[1]杨 庚,王晓波.2020.川西龙门山逆冲带北段多断层同时逆冲几何学证据.大地构造与成矿学,44(6):1027-1026.doi:10.16539/j.ddgzyckx.2020.06.001
 YANG Geng and WANG Xiaobo.2020.Geometric Evidence for Synchronous Thrusting and Folding of the Northern Longmengshan Thrust-fold Belt, West China.Geotectonica et Metallogenia,44(6):1027-1026.doi:10.16539/j.ddgzyckx.2020.06.001
点击复制

川西龙门山逆冲带北段多断层同时逆冲几何学证据
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2020年44卷06期
页码:
1027-1026
栏目:
构造地质学
出版日期:
2020-12-20

文章信息/Info

Title:
Geometric Evidence for Synchronous Thrusting and Folding of the Northern Longmengshan Thrust-fold Belt, West China
文章编号:
1001-1552(2020)06-1027-019
作者:
杨 庚 王晓波
中国石油勘探开发研究院, 北京 100083
Author(s):
YANG Geng and WANG Xiaobo
Research Institute of Petroleum Exploration and Development, Beijing 100083, China
关键词:
后展式逆冲 无序逆冲 双重构造 同时逆冲 龙门山逆冲带
Keywords:
overstep thrust sequence out-of-sequence duplex synchronous thrust multiple-stage thrusting
分类号:
P542
DOI:
10.16539/j.ddgzyckx.2020.06.001
文献标志码:
A
摘要:
四川盆地西北部龙门山逆冲构造带北段逆冲构造变形较为复杂, 其构造变形始于中三叠世末, 持续到中生代末期, 新生代再次重新发生构造变形, 形成复杂的逆冲推覆构造带, 现今仍有活动。该构造带从西向东可划分出五个构造单元: 轿子顶推覆体、唐王寨推覆体、叠瓦断层系及断层相关褶皱带和前缘单斜构造带。本文基于中国石油最新油气勘探成果, 通过二维地震测网构造解释及钻井资料, 应用多断层同时逆冲概念建立了后展式多断层同时活动构造模式, 对龙门山逆冲带北缘进行详细构造解剖, 提出新解释方案, 认为: ①轿子顶异地推覆体之下与唐王寨逆冲推覆体后缘之间, 存在古生界叠置逆冲岩片组成的褶隆构造?背斜; ②唐王寨逆冲推覆体为异地推覆的大向形构造; ③唐王寨推覆体前缘发育多条向南东逆冲的叠瓦逆冲断层组成的叠瓦断层系, 该叠瓦断层系是由褶隆构造多个逆冲岩片中的逆冲断层向山前逆冲的前缘逆断层组成; ④矿山梁、天井山等背斜构造为复杂化的一断层扩展褶皱, 而且在褶皱前翼(东南翼)发育多条向南东逆冲的逆冲断层组成的一系列无序逆冲叠瓦断层; ⑤前缘单斜构造带之下为早侏罗世地层不整合覆盖的早期发育的隐伏逆冲构造, 野外观察和地震解释及地层之间不整合分析证实, 这些无序逆冲断层形成时间主要为早侏罗世之前。结合低温热年代?裂变径迹年龄数据, 证实龙门山逆冲构造带晚期重新活动时代为中新世晚期一直到第四纪。龙门山逆冲构造带北段多个逆冲断层同时活动模式不同于新逆冲断层向前陆方向扩展时, 旧断层不活动的模式。该模式展示由于深部有序后展式逆冲作用形成的双重逆冲构造发育期间, 同时活动的逆冲作用可在浅层地表形成一系列无序逆冲断层, 类似于叠瓦扇逆冲断层。总体上龙门山逆冲构造带形成时间从造山带向盆地逐渐变老, 但龙门山逆冲构造带多期构造就有可能导致深部多个逆冲断层垂向上叠置, 地表浅部形成飞来峰构造, 或者一系列叠瓦状无序逆冲断层。
Abstract:
The Longmenshan thrust-fold belt, which is located along the boundary between the Qinghai-Tibet Plateau and the South China platform, has experienced a long and complicated tectonic evolution since the end of Late Triassic. The Longmenshan thrust-fold belt consists of five tectonic units: the Jiaoziding nappe, the Tangwangzhai nappe, imbricated faults, and fault-related folds and monoclinal front from West to East. According to Boyer’s synchronous thrust model, the thrusts in the Longmenshan thrust-fold belt should be generally younger toward the foreland, which is not consistent with the 2D seismic reflection data, borehole logs, surface geologic observation of the study area. A fault-bend anticline consisting of the thrusted Paleozoic sequences is recognized to occur in-between the Jiaoziding and Tangwangzhai nappes. The Tangwangzhai nappe is allochthonous occurring as a syncline. In