[1]李 超,仝来喜,黄小龙.2020.粤西云开地块高州钙硅酸盐麻粒岩的变质P-T历史及其构造意义.大地构造与成矿学,44(6):1172-1171.doi:10.16539/j.ddgzyckx.2020.06.010
 LI Chao,TONG Laixi,HUANG Xiaolong.2020.Metamorphic P-T History of Calc-silicate Granulites at Gaozhou in the Yunkai Massif, Western Guangdong and its Tectonic Implications.Geotectonica et Metallogenia,44(6):1172-1171.doi:10.16539/j.ddgzyckx.2020.06.010
点击复制

粤西云开地块高州钙硅酸盐麻粒岩的变质P-T历史及其构造意义
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2020年44卷06期
页码:
1172-1171
栏目:
岩石大地构造与地球化学
出版日期:
2020-12-20

文章信息/Info

Title:
Metamorphic P-T History of Calc-silicate Granulites at Gaozhou in the Yunkai Massif, Western Guangdong and its Tectonic Implications
文章编号:
1001-1552(2020)06-1172-018
作者:
李 超1、2 仝来喜3* 黄小龙1 刘 兆1、2 仲 正1、2
1.中国科学院 广州地球化学研究所, 同位素地球化学国家重点实验室, 广东 广州 510640; 2.中国科学院大学, 北京 100049; 3.西北大学 大陆动力学国家重点实验室, 陕西 西安 710069
Author(s):
LI Chao1、2 TONG Laixi3* HUANG Xiaolong1 LIU Zhao1、2 and ZHONG Zheng1、2
1. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, Shaanxi, China
关键词:
云开地块 钙硅酸盐麻粒岩 P-T轨迹 锆石U-Pb定年 加里东期造山
Keywords:
Yunkai massif calc-silicate granulites P-T trajectory zircon U-Pb dating Caledonian orogenic event
分类号:
P588.3
DOI:
10.16539/j.ddgzyckx.2020.06.010
文献标志码:
A
摘要:
粤西云开地块高州钙硅酸盐麻粒岩保留了早古生代云开造山带构造热演化的重要信息, 对其进行研究可以更好地了解该造山带的变质历史。详细的岩相学研究表明钙硅酸盐麻粒岩仅保留了峰期麻粒岩相和峰期后角闪岩相两个变质阶段的矿物组合(M1-M2)。峰期矿物组合(M1)由基质中平衡共生的石榴石+透辉石+斜长石+钾长石±方柱石构成, 峰期后退变质矿物组合(M2)为蠕虫状透辉石+钙长石+石英后成合晶和钙铝榴石+石英冠状体及方解石+榍石+磁铁矿退变质矿物。由传统地质温压计和平均温压法计算获得钙硅酸盐麻粒岩峰期变质条件约为803 ℃/0.84 GPa, 峰期后退变质条件约为660 ℃/0.63 GPa, 指示钙硅酸盐麻粒岩经历了峰期中压高温麻粒岩相变质及晚期角闪岩相退变质过程。CL图像显示该样品中的锆石具有清晰的核?边结构, LA-ICP-MS锆石U-Pb定年结果表明, 锆石核部年龄为~970 Ma, 代表钙硅酸盐麻粒岩的原岩形成于早新元古代, 锆石边部206Pb/238U加权平均年龄为435±4 Ma, 指示麻粒岩相变质作用发生在早古生代(加里东期)。结合变质反应结构、温压估算以及年代学研究结果, 获得一条峰期后减压降温型顺时针P-T-t轨迹, 指示钙硅酸盐岩麻粒岩形成于华南早古生代碰撞造山的构造环境, 记录了扬子陆块与华夏陆块加里东期陆?陆碰撞及碰撞后抬升的演化过程。
Abstract:
Calc-silicate granulites in the Yunkai massif of Western Guangdong contain important information of thermo-tectonic evolution of the early Paleozoic Yunkai orogen, and study of which may help to better understand the metamorphic history of the Yunkai orogenic belt. Detailed petrographic studies indicated that the samples preserved peak granulite-facies and post-peak amphibolite-facies mineral assemblages formed at two metamorphic stages (M1-M2). The peak metamorphic mineral equilibrium assemblages (M1) are identified as garnet + diopside + plagioclase + K-feldspar ± scapolite in the matrix. The retrograde assemblages (M2) are characterized by vermicular diopside + anorthite + quartz symplectites and garnet + quartz coronas and retrograde mineral assemblage calcite + sphene + magnetite. Conventional thermobarometers and average P-T calculation result in the following P-T condition: 803 ℃/ 0.84 GPa for peak metamorphism (M1) and 660 ℃/0.63 GPa for post-peak retrograde metamorphism (M2), respectively, indicating relatively high temperature and medium pressure peak granulite-facies metamorphism and post-peak amphibolite facies retrograde metamorphism. CL images of zircon grains from the calc-silicate granulites show a clear core-rim internal texture, LA-ICP-MS zircon U-Pb dating gives an early Neoproterozoic age (ca. 970 Ma) for the formation of the protolith and a weighted average 206Pb/238U age is 435±4 Ma for the peak metamorphism. Based on the metamorphic reaction textures and P-T estimates, the post-peak decompressional cooling along a clockwise P-T trajectory was defined, which is consistent with the occurrence of an orogenic event. Combining with the early Paleozoic metamorphic age, we thus concluded that the calc-silicate granulites recoeded the continental collision between Yangtze and Cathaysia blocks and post-collisional uplift processes during the Caledonian orogenic event in South China.

