[1]李志泰,徐 扛,王连峰.2020.西藏然巴地区十字石-蓝晶石云母片岩变质作用研究: 对始新世淡色花岗岩成因的启示.大地构造与成矿学,44(6):1190-1189.doi:10.16539/j.ddgzyckx.2020.06.011
 LI Zhitai,XU Kang,WANG Lianfeng.2020.Metamorphic Evolution of the Kyanite-staurolite Micaschist from the Ramba Dome, Tibet: Insights into the Petrogenesis of Himalayan Eocene Leucogranite.Geotectonica et Metallogenia,44(6):1190-1189.doi:10.16539/j.ddgzyckx.2020.06.011
点击复制

西藏然巴地区十字石-蓝晶石云母片岩变质作用研究: 对始新世淡色花岗岩成因的启示
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2020年44卷06期
页码:
1190-1189
栏目:
岩石大地构造与地球化学
出版日期:
2020-12-20

文章信息/Info

Title:
Metamorphic Evolution of the Kyanite-staurolite Micaschist from the Ramba Dome, Tibet: Insights into the Petrogenesis of Himalayan Eocene Leucogranite
文章编号:
1001-1552(2020)06-1190-018
作者:
李志泰1、2 徐 扛1、2 王连峰1、2 王 强1 蒋映德1
1.中国科学院 广州地球化学研究所, 同位素地球化学国家重点实验室, 广东 广州 510640; 2.中国科学院大学, 北京 100049
Author(s):
LI Zhitai1、2 XU Kang1、2 WANG Lianfeng1、2 WANG Qiang1 and JIANG Yingde1
1. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
喜马拉雅造山带 然巴穹隆 淡色花岗岩 变质变形
Keywords:
Himalayan orogenic belt Ramba dome leucogranite metamorphism and deformation
分类号:
P511.5 P581
DOI:
10.16539/j.ddgzyckx.2020.06.011
文献标志码:
A
摘要:
然巴穹隆及其周源发育不同期次淡色花岗岩与不同程度变质作用, 两者之间存在何种成因关联尚不清楚。为揭示这一内在联系, 本文对然巴穹隆中变形的淡色花岗岩与围岩中十字石?蓝晶石片岩开展了系统的岩相学观察、主微量元素分析、变质相平衡模拟和锆石、独居石U-Pb年代学研究。研究表明然巴穹隆中变形花岗岩以脉状产出, 为似斑状二云母花岗岩, 其形成年龄约为45 Ma。这些花岗岩脉具有高CaO与Sr含量, 相对较高的Sr/Y值、较低的Rb/Sr值, 在Sr/Y-Y图解中落于埃达克岩范围内, 暗示其成因与地壳加厚有关。穹隆围岩中十字石?蓝晶石云母片岩具有峰期共生矿物组合: 蓝晶石+十字石+石榴石+黑云母+白云母+斜长石+石英+金红石+钛铁矿。变质相平衡模拟结果显示其具有增温增压的进变质作用过程, 且变质峰期温压条件为600~650 ℃/8×108~9×108 Pa。对该云母片岩开展独居石U-Pb测年, 获得变质峰期年龄约为53 Ma。研究表明然巴地区在始新世存在着地壳加厚过程, 造成加厚地壳的部分熔融从而形成区域围岩变形二云母花岗岩。本次研究为喜马拉雅造山带始新世淡色花岗岩与印度?亚洲板块碰撞导致地壳加厚的成因关联提供了研究实例。
Abstract:
The Ramba dome in the Tethyan Himalaya is characterized by polyphase intrusions of leucogranite and affected by variable metamorphism. The effects of regional metamorphism on the generation of the leucogranites have not yet been well documented. To address this issue, systematic petro-structural observation, geochemical analysis, metamorphic phase equilibrium modelling and U-Pb dating of zircon and monazite were carried out on a staurolite-kyanite micaschist and the associated deformed leucogranite dykes in the metamorphic envelope of the dome. The deformed leucogranite dykes are porphyritic two-mica granite with a U-Pb zircon crystallization age of ca. 45 Ma. These dykes have high CaO and Sr contents, relatively high Sr/Y and low Rb/Sr ratios, compositionally similar to that of typical adakitic granite. These features imply that the leucogranite dykes most likely formed in a thickened crustal environment. The kyanite-staurolite micaschist has a peak mineral assemblage of kyanite + staurolite + garnet + biotite + muscovite + plagioclase + quartz + rutile + ilmenite. Metamorphic phase equilibrium modelling reveals a prograde P-T path associated with increases of temperature and pressure, reaching a peak stage of 600 ? 650 ℃ / 8×108 ? 9×108 Pa. These findings suggest a burial evolution, probably reflecting progressive crust thickening. U-Pb dating of monazite from the micaschist yielded an age of ca. 53 Ma, interpreted as the timing of the metamorphism. Taken together, the results from this study suggest a significant crustal thickening at ca. 53 Ma in the Ramba area, and this process might account for the formation of the high Sr/Y leucogranite from the deep crust. This study provides a good example for generation of bulk Himalayan Eocene leucogranite in response to the India-Asia collision.

