[1]丁金金,王 雷,任 涛.2020.易门狮子山铜矿床构造控矿规律及深部找矿效果.大地构造与成矿学,44(6):1128-1127.doi:10.16539/j.ddgzyckx.2020.06.007
 DING Jinjin,WANG Lei,REN Tao.2020.Ore-control Structures of Shizishan Copper Deposit in Yimen Country and Deep Prospecting.Geotectonica et Metallogenia,44(6):1128-1127.doi:10.16539/j.ddgzyckx.2020.06.007
点击复制

易门狮子山铜矿床构造控矿规律及深部找矿效果
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2020年44卷06期
页码:
1128-1127
栏目:
构造地质与成矿学
出版日期:
2020-12-20

文章信息/Info

Title:
Ore-control Structures of Shizishan Copper Deposit in Yimen Country and Deep Prospecting
文章编号:
1001-1552(2020)06-1128-015
作者:
丁金金1、2 王 雷1* 任 涛1 毛建辉3 赵 冻1 朱恩异1 陈兴林1 蒋宗和1 黄亚虎1
1.昆明理工大学 国土资源工程学院, 有色地质调查中心西南地质调查所, 云南 昆明 650093; 2.江西省 地质矿产勘查开发局九O二地质大队, 江西 南昌 330009; 3.玉溪矿业有限公司, 云南 玉溪 653100
Author(s):
DING Jinjin1、2 WANG Lei1* REN Tao1 MAO Jianhui3 ZHAO Dong1 ZHU Enyi1 CHEN Xinglin1 JIANG Zonghe1 and HUANG Yahu1
1. College of Land and Resources Engineering, Kunming University of Science and Technology, Southwest Geological Survey Institute of Nonferrous Geological Survey Center, Kunming 650093, Yunnan, China; 2. No.902 Geological Party, Jiangxi Bureau of Geology and Mineral Exploration, Nanchang 330009, Jiangxi, China; 3.Yuxi Mining Corporation, Yuxi 653100, Yunnan, China
关键词:
狮子山铜矿床 控矿因素 构造控矿规律 刺穿构造 深部找矿预测
Keywords:
Shizishan copper deposit ore-controlling factor ore-controlling regularities of structure piercing structure deep prospecting prediction
分类号:
P545; P624
DOI:
10.16539/j.ddgzyckx.2020.06.007
文献标志码:
A
摘要:
易门狮子山铜矿床位于武定?易门?元江裂陷带中段, 是区内受构造控制的典型矿床之一, 矿区多期构造活动强烈, 构造形式多样。综合运用构造地质学、矿田地质力学等理论与方法, 对深部16至18中段(1187~1087 m标高)坑道中出露的构造进行系统研究, 厘定了成矿期和成矿后构造的空间分布、运动形式及力学性质, 探讨了深部构造控矿规律, 进行深部找矿预测。研究表明, 矿区深部隐伏矿体主要受NW向和NWW向两组断裂控制: NE向断裂为成矿期主要控矿构造, 在该期断裂构造内发育的刺穿构造进一步控制了矿体的空间产出; NWW向断裂为成矿后构造, 该期构造为左行压扭性断裂, 依据断裂的运动学特征(擦痕判断为上盘斜上)、断距和旁侧构造形迹, 推测该期Fy2断裂将深部矿体往SWW向错断了80~120 m左右。经钻孔验证, 靶区内存在高品位的矿体, 为矿区升级和新增(332+333)铜金属资源量4.2万吨。该认识为深部隐伏矿体预测提供了重要依据。
Abstract:
The Shizishan copper deposit is located in the middle part of the Wuding-Yimen-Yuanjiang fault depression. It is one of the typical structure-controlled ore deposits in the area. Multistage tectonic activities resulted in the strong geological deformation in the mining area, and multiple tectonic styles have been recognized through systematical structural investigation at the deep tunnels (1187-1087 m level) of the Shizishan deposit. This study focused on the spatial distribution, movement styles and mechanical properties of the syn-ore and post-ore stage structures, and explored the structural controls of ore emplacement, and conducted deep prospecting. The results showed that the deep concealed ore bodies in the mining area are mainly controlled by the NE- and NW-trending faults. The diapir breccia structures are the secondary faults of the NE-trending ore-controlling faults, which controlled the spatial distribution of ore bodies. The NWW-trending faults are post-ore structures. The post-ore structures are left-lateral compression-torsion faults based on their kinematic characteristics, including slip and traces of lateral characteristic (scratch indicates that the upper plate is inclined to rise). The speculation is that the Fy2 fault in this period pushed the ore body in SWW direction with about 80 to 120 m. The deep exploration has discovered high-grade ore-bodies at depth, and the newly discovered ores have proved copper metal resources of 42000 tons. The progress in deep exploration showed that the structural control features of the deposit can be a useful guide for the prediction of deep concealed ore bodies.