参考文献/References:

陈斌, 庄育勋. 1994. 粤西云炉紫苏花岗岩及其麻粒岩包体的主要特点和成因讨论. 岩石学报, 10(2): 139-150.
陈相艳, 仝来喜, 张传林, 朱清波, 李亚楠. 2015. 浙江龙游石榴石角闪岩(退变榴辉岩): 华夏加里东期碰撞造山事件的新证据. 科学通报, 60(13): 1207-1225.
邓晋福, 冯艳芳, 狄永军, 刘翠, 肖庆辉, 苏尚国, 赵国春, 孟斐, 熊龙. 2016. 华南地区侵入岩时空演化框架. 地质论评, 62(1): 3-16.
董学发, 余盛强, 唐增才, 肖庆辉, 袁强, 陈忠大, 周宗尧, 吴小勇. 2016. 浙江“陈蔡增生杂岩”中洋内弧型变基性火山岩的地球化学特征及其地质意义. 中国地质, 43(3): 817-828.
甘晓春, 李惠民, 孙大中. 1995. 浙西南早元古代花岗质岩石的年代. 岩石矿物学杂志, 14(1): 1-8.
关义立, 袁超, 龙晓平, 张运迎, 王鑫玉, 黄宗莹, 陈蓓, 曲少东. 2016. 华南早古生代花岗岩中暗色包体的成因: 岩石学、地球化学和锆石年代学证据. 大地构造与成矿学, 40(1): 109-124.
胡雄健. 1994. 浙西南下元古界八都群的地质年代学. 地球化学, 23(S1): 18-24.
李超, 仝来喜, 刘兆, 黄小龙. 2020. 华南云开高州紫苏花岗岩及其两类石榴石的成因: 岩石学和锆石U-Pb年代学证据. 岩石学报, 36(3): 871-892.
李献华, 王一先, 赵振华, 陈多福, 张宏. 1998. 闽浙古元古代斜长角闪岩的离子探针锆石U-Pb年代学. 地球化学, 27(4): 327-334.
卢良兆, 徐学纯, 刘福来. 1996. 中国北方早前寒武纪孔兹岩系. 长春: 长春出版社: 168-173.
彭松柏, 刘松峰, 林木森, 吴长峰, 韩庆森. 2016. 华夏早古生代俯冲作用(I): 来自糯垌蛇绿岩的新证据. 地球科学, 41(5): 765-778.
舒良树. 2006. 华南前泥盆纪构造演化: 从华夏地块到加里东期造山带. 高校地质学报, 12(4): 418-431.
覃小锋, 潘元明, 李江, 李容森, 周府生, 胡贵昂, 钟锋运. 2006. 桂东南云开地区变质杂岩锆石SHRIMP U-Pb年代学. 地质通报, 25(5): 553-559.
覃小锋, 王宗起, 胡贵昂, 曹洁, 冯佐海. 2013. 两广交界地区壶垌片麻状复式岩体的年代学和地球化学: 对云开地块北缘早古生代构造?岩浆作用的启示. 岩石学报, 29(9): 159-174.
王存智, 姜杨, 赵希林, 邢光福, 高天山, 靳国栋, 杨东. 2016. 陈蔡岩群下河图斜长角闪岩年代学、地球化学特征及其构造意义. 岩石矿物学杂志, 35(3): 425-442.
吴福元, 万博, 赵亮, 肖文交, 朱日祥. 2020. 特提斯地球动力学. 岩石学报, 36(6): 1627-1674.
魏春景. 2016. 麻粒岩相变质作用与花岗岩成因-Ⅱ: 变质泥质岩高温?超高温变质相平衡与S型花岗岩成因的定量模拟. 岩石学报, 32(6): 1625-1643.
徐仲元, 刘正宏, 胡风翔, 杨振升. 2005. 内蒙古大青山地区孔兹岩系中钙硅酸盐岩的组成和地球化学特征. 吉林大学学报(地球科学版), 35(6): 681-689.
于津海, 楼法生, 王丽娟, 沈林伟, 周雪瑶, 张春晖, 黄志忠. 2014. 赣东北弋阳早古生代麻粒岩的发现及其地质意义. 科学通报, 59(35): 3508-3516.
于津海, 周新民, O’Reilly S Y, 赵蕾, Griffin W L, 王汝成, 王丽娟, 陈小明. 2005. 南岭东段基底麻粒岩相变质岩的形成时代和原岩性质: 锆石的U-Pb-Hf同位素研究. 科学通报, 50(16): 1758-1767.
张颖慧, 魏春景, 王伟. 2009. 中国阿尔泰造山带麻粒岩相变质作用及其地质意义. 中国科技论文在线.
钟增球, 游振东, 周汉文, 韩郁菁. 1996. 两广云开隆起区基底的组成演化及其基本结构格局. 中国区域地质, (1): 36-43.
周岱, 龙文国, 王磊, 贾小辉. 2017. 云开地区早古生代竹雅-石板辉长岩锆石U-Pb定年与Lu-Hf 同位素特征. 地质通报, 36(5): 726-737.
周汉文, 李献华, 刘颖, 韦刚健, 王江海, 孙大中. 1998. 粤西龙修地区大理岩的Pb-Pb年龄及其地质意义. 现代地质, 12(2): 180-184.
周汉文, 游振东, 钟增球, 韩郁菁. 1994. 云开隆起区钾长球斑片麻状黑云母花岗岩锆石特征研究——形貌、成分以及U-Pb同位素年龄. 地球科学, 29(4): 41-46.
Buick I S, Harley S L and Cartwright I C. 1993. Granulite facies metasomatism-zoned calc-silicate boudins from the Rauer-Group, East Antarctica. Contributions to Mineralogy and Petrology, 113(4): 557-571.
Charvet J. 2013. The Neoproterozoic-Early Paleozoic tectonic evolution of the South China Block: An overview. Journal of Asian Earth Sciences, 74: 198-209.
Charvet J, Shu L S, Faure M, Choulet F, Wang B, Lu H F and Le Breton N. 2010. Structural development of the Lower Paleozoic belt of South China: Genesis of an intracontinental orogen. Journal of Asian Earth Sciences, 39(4): 309-330.
Chen C H, Liu Y H, Lee C Y, Xiang H and Zhou H W. 2012. Geochronology of granulite, charnockite and gneiss in the poly-metamorphosed Gaozhou Complex (Yunkai massif), South China: Emphasis on the in-situ EMP monazite dating. Lithos, 144-145: 109-129.
Dasgupta S and Pal S. 2005. Origin of grandite garnet in calc-silicate granulites: Mineral-fluid equilibria and petrogenetic grids. Journal of Petrology, 46(5): 1045-1076.
Ellis D J. 1987. Origin and evolution of granulites in normal and thickened crusts. Geology, 15(2): 167-170.
Faure M, Shu L S, Wang B, Charvet J, Choulet F and Monie P. 2009. Intracontinental subduction: A possible mechanism for the Early Palaeozoic orogen of SE China. Terra Nova, 21(5): 360-368.
Gao S, Yang J, Zhou L, Li M, Hu Z C, Guo J L, Yuan H L, Gong H J, Xiao G Q and Wei J Q. 2011. Age and growth of the Archean Kongling Terrain, South China, with emphasis on 3.3 Ga granitoid gneisses. American Journal of Science, 311(2): 153-182.