参考文献/References:

陈能松, 孙敏, 杨勇, 刘嵘, 王勤燕. 2003. 变质石榴石的成分环带与变质过程. 地学前缘, 10(3): 315-320.
丁慧霞, 李文坛, 江媛媛. 2019. 喜马拉雅造山带东段错那洞片麻岩穹隆的变质作用及构造意义. 岩石学报, 35(2): 312-324.
高利娥, 曾令森, 侯可军, 郭春丽, 唐索寒, 谢克家, 王莉. 2013a. 藏南马拉山穹隆佩枯错复合淡色花岗岩体的多期深熔作用. 科学通报, 58(27): 2810-2822.
高利娥, 曾令森, 胡古月. 2010. 藏南确当地区高Sr/Y比值二云母花岗岩的形成机制及其构造动力学意义. 地质通报, 29(2-3): 214-226.
高利娥, 曾令森, 刘静, 谢克家. 2009. 藏南也拉香波早渐新世富钠过铝质淡色花岗岩的成因机制及其构造动力学意义. 岩石学报, 25(9): 2289-2302.
高利娥, 曾令森, 王莉, 侯可军, 高家昊, 尚振. 2016. 喜马拉雅碰撞造山带不同类型部分熔融作用的时限及其构造动力学意义. 地质学报, 90(11): 3039-3059.
高利娥, 曾令森, 王莉, 侯可军, 郭春丽, 唐索寒. 2013b. 藏南马拉山高钙二云母花岗岩的年代学特征及其形成机制. 岩石学报, 29(6): 1995-2012.
郭磊, 张进江, 张波. 2008. 北喜马拉雅然巴穹隆的构造、运动学特征、年代学及演化. 自然科学进展, (6): 640- 650.
胡古月, 曾令森, 戚学祥, 候可军, 高利娥. 2011. 藏南特提斯喜马拉雅带始新世隆子?恰嘎次火山岩区: 雅拉香波二云母花岗岩的高位岩浆体系. 岩石学报, 27(11): 3308-3318.
廖忠礼, 莫宣学, 潘桂棠, 朱弟成, 王立全, 赵志丹, 董国臣. 2006a. 西藏曲珍过铝花岗岩地球化学特征及地球动力学意义. 岩石学报, 22(4): 845-854.
廖忠礼, 莫宣学, 潘桂棠, 朱弟成, 王立全, 赵志丹, 江新胜. 2006b. 初论西藏过铝花岗岩. 地质通报, 80(7): 812-821.
刘志超. 2013. 喜马拉雅然巴淡色花岗岩时代与成因. 北京: 中国科学院地质与地球物理研究所博士学位论文.
戚学祥, 李天福, 孟祥金, 于春林. 2008a. 藏南特提斯喜马拉雅前陆断褶带新生代构造演化与锑金多金属成矿作用. 岩石学报, 24(7): 1638-1648.
戚学祥, 曾令森, 孟祥金, 许志琴, 李天福. 2008b. 特提斯喜马拉雅打拉花岗岩的锆石SHRIMP U-Pb定年及其地质意义. 岩石学报, 24(7): 1501-1508.
王立全. 2013. 青藏高原及邻区地质图及说明书. 北京: 地质出版社.
王晓先, 张进江, 刘江, 闫淑玉, 王佳敏. 2012. 中新世中期喜马拉雅造山带构造体制的转换. 科学通报, 57(33): 3162-3172.
吴福元, 刘志超, 刘小驰, 纪伟强. 2015. 喜马拉雅淡色花岗岩. 岩石学报, 31(1): 1-36.
谢克家, 曾令森, 刘静, 高利娥. 2010. 西藏南部晚始新世打拉埃达克质花岗岩及其构造动力学意义. 岩石学报, 26(4): 1016-1026.
许志琴, 王勤, 李忠海, 李化启, 蔡志慧, 梁凤华, 董汉文, 曹汇, 陈希节, 黄学猛, 吴婵, 许翠萍. 2016. 印度?亚洲碰撞: 从挤压到走滑的构造转换. 地质学报, 90(1): 1-23.
许志琴, 杨经绥, 姜枚, 李海兵. 1999. 大陆俯冲作用及青藏高原周缘造山带的崛起. 地学前缘, 6(3): 139- 151.
曾令森, 刘静, 高利娥, 谢克家, 文力. 2009. 藏南也拉香波穹隆早渐新世地壳深熔作用及其地质意义. 科学通报, 54(3): 373-381.
张进江. 2007. 北喜马拉雅及藏南伸展构造综述. 地质通报, 26(6): 639-649.
张进江, 杨雄英, 戚国伟, 王德朝. 2011. 马拉山穹隆的活动时限及其在藏南拆离系?北喜马拉雅片麻岩穹隆形成机制的应用. 岩石学报, 27(12): 3535-3544.
Aikman A B, Harrison T M and Lin D. 2008. Evidence for Early (>44 Ma) Himalayan crustal thickening, Tethyan Himalaya, southeastern Tibet. Earth and Planetary Science Letters, 274(1-2): 14-23.
Aleinikoff J N, Schenck W S, Plank M O, Srogi L, Fanning C M, Kamo S L and Bosbyshell H. 2006. Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite. Geological Society of America Bulletin, 118(1): 39-64.
Aoya M, Wallis S R, Terada K, Lee J, Kawakami T, Wang Y and Heizler M. 2005. North-south extension in the Tibetan crust triggered by granite emplacement. Geology, 33(11): 853-856.
Burchfiel B C, Chen Z L, Hodges K V, Liu Y P, and Xu J. 1992. The South Tibetan detachment System, Himalayan Orogen: Extension contemporaneous with and parallel to shortening in a collisional mountain belt. Special Paper of the Geological Society of America, 269: 41.
Burg J P, Guiraud M, Chen G M and Li G C. 1984. Himalayan metamorphism and deformations in the North Himalayan Belt (southern Tibet, China). Earth and Planetary Science Letters, 69(2): 391-400.
Defant M J and Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665.
Ding H X, Zhang Z M, Dong X, Tian Z L, Xiang H, Mu H C, Gou Z B, Shui X F, Li W C and Mao L J. 2016a. Early Eocene (c. 50 Ma) collision of the Indian and Asian continents: Constraints from the North Himalayan metamorphic rocks, southeastern Tibet. Earth and Planetary Science Letters, 435: 64-73.
Ding H X, Zhang Z M, Hu K M, Dong X, Xiang H and Mu H C. 2016b. P-T-t-D paths of the North Himalayan metamorphic rocks: Implications for the Himalayan orogeny. Tectonophysics, 683: 393-404.
Ding L, Kapp P and Wan X Q. 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics, 24, TC3001. doi: 10.1029/2004TC001729
Donaldson D G, Webb A A G, Menold C A, Kylander-Clark A R C and Hacker B R. 2013. Petrochronology of Himalayan ultrahigh-pressure eclogite. Geology, 41(8): 835-838.
