岩石学研究。Email: liujq@sio.org.cn
更新日期/Last Update: 2020-12-20