the front of the Tangwangzhai nappe there are several imbricated thrust faults of southeastern thrusting. The Kuangshanliang and the Tianjingshan are two complicated anticlines consisting of a series of imbricated thrust faults occurring at the crests and the southeastern limbs. The blind thrust faults and folds are unconformably overlain by the lower Jurassic sedimentary rocks. Combining with available geochronological results, it can be inferred that the crystalline massif of the Longmenshan thrust-fold belt has been strongly exhumed since the Miocene. Our outcrop observation and interpretation of seismic profiles results confirmed that most of the thrust faults and folds in the Longmenshan thrust-fold belt were formed during Mesozoic as was proposed previously, and were reactivated during the Cenozoic. Fold-and-thrust belts are conventionally believed to develop largely by break-forward propagation of thrust sheets, which means that the youngest and the most active thrust sheets lie in the front of the fold-and-thrust belt. However, the absence of significant active crustal shortening and shortening in the range front in the Longmenshan belt during the 2008 Wenchuan earthquake can be interpreted satisfactorily by the our synchronous thrust model. Unlike the Boyer’s synchronous thrust model of hinterland-to-foreland thrusting, this model assumes that the older thrusts can be re-activated as new thrusts propagated toward the foreland. Synchronous thrusting is compatible with the observations in the Longmenshan thrust-fold belt, and thus, a new model of simple foreland-to-hinterland thrusting or an overstep thrust sequence is proposed: klippes by folded thrust, ‘fold backlimb’ thrust faults, ‘fold-forelimb’ imbricated thrust faults with out-of-sequence, laterally propagating thrusting, multiple-stage thrusting at two structural levels, and ‘incidental’ reactivation of existing thrusts.

参考文献/References:

陈竹新, 贾东, 张惬, 魏国齐, 李本亮, 魏东涛, 沈扬. 2005. 龙门山前陆褶皱冲断带的平衡剖面分析. 地质学报, 79(1): 38-45.
戴建全. 2011. 龙门山冲断带构造变形期次及动力学成因. 西南石油大学学报(自然科学版), 33(2): 61-67.
邓起东, 陈社发, 赵小麟. 1994. 龙门山及其邻区的构造和地震活动及动力学. 地震地质, 16(4): 389-403.
杜思清, 乐光禹, 滕秉义. 1987. 关于填补构造——以马角坝地区多级序不协调叠瓦式构造为例. 成都地质学院学报, 14(3): 31-40.
黄汲清, 陈炳蔚. 1987. 中国及邻区特提斯海的演化. 北京: 地质出版社: 1-109.
贾东, 陈竹新, 贾承造, 魏国齐, 李本亮, 张框, 魏东涛, 沈扬. 2003. 龙门山前陆褶皱冲断带构造解析与川西前陆盆地的发育. 高校地质学报, 9(3): 403-410.
金文正, 汤良杰, 杨克明, 万桂梅, 吕志洲. 2008. 龙门山冲断带构造特征研究主要进展及存在问题探讨. 地质论评, 54(1): 37-46.
金文正, 汤良杰, 杨克明, 万桂梅, 吕志洲, 余一欣. 2007. 川西龙门山褶皱冲断带分带性变形特征. 地质学报, 81(8): 1073-1080.
李勇, 周荣军, Densmore A L and Ellis M A. 2006. 青藏高原东缘龙门山晚新生代走滑?逆冲作用的地貌标志. 第四纪研究, 26(1): 40-51.
李智武, 刘树根, 陈洪德, 刘顺, 郭兵, 田小彬. 2008. 龙门山冲断带分段?分带性构造格局及其差异变形特征. 成都理工大学学报(自然科学版), 35(4): 440-454.