Gao L E and Zeng L S. 2014. Fluxed melting of metapelite and the formation of Miocene high-CaO two-mica granites in the Malashan gneiss dome, southern Tibet. Geochimica et Cosmochimica Acta, 130: 136-155.
Gao L E, Zeng L S and Asimow P D. 2017. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites. Geology, 45(1): 39-42.
Harrison T M, Lovera O M and Grove M. 1997. New insights into the origin of two contrasting Himalayan granite belts. Geology, 25(10): 899-902.
Harrison T M, Mckeegan K D and Lefort P. 1995. Detection of inherited monazite in the Manaslu leucogranite by 208Pb/232Th ion microprobe dating: Crystallization age and tectonic implications. Earth and Planetary Science Letters, 133(3-4): 271-282.
Hodges K V. 1998. The thermodynamics of Himalayan orogenesis. Geological Society, London, Special Publication, 138: 7-22.
Hodges K V, Parrish R R and Housh T B. 1992. Simultaneous Miocene extension and shortening in the Himalayan Orogen. Science, 258(5087): 1466-1470.
Hou Z Q, Zheng Y C, Zeng L S, Gao L E, Huang K X, Li W, Li Q Y, Fu Q, Liang W and Sun Q Z. 2012. Eocene- Oligocene granitoids in southern Tibet: Constraints on crustal anatexis and tectonic evolution of the Himalayan orogen. Earth and Planetary Science Letters, 349: 38- 52.
Kali E, Leloup P H, Arnaud N, Mahéo G, Liu D Y, Boutonnet E, Vander Woerd J, Liu X H, Liu Z J and Li H B. 2010. Exhumation history of the deepest central Himalayan rocks, Ama Drime range: Key pressure- temperature-deformation-time constraints on orogenic models. Tectonics, 29(2), TC2014.
King J, Harris N Argles T, Parrish R and Zhang H. 2011. Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet. Geological Society of America Bulletin, 123(1-2): 218-239.
Lee J, Hacker B and Wang Y. 2004. Evolution of North Himalayan gneiss domes: Structural and metamorphic studies in Mabja Dome, southern Tibet. Journal of Structural Geology, 26(12): 2297-2316.
Lee J, Hacker B R, Dinklage W S, Wang Y, Gans P, Calvert A, Wan J L, Chen W J, Blythe A E and McClelland W. 2000. Evolution of the Kangmar Dome, southern Tibet: Structural, petrologic, and thermochronologic constraints. Tectonics, 19(5): 872-895.
Lee J, Hager C, Wallis S R, Stockli D F, Whitehouse M J, Aoya M and Wang Y. 2011. Middle to late Miocene extremely rapid exhumation and thermal reequilibration in the Kung Co rift, southern Tibet. Tectonics, 30(2), TC2007.
Lee J and Whitehouse M J. 2007. Onset of mid-crustal extensional flow in southern Tibet: Evidence from U/Pb zircons ages. Geology, 35(1): 45-48.
Leloup P H, Maheo G, Arnaud N, Kali E, Boutonnet E, Liu D, Liu X H and Liu H B. 2010. The South Tibet detachment shear zone in the Dinggye area Time constraints on extrusion models of the Himalayas. Earth and Planetary Science Letters, 292(1-2): 1-16.
Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q and Wang D B. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology, 51: 537-571.
Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G and Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257: 34-43.
Liu Z C, Wu F Y, Ji W Q and Wang J G. 2014. Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model. Lithos, 208-209: 118-136.
Liu Z C, Wu F Y, Liu X C, Wang J G, Yin R, Qiu Z L, Wei Q and Yang L. 2019. Mineralogical evidence for fractionation processes in the Himalayan leucogranites of the Ramba Dome, southern Tibet. Lithos, 340: 71-86.
Ludwig K R. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center.
Pati?o Douce A E and Harris N. 1998. Experimental constraints on Himalayan anatexis. Journal of Petrology, 39(4): 689-710.
Pouchou J L and Pichoir F. 1991. Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP” // Electron Probe Quantitation. Boston: Springer.