参考文献/References:

蔡永丰, 王岳军, 刘汇川, 马莉燕, 邢晓婉, 刘雷. 2014. 哀牢山新元古代斜长角闪岩的形成时代、地球化学特征及其大地构造意义. 大地构造与成矿学, 38(1): 168-180.
陈永东, 刘建平. 2007. 云南易门矿区狮子山铜矿床深部成矿规律及找矿方向. 中国地质, 34(S1): 181-184.
方维萱. 2014. 论扬子地块西缘元古宙铁氧化物铜金型矿床与大地构造演化. 大地构造与成矿学, 38(4): 733- 757.
耿元生, 旷红伟, 柳永清, 杜利林. 2017. 扬子地块西、北缘中元古代地层的划分与对比. 地质学报, 91(10): 2151-2174.
耿元生, 柳永清, 高林志, 彭楠, 江小均. 2012. 扬子克拉通西南缘中元古代通安组的形成时代——锆石LA- ICP-MS U-Pb年龄. 地质学报, 86(9): 1479-1490.
龚琳, 何毅特. 1996. 云南东川元古宙裂谷型铜矿. 北京: 冶金工业出版社: 1-252.
关俊雷, 郑来林, 刘建辉, 孙志明, 程万华. 2011. 四川省会理县河口地区辉绿岩体的锆石SHRIMP U-Pb年龄及其地质意义. 地质学报, 85(4): 482-490.
郭阳, 王生伟, 孙晓明, 廖震文, 王子正, 周邦国, 杨斌. 2014a. 云南省武定县迤纳厂铁铜矿区古元古代辉绿岩锆石的U-Pb年龄及其地质意义. 大地构造与成矿学, 38(1): 208-215.
郭阳, 王生伟, 孙晓明, 王子正, 杨斌, 廖震文, 周邦国, 蒋小芳, 侯林, 杨波. 2014b. 扬子地台西南缘古元古代末的裂解事件——来自武定地区辉绿岩锆石U-Pb年龄和地球化学证据. 地质学报, 88(9): 1651-1665.
韩润生, 刘从强, 孙克祥, 马德云, 李元. 2000. 易门式铜矿床的多因复成成因. 大地构造与成矿学, 24(2): 146-154.
韩润生, 邹海俊, 刘丛强, 马更生. 2007. 中国云南易门式铜矿床的主要类型及成因(英文). 地质通报, 26(12): 1549-1563.
蒋家申, 李天福. 1996. 滇中元古宙昆阳裂谷系铜矿成矿系列. 云南地质, 15(2): 205-219.
李强, 韩润生, 黄应才, 李德. 2011. 易门狮子山铜矿床构造岩微量元素特征及构造地球化学异常模式. 大地构造与成矿学, 35(1): 149-155.
李强, 韩润生, 李德, 黄应才, 王雷. 2009. 滇中易门狮子山铜矿床构造控矿规律. 地质与勘探, 45(4): 352-357.
李强, 王雷, 毛建辉, 左琼华, 孟石荣. 2013. 易门狮子山铜矿流体包裹体研究. 大地构造与成矿学, 37(1): 57-64.
李天福, 蒋家申. 1995. 易门狮子山?稀矿山式铁铜矿的发现及其找矿意义. 西南矿产地质, (3): 3-15.
李天福, 蒋家申, 陈贤胜. 1996. 易门狮子山铜矿成矿环境及稀矿山式铁铜矿特征. 云南地质, 15(2): 192-204.
邱华宁, Wijbrans J R, 李献华, 朱炳泉, 朱崇林, 曾保成. 2002. 东川式层状铜矿40Ar-39Ar 成矿年龄研究: 华南地区晋宁?澄江期成矿作用新证据. 矿床地质, 21(2): 129-136.
冉崇英. 1983. 东川式层控铜矿的成矿模式. 中国科学(B辑), (3): 249-258.
沈渭洲, 凌洪飞, 许士进, 周新民, 赵子福, 郭建强. 2000. 扬子板块西缘北段新元古代花岗岩类的地球化学特征和成因. 地质论评, 46(5): 512-519.
孙家骢, 秦德先, 钟宝祥. 1995. 易门式铜矿床构造地球化学特征及盲矿预测. 昆明理工大学矿产地质研究所、易门矿务局(科研报告): 1-146.
孙克祥, 邓永寿. 1998. 滇中地区昆阳群中的刺穿构造. 云南地质, 17(1): 31-35.
王冬兵, 尹福光, 孙志明, 王立全, 王保弟, 廖世勇, 唐渊, 任光明. 2013. 扬子陆块西缘古元古代基性侵入岩LA-ICP-MS锆石U-Pb年龄和Hf同位素及其地质意义. 地质通报, 32(4): 617-630.
王雷, 郭泽华, 丁金金. 2017. 狮子山铜矿床构造控矿规律研究. 昆明: 昆明理工大学项目报告: 1-90.
王雷, 韩润生, 胡一多, 毛建辉, 黄建国, 唐果. 2014. 易门凤山铜矿床两类刺穿构造岩石地球化学特征及形成机制. 大地构造与成矿学, 38(4): 822-832.
王生伟, 蒋小芳, 杨波, 孙晓明, 廖震文, 周清, 郭阳, 王子正, 杨斌. 2016. 康滇地区元古宙构造运动Ⅰ: 昆阳陆内裂谷、地幔柱及其成矿作用. 地质论评, 62(6): 1353-1377.
王子正, 王生伟, 范文玉, 郭阳, 代鸿章, 杨斌, 周邦国. 2017. 云南武定左所辉绿岩铂族元素地球化学、Pb同位素及其地质意义. 矿床地质, 36(3): 719-735.
王子正, 周邦国, 郭阳, 杨斌, 廖震文, 王生伟. 2012. 扬子地台西缘淌塘花岗岩的地球化学特征及锆石U-Pb定年. 岩石矿物学杂志, 31(5): 652-662.