Guo L Z, Shi Y S, Lu H F, Ma R S, Dong H G and Yang S F. 1989. The pre-Devonian tectonic patterns and evolution of South China. Journal of Southeast Asian Earth Sciences, 3(1): 87-93.
Harley S L. 1989. The origins of granulites: A metamorphic perspective. Geological Magazine, 126(3): 215-247.
Harley S L and Buick I S. 1992. Wollastonite-scapolite assemblages as indicators of granulite pressure temperature fluid histories — the Rauer group, East Antarctica. Journal of Petrology, 33(3): 693-728.
Harley S L and Santosh M. 1995. Wollastonite at Nuliyam, Kerala, Southern India — A reassessment of CO2- infiltration and charnockite formation at a classic locality. Contributions to Mineralogy and Petrology, 120(1): 83-94.
Holland T J B and Powell R. 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29(3): 333-383.
Hsü K J. 1994. Tectonic facies in an archipelago model of intra-plate orogenesis. GSA Today, 4(12): 289-293.
Hsü K J, Li J L, Chen H H, Wang Q C, Sun S and Sengor A M C. 1990. Tectonics of South China: Key to understanding west pacific geology. Tectonophysics, 183(1-4): 9-39.
Huang D L and Wang X L. 2019. Reviews of geochronology, geochemistry, and geodynamic processes of Ordovician- Devonian granitic rocks in southeast China. Journal of Asian Earth Sciences, 184, 104001.
Huang J Q, Ren J S, Zhang Z K and Qin D Y. 1980. The Geotectonic Evolution of China. Beijing: Science Press: 1-124.
Huang X L, Yu Y, Li J, Tong L X and Chen L L. 2013. Geochronology and petrogenesis of the early Paleozoic I-type granite in the Taishan area, South China: Middle- lower crustal melting during orogenic collapse. Lithos, 177: 268-284.
Liu Y S, Hu Z C, Gao S, Gunther D, Xu J, Gao C G and Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43.
Li X H, Tatsumoto M, Premo W R and Gui X T. 1989. Age and origin of the Tanghu granite, Southeast China — Results from U-Pb single zircon and Nd isotopes. Geology, 17(5): 395-399.
Li Z X. 1998. Tectonic history of the major East Asian lithospheric blocks since the mid-Proterozoic — A synthesis. // Flower M F J, Chung S L, Lo C H and Lee T Y. Mantle Dynamics and Plate Interactions in East Asia: 221-243.
Li Z X, Li X H, Wartho J A, Clark C, Li W X, Zhang C L and Bao C. 2010. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions. Geological Society of America Bulletin, 122(5-6): 772-793.
Lin S F, Xing G F, Davis D W, Yin C Q, Wu M L, Li L M, Jiang Y and Chen Z H. 2018. Appalachian-style multi-terrane Wilson cycle model for the assembly of South China. Geology, 46(4): 319-322.
Liu J, Bohlen S R and Ernst W G. 1996. Stability of hydrous phases in subducting oceanic crust. Earth and Planetary Science Letters, 143: 161-171.
Liu S F, Peng S B, Kusky T, Polat A and Han Q S. 2018. Origin and tectonic implications of an Early Paleozoic (460-440 Ma) subduction-accretion shear zone in the northwestern Yunkai Domain, South China. Lithos, 322: 104-128.
Liu Y S, Hu Z C, Zong K Q, Gao C G, Gao S, Xu J A and Chen H H. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546.
Ludwig K R. 2003. Users manual for Isoplot/Ex: A geochronological toolkit for Microsoft Excel. 1a.
Powell R and Holland T J B. 1994. Optimal geothermometry and geobarometry. American Mineralogist, 79(1): 120-133.
Qiu X F, Zhao X M, Yang H M, Lu S S, Jiang T and Wu N W. 2018. Petrogenesis of the Early Palaeozoic granitoids from the Yunkai massif, South China block: Implications for a tectonic transition from compression to extension during the Caledonian orogenic event. Geological Magazine, 155(8): 1776-1792.
Qiu Y M and Gao S. 2000. First evidence of >3.2 Ga continental crust in the Yangtze craton of South China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology, 28(1): 11-14.