林茂炳. 1994. 初论龙门山推覆构造带的基本结构样式. 成都地质学院学报, 21(3): 1-7.
林茂炳, 吴山. 1991. 龙门山推覆构造变形特征. 成都地质学院学报, 18(1): 46-54.
刘和甫, 梁慧社, 蔡立国, 沈飞. 1994. 川西龙门山冲断系构造样式与前陆盆地演化. 地质学报, 68(2): 100- 117.
罗良, 漆家福, 张明正. 2015. 四川盆地周缘冲断带构造演化及变形差异性研究. 地质论评, 61(3): 525-535.
四川地质矿产局. 1991. 四川省区域地质志. 北京: 地质出版社.
汤良杰, 杨克明, 金文正, 吕志洲, 余一欣. 2008. 龙门山冲断带多层次滑脱带与滑脱构造变形. 中国科学(D辑), 38(Z1): 30-40.
陶晓风. 1999. 龙门山南段推覆构造与前陆盆地演化. 成都理工学院学报, 26(1): 73-77.
王丽宁, 陈竹新, 李本亮, 雷永良, 闫淑玉. 2014. 龙门山冲断带北段构造解析及有利区带预测. 石油勘探与开发, 41(5): 539-545.
王毛毛, 贾东, 李一泉, 闫兵, 罗良, 李海滨, 武龙, 沈礼. 2010. 龙门山褶皱冲断带南北分段性与汶川地震的关系. 第四纪研究, 30(4): 711-720.
吴山, 林茂炳. 1991. 龙门山唐王寨滑覆构造分析. 成都地质学院学报, 18(1): 55-64.
吴山, 赵兵, 胡新伟. 1999. 再论龙门山飞来峰. 成都理工学院学报, 26(3): 221-224.
许志琴, 侯立玮, 王宗秀. 1992. 中国松潘?甘孜造山带的造山过程. 北京: 地质出版社: 1-190.
许志琴, 李化启, 侯立玮, 付小芳, 陈文, 曾令森, 蔡志慧, 陈方远. 2007. 青藏高原东缘龙门山?锦屏造山带的崛起: 大型拆离断层和挤出机制. 地质通报, 26(10): 1262-1276.
颜丹平, 李书兵, 曹文涛, 张维宸. 2010. 龙门山多层分层拆离地壳结构: 新构造变形与深部构造证据. 地学前缘, 17(5): 106-116.
杨跃明, 陈聪, 文龙, 陈骁, 粱瀚, 刘冉, 关旭, 罗冰, 谢忱. 2018. 四川盆地龙门山北段隐伏构造带特征及其油气勘探意义. 天然气工业, 38(8): 8-15.
于苏俊. 2000. 龙门山北段推覆构造的几何特征及应变分析. 矿物岩石, 20(4): 67-74.
Arne D, Worley B, Wilson C, Chen S F, Foster D, Luo Z L, Liu S G and Dirks P. 1997. Differential exhumation in response to episodic thrusting along the eastern margin of the Tibetan Plateau. Tectonophysics, 280(3-4): 239- 256. doi: 10.1016/S0040-1951(97)00040-1
Bally A W, Gordy P L and Stewart G A. 1966. Structure, seismic data, and orogenic evolution of southern Canadian Rocky Mountains. Bulletin of Canadian Petroleum Geology, 14: 337-381.
Boyer S E. 1992. Geometric evidence for synchronous thrusting in the southern Alberta and northwest Montana thrust belts // McClay. Thrust Tectonics. London: Chapman & Hall: 377-390.
Boyer S E and Elliot D. 1982. Thrust systems. AAPG Bulletin, 66: 1196-1230.
Burchfiel B C, Chen Z L, Liu Y P and Royden L H. 1995. Tectonics of the Longmen Shan and adjacent regions, central China. International Geology Review, 37(8): 661-735.
Burchfiel B C, Royden L H, van der Hilst R D, Hager B H, Chen Z, King R W, Li C, Lü J, Yao H and Kirby E. 2008. A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People’s Republic of China. GSA Today, 18: 4-11.
Butler R W H. 1982. The terminology of structures in thrust belts. Journal of Structural Geology, 4(3): 239-245.