吴礼馄. 1989. 易门铜矿的控矿构造. 云南地质, 8(2): 154-163.
杨世瑜. 1990. 从遥感地质信息探讨东川?易门地区构造?矿化格局. 矿产与地质, 4(1): 52-58.
张志斌, 曹德斌. 1997. 对易门狮子山铜矿床成因的认识. 云南地质, 16(4): 350-358.
周家云, 毛景文, 刘飞燕, 谭洪旗, 沈冰, 朱志敏, 陈家彪, 罗丽萍, 周雄, 王越. 2011. 扬子地台西缘河口群钠长岩锆石SHRIMP年龄及岩石地球化学特征. 矿物岩石, 31(3): 66-73.
Huang X W, Zhao X F, Qi L and Zhou M F. 2013. Re-Os and S isotopic constraints on the origins of two mineralization events at the Tangdan sedimentary rock-hosted stratiform Cu deposit, SW China. Chemical Geology, 347(6): 9-19.
Leloup P H, Lacassin R, Tapponnier P, Scharer U, Zhong D L, Liu X H, Zhang L S, Ji S C and Trinh P T. 1995. The Ailao Shan-Red River shear zone (Yunnan, China): Tertiary transform boundary of Indochina. Tectonophysics, 251: 2513?2584.
Li Z X, Li X H, Kinny P D, Wang J, Zhang S and Zhou H W. 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambrian Research, 122: 85-109.
Wang Q, Wyman D A, Li Z X, Bao Z W, Zhao Z H, Wang Y X, Jian P, Yang Y H and Chen L L. 2010. Petrology, geochronology and geochemistry of ca. 780 Ma A-type granites in South China: Petrogenesis and implications for crustal growth during the breakup of supercontinent Rodinia. Precambrian Research, 178: 185?208.
Zhao J H, Zhou M F, Yan D P, Zheng J P and Li J W. 2011. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny. Geology, 39: 299?302.
Zhao X F, Zhou M F, Hitzman M W, Li J W, Bennett M, Meighan C and Anderson E. 2012. Late Paleoproterozoic to Early Mesoproterozoic Tangdan sedimentary rock-hosted strata-bound copper deposit, Yunnan Province, Southwest China. Economic Geology, 107: 357-375.
Zhao X F, Zhou M F, Li J W, Sun M, Gao J F, Sun W H and Yang J H. 2010. Late Paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan, SW China: Implications for tectonic evolution of the Yangtze Block. Precambrian Research, 182(1): 57-69.
Zhao X F, Zhou M F, Su Z, Li X, Chen W T and Li J W. 2017. Geology, geochronology, and geochemistry of the Dahongshan Fe-Cu-(Au-Ag) deposit, Southwest China: Implications for the formation of iron oxide copper-gold deposits in intracratonic rift settings. Economic Geology, 112(3): 603-628.
Zhou M F, Yan D P, Kennedy A K, Li Y Q and Ding J. 2002a. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196: 51-67.