Rapa G, Groppo C, Rolfo F, Petrelli M, Mosca P and Perugini D. 2017. Titanite-bearing calc-silicate rocks constrain timing, duration and magnitude of metamorphic CO2 degassing in the Himalayan belt. Lithos, 292: 364-378.
Ravna E K. 2000. The garnet-clinopyroxene geothermometer: An updated calibration. Journal of Metamorphic Geology, 18(2): 211-219.
Ren J S. 1991. On the geotectonics of southern China. Acta Geologica Sinica (English Edition), 4(2): 111-136.
Satish-Kumar M and Harley S L. 1998. Reaction textures in scapolite-wollastonite-grossular calc-silicate rock from the Kerala Khondalite Belt, Southern India: Evidence for high-temperature metamorphism and initial cooling. Lithos, 44(3-4): 83-99.
Shu L S, Faure M, Wang B, Zhou X M and Song B. 2008. Late Palaeozoic-Early Mesozoic geological features of South China: Response to the Indosinian collision events in Southeast Asia. Comptes Rendus Geoscience, 340(2-3): 151-165.
Shu L S, Zhou G Q, Shi Y S and Yin J. 1994. Study of the high-pressure metamorphic blueschist and its late Proterozoic age in the eastern Jiangnan belt. Chinese Science Bulletin, 39(14): 1200-1204.
Spear F S. 1993. Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths. Washington D C: Mineralogical Society of America.
Ting W K. 1929. The orogenic movement in China. Bulletin of the Geological Society of China, 8 (1): 151-170.
Tong L X, Liu Z, Li Z X, Liu X H and Zhou X. 2019. Poly-phase metamorphism of garnet-bearing mafic granulite from the Larsemann Hills, East Antarctica: P-T path, U-Pb ages and tectonic implications. Precambrian Research, 326: 385-398.
Wan Y S, Liu D Y, Wilde S A, Cao J J, Chen B, Dong C Y, Song B and Du L L. 2010. Evolution of the Yunkai Terrane, South China: Evidence from SHRIMP zircon U-Pb dating, geochemistry and Nd isotope. Journal of Asian Earth Sciences, 37(2): 140-153.
Wang Y J, Fan W M, Zhang G W and Zhang Y H. 2013. Phanerozoic tectonics of the South China Block: Key observations and controversies. Gondwana Research, 23(4): 1273-1305.
Wang Y J, Zhao G C, Cawood P A, Fan W M, Peng T P and Sun L H. 2008. Geochemistry of Paleoproterozoic (similar to 1770 Ma) mafic dikes from the Trans-North China Orogen and tectonic implications. Journal of Asian Earth Sciences, 33(1-2): 61-77.
Yakymchuk C, Kirkland C L and Clark C. 2018. Th/U ratios in metamorphic zircon. Journal of Metamorphic Geology, 36(6): 715-737.
Yang T N, Li J Y, Liang M J and Wang Y. 2015. Early Permian mantle-crust interaction in the south-central Altaids: High-temperature metamorphism, crustal partial melting, and mantle-derived magmatism. Gondwana Research, 28(1): 371-390.
Zhang S B, Zheng Y F, Wu Y B, Zhao Z F, Gao S and Wu F Y. 2006. Zircon isotope evidence for ≥3.5 Ga continental crust in the Yangtze craton of China. Precambrian Research, 146(1-2): 16-34.
Zhang Z J and Wang Y H. 2007. Crustal structure and contact relationship revealed from deep seismic sounding data in South China. Physics of the Earth and Planetary Interiors, 165(1-2): 114-126.
Zhao G C and Cawood P A. 1999. Tectonothermal evolution of the Mayuan assemblage in the Cathaysia Block: Implications for Neoproterozoic collision-related assembly of the South China craton. American Journal of Science, 299(4): 309-339.
Zhao G C and Cawood P A. 2012. Precambrian geology of China. Precambrian Research, 222: 13-54.
Zhao L, Zhai M G, Zhou X W, Santosh M and Ma X D. 2015. Geochronology and geochemistry of a suite of mafic rocks in Chencai area, South China: Implications for petrogenesis and tectonic setting. Lithos, 236-237: 226-244.