Quigley M C, Yu L J, Gregory C, Corvino A, Sandiford M, Wilson C J L and Liu X H. 2008. U-Pb SHRIMP zircon geochronology and T-t-d history of the Kampa Dome, southern Tibet. Tectonophysics, 446: 97-113.
Searle M P, Cottle J M, Streule M J and Waters D J. 2010. Crustal melt granites and migmatites along the Himalaya: Melt source, segregation, transport and granite emplacement mechanisms. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 100(1-2): 219-233.
Sláma J, Ko?ler J, Condon D J, Crowley J L, Gerdes A, Hanchar J M, Horstwood M S A, Morris G A, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M N and Whitehouse M J. 2008. Ple?ovice zircon — A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1-35.
Spratt J E, Jones A G Nelson K D and Unsworth M J. 2005. Crustal structure of the India-Asia collision zone, southern Tibet, from INDEPTH MT investigations. Physics of the Earth and Planetary Interiors, 150(1-3): 227-237.
Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313-345.
Vance D and Harris N. 1999. Timing of prograde metamorphism in the Zanskar Himalaya. Geology, 27(5): 395-398.
Wang J M, Zhang J J, Wei C J, Rai S, Wang M and Qian J H. 2015. Characterising the metamorphic discontinuity across the Main Central Thrust Zone of eastern-central Nepal. Journal of Asian Earth Sciences, 101: 83-100.
Webb A, Alexander G, Yin A, Harrison T Mark, Celerier J and Burgess W P. 2007. The leading edge of the Greater Himalayan Crystalline complex revealed in the NW Indian Himalaya: Implications for the evolution of the Himalayan orogen. Geology, 35(10): 955-958.
Xu Z Q, Wang Q, Pêcher Arnaud, Liang F H, Qi X X, Cai Z H, Li H Q, Zeng L S and Cao H. 2013. Orogen-parallel ductile extension and extrusion of the Greater Himalaya in the late Oligocene and Miocene. Tectonics, 32(2): 191-215.
Yang X Y, Zhang J J, Qi G W, Wang D C, Guo L, Li P Y and Liu J. 2009. Structure and deformation around the Gyirong basin, north Himalaya, and onset of the south Tibetan detachment system. Science in China (Series D), 52(8): 10-22.
Yin A. 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Science Reviews, 76(1-2): 1-131.
Yin A and Harrison T M. 2000. Geologic evolution of the Himalayan Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280.
Zeng L S, Gao L E, Xie K J and Jing L Z. 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes: Melting thickened lower continental crust. Earth and Planetary Science Letters, 303(3-4): 251-266.
Zeng L S, Gao L E , Tang S H, Hou K J, Guo C L and Hu G Y. 2014. Eocene Magmatism in the Tethyan Himalaya, southern Tibet // Mukherjee S, Carosi R, van der Beek P A, Mukherjee B K and Robinson D M. Tectonics of the Himalaya. Geological Society, London, Special Publications, 412. doi: 10.1144/SP412.8
Zeng L S, Liu J, Gao L E, Xie K J and Wen L. 2009. Early Oligocene anatexis in the Yardoi gneiss dome, southern Tibet and geological implications. Chinese Science Bulletin, 54(1): 104-112.
Zhang H F, Harris N, Parrish R, Kelley S, Zhang L, Rogers N, Argles T and King J 2004. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth and Planetary Science Letters, 228(1-2): 195-212.
Zhang J J and Guo L. 2007. Structure and geochronology of the southern Xainza-Dinggye rift and its relationship to the south Tibetan detachment system. Journal of Asian Earth Sciences, 29(5-6): 722-736.
Zhang J J, Santosh M, Wang X X, Guo L, Yang X Y and Zhang B. 2012. Tectonics of the northern Himalaya since the India-Asia collision. Gondwana Research, 21(4): 939-960.
Zhang Z M, Xiang H, Dong X, Ding H X and He Z Y. 2015. Long-lived high-temperature granulite-facies metamorphism in the Eastern Himalayan orogen, south Tibet. Lithos, 212-215: 1-15.