相似文献/References:

[1]杨建国,翟金元,杨宏武.甘肃花牛山喷流沉积型金银铅锌矿床控矿因素与找矿前景分析.大地构造与成矿学,2010.34(2):246.
 YANG Jianguo,ZHAI Jinyuan,YANG Hongwu.Metallotectonics and Prospection of the Huaniushan Exhalogene Gold Silver Lead Zinc Deposit in Beishan, Gansu Province.Geotectonica et Metallogenia,2010.44(6):246.
[2]李强,韩润生,黄应才.易门狮子山铜矿床构造岩微量元素特征及构造地球化学异常模式.大地构造与成矿学,2011.35(1):149.
 LI Qiang,HAN Runsheng,HUANG Yingcai and LI De.Trace Elements Characteristics of the Tectonites and Tectonogeochemical Exploration Model for the Shizishan Copper Deposit in Yimen, Yunnan.Geotectonica et Metallogenia,2011.44(6):149.
[3]李强,王雷,毛建辉.易门狮子山铜矿流体包裹体研究.大地构造与成矿学,2013.37(1):057.
 LI Qiang,WANG Lei,MAO Jianhui.Research on the Fluid Inclusions of Shizishan Copper Deposit, Yunnan.Geotectonica et Metallogenia,2013.44(6):057.
[4]陈振宇,黄国龙,朱 捌.南岭地区花岗岩型铀矿的特征及其成矿专属性.大地构造与成矿学,2014.38(2):264.
 CHEN Zhenyu,HUANG Guolong,ZHU Ba.The Characteristics and Metallogenic Specialization of Granite-hosted Uranium Deposits in the Nanling Region.Geotectonica et Metallogenia,2014.44(6):264.
[5]陈 进,毛先成,刘占坤.基于随机森林算法的大尹格庄金矿床三维成矿预测.大地构造与成矿学,2020.44(2):231.doi:10.16539/j.ddgzyckx.2020.02.007
 CHEN Jin,MAO Xiancheng,LIU Zhankun and DENG Hao.Three-dimensional Metallogenic Prediction Based on Random Forest Classification Algorithm for the Dayingezhuang Gold Deposit.Geotectonica et Metallogenia,2020.44(6):231.doi:10.16539/j.ddgzyckx.2020.02.007

备注/Memo

备注/Memo:
收稿日期: 2019-11-05; 改回日期: 2020-03-22
项目资助: 国家自然科学基金项目(41202069)、校企合作项目(KKK0201721071)、云南省万人计划“青年拔尖”人才项目和云南省矿产资源预测评价工程实验室(2010)联合资助。
第一作者简介: 丁金金(1992-), 男, 硕士研究生, 矿产普查与勘探专业。Email: 1947153816@qq.com
通信作者: 王雷(1983-), 男, 博士, 副教授, 主要从事矿床学及找矿预测研究。Email: 120901163@qq.com
更新日期/Last Update: 2020-12-20