相似文献/References:

[1]郝义,李三忠,金宠.湘赣桂地区加里东期构造变形特征及成因分析.大地构造与成矿学,2010.34(2):166.
 HAO Yi,LI Sanzhong,JIN Chong.Caledonian Structural Characteristics and Mechanism in Hunan Jiangxi Guangxi Provinces.Geotectonica et Metallogenia,2010.44(6):166.
[2]郭尚宇,黄锡强,农军年.云开地块西北缘三堡韧性剪切带变形特征及Ar-Ar年代学研究.大地构造与成矿学,2020.44(3):357.doi:10.16539/j.ddgzyckx.2020.03.003
 GUO Shangyu,HUANG Xiqiang,NONG Junnian.Deformation Characteristics and Ar-Ar Age of the Sanbao Ductile Shear Zone on the Northwestern Margin of Yunkai Block, South China.Geotectonica et Metallogenia,2020.44(6):357.doi:10.16539/j.ddgzyckx.2020.03.003

备注/Memo

备注/Memo:
收稿日期: 2019-08-13; 改回日期: 2019-09-25
项目资助: 国家重点研发计划“深地资源勘查开采专项”课题(2016YFC0600204)和中国地质调查局地质调查项目(DD2016343)联合资助。
第一作者简介: 李超(1992-), 男, 博士研究生, 矿物学、岩石学、矿床学专业。Email: lichao414@mails.ucas.ac.cn
通信作者: 仝来喜(1965-), 男, 博士, 教授, 主要从事变质岩石学研究。Email: tonglx@nwu.edu.cn
更新日期/Last Update: 2020-12-20