Butler R W H. 1987. Thrust sequences. Journal of the Geological Society of London, 144: 619-634.
Chen S F, Wilson C J L, Deng Q D, Zhao X Z and Luo Z L. 1994. Active faulting and block movement associated with large earthquakes in the Min Shan and Longmen Mountains, northeastern Tibetan Plateau. Journal of Geophysical Research, 99: 24025-24038.
Chen Z, Burchfiel B C, Liu Y, King R W, Royden L H, Tang W, Wang E, Zhao J and Zhang X. 2000. Global positioning system measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation. Journal of Geophysical Research: Solid Earth, 105(B7): 16215-16227. http: //dx.doi.org/10.1029/ 2000JB900092
Clark M K, House M A, Royden L H, Whipple K X, Burchfiel B C, Zhang X and Tang W. 2005. Late Cenozoic uplift of southeastern Tibet. Geology, 33(6): 525-528.
Clark M K and Royden L H. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28(8): 703-706.
Dahlstrom C D A. 1969. Balanced cross sections. Canadian Journal of Earth Sciences, 6: 743-757.
Dahlstrom C D A. 1970. Structural geology in the eastern margin of the Canadian Rocky Mountains. Bulletin of Canadian Petroleum Geologists, 18: 332-406.
Deng B, Liu S G, Li Z W, Jansa L F, Liu S, Wang G Z and Sun W. 2013. Differential exhumation at eastern margin of the Tibetan Plateau, from apatite fission-track thermochronology. Tectonophysics, 591: 98-115.
Densmore A L, Ellis M A, Li Y, Zhou R J, Hancock G S and Richardson N. 2007. Active tectonics of the Beichang and Pengguan faults at the eastern margin of the Tibetan Plateau. Tectonics, 80(8): 113-127. doi: 10.1029/ 2006TC001987
Godard V, Pik R, Lavé J, Cattin R, Tibari B, de Sigoyer J, Pubellier M and Zhu J. 2009. Late Cenozoic evolution of the central Longmen Shan (Eastern Tibet), insight from (U-Th)/He thermochronometry. Tectonics, 28(5), TC5009. doi: 10.1029/2008TC002407
Guo X Y, Gao R, Keller G R, Xu X, Wang H Y and Li W H. 2013. Imaging the crustal structure beneath the eastern Tibetan Plateau and implications for the uplift of the Longmen Shan range. Earth and Planetary Science Letters, 379(5): 72-80.
Harrowfield M J and Wilson C J L. 2005. Indosinian deformation of the Songpan Ganze Fold Belt, northeast Tibetan Plateau. Journal of Structural Geology, 27: 101-117. doi: 10.1016/j.jsg.2004.06.010
Hubard J and Shaw J H. 2009. Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan (M=7.9) earthquake. Nature, 458: 194-197.
Hubbard J, Shaw J H and Klinger Y. 2010. Structural setting of the 2008 Mw 7.9 Wenchuan, China, earthquake. Bulletin of the Seismological Society of America, 100(5B): 2713-2735. doi: 10.1785/0120090341
Jia D, Li Y Q, Lin A M, Wang M M, Chen W, Wu X J, Ren Z K, Zhao Y and Luo L. 2010. Structural model of 2008 Mw 7.9 Wenchuan earthquake in the rejuvenated Longmen Shan thrust belt, China. Tectonophysics, 491: 174-184. doi: 10.1016/j.tecto.2009.08.040
Jia D, Wei G Q, Chen Z X, Li B L, Zeng Q and Yang G. 2006. Longmen Shan fold-thrust belt and its relation to the western Sichuan Basin in central China: New insights from hydrocarbon exploration. AAPG Bulletin, 90: 1425-1447. doi: 10.1306/03230605076
King R W, Shen F, Burchfiel B C, Royden L H, Wang E, Chen Z L, Liu Y P, Zhang X Y, Zhao J X and Li Y L. 1997. Geodetic measurement of crustal motion in southwest China. Geology, 25(2): 179-182.