相似文献/References:

[1]刘德民,李德威.喜马拉雅造山带中段定结地区拆离断层.大地构造与成矿学,2003.27(1):037.
 LIU De min and LI De wei.DETACHMENT FAULT IN DINGJIE AREA MIDDLE PART OF HIMALAYA MOUNTAIN BELT.Geotectonica et Metallogenia,2003.44(6):037.
[2]王木清,涂江汉.欧洲—苏联哈萨克、中亚区构造岩-浆活化与铀成矿作用.大地构造与成矿学,1987.11(3):274.
 WANG Muqing TU Jianghan.TECTONO-MAGMATIC ACTIVIZATTON AND URANIUM MINERALIZATION IN KAZAKHSTAN AND CENTRAL ASIA ARAES.Geotectonica et Metallogenia,1987.44(6):274.

备注/Memo

备注/Memo:
收稿日期: 2020-01-12; 改回日期: 2020-03-20
项目资助: 中科院前沿科学重点项目: 青藏高原中北部新生代陆内岩石圈演化(QYZDJ-SSW-DQC026)和第二次青藏高原科学考察研究计划(STEP)(2019QZKK0702)联合资助。
第一作者简介: 李志泰(1995-), 男, 硕士研究生, 地球化学专业。Email: lizhitai17@mails.ucas.ac.cn
通信作者: 蒋映德(1982-), 男, 研究员, 主要从事造山带构造变形与变质演化研究。Email: jiangyd@gig.ac.cn
更新日期/Last Update: 2020-12-20