Kirby E, Reiners P W, Krol M A, Whipple K X, Hodges K V, Farley K A, Tang W Q and Chen Z L. 2002. Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: Inferences from 40Ar/39Ar and (U-Th)/He thermochronology. Tectonics, 21: 1-20. http://dx.doi. org/10.1029/2000TC001246
Li Y Q, Lu R Q, He D F, Wang X S, LiuY D, Xu X W, Tan X B and Cai M G. 2019. Transformation of coseismic faults in the northern Longmenshan tectonic belt, eastern Tibetan Plateau: Implications for potential earthquakes and seismic risks. Journal of Asian Earth Sciences, 177: 66-75. https://doi.org/10.1016/j.jseaes. 2019.03.013
Li Z W, Liu S G, Chen H D, Deng B, Hou M C, Wu W H and Cao J X. 2012. Spatial variation in Meso-Cenozoic exhumation history of the Longmen Shan thrust belt (eastern Tibetan Plateau) and the adjacent western Sichuan basin: Constraints from fission track thermo?chronology. Journal of Asian Earth Sciences, 47: 185- 203.
Liu-Zeng J, Zhang Z, Wen L, Tapponnier P, Sun J, Xing X, Hu G, Xu Q, Zeng L, Ding L, Ji C, Hudnut K W and van der Woerd J. 2009. Co-seismic ruptures of the 12 May 2008, Ms 8.0 Wenchuan earthquake, Sichuan: East-west crustal shortening on oblique, parallel thrusts along the eastern edge of Tibet. Earth and Planetary Science Letters, 286: 355-370.
Lu R Q, He D F, Suppe J, Ma Y S, Liu B and Chen Y G. 2012. Along-strike variation of the frontal zone structural geometry of the Central Longmen Shan thrust belt revealed by seismic reflection profiles. Tectono?physics, 580(10): 178-191.
Mattaner M, Matte P H, Malavieille J, Tapponnier P, Maluski H, Xu Z Q, Lu Y L and Tang Y Q. 1985. Tectonics of the Qinling belt: Build up and evolution of eastern Asia. Nature, 317: 496-500.
Meng Q R and Zhang G W. 2000. Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics, 323: 183-196. doi: 10.1016/S0040- 1951(00)00106-2.
Milici R C. 1975. Structural patterns in the southern Appalachians: Evidence from for a gravity slide mechanism for the Alleghanian deformation. Geological Society of American Bulletin, 86(4): 1316-1320.
Molnar P and Tapponnier P. 1975. Cenozoic tectonics of Asia: Effects on a continental collision. Science, 189: 419-426.
Morley C K. 1988. Out of sequence thrusts. Tectonics, 7(3): 539-561.
Morley C K. 1992. Tectonic and sedimentary evidence for synchronous and out-of-sequence thrusting, Larache- Acilah area, western Moroccan Rif. Journal of the Geological Society, 149: 39-49.
Mudge M R. 1970. Origin of the Disturbed Belt in northwestern Montana. Geological Society of American Bulletin, 81(2): 377-392.
Ratschbacher L, Hacker B R, Calvert A, Webb L E, Grimmer J C, McWilliams M O, Ireland T, Dong SW and Hu J M. 2003. Tectonics of the Qinling (Central China): Tectonostratigraphy, geochronology, and deformation history. Tectonophysics, 366: 1-53. doi: 10.1016/S0040- 1951(03)00053-2.
Richardson N J, Densmore A L, Seward D, Fowler A, Wipf M, Ellis M A, Li Y and Zhang Y. 2008. Extraordinary denudation in the Sichuan Basin: Insights from low temperature thermochronology adjacent to the eastern margin of the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 113(B4), B04409. doi: 10.1029/ 2006JB004739
Roeder D. 1988. Andean-age structure of Eastern Cordillera (Province of La Paz, Bolivia). Tectonics, 5: 23-39.
Royse F, Warner M A and Resse D L. 1975. Thrust-belt geometry and related stratigraphic problems, Wyoming, Idaho, and Utah // Bolyard D W. Symposium on Deep Drilling Frontiers in the Central Rocky Mountains. Rocky Mountain Association Geologists, Denver: 41-54.
Schwab M, Ratschbacher L, Siebel W, McWilliams M, Minaev V, Lutkov V, Chen F, Stanek K, Nelson B, Frisch W and Wooden J L. 2004. Assembly of the Pamirs: Age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet. Tectonics, 23, TC4002. http: //dx.doi. org/10.1029/2003TC001583.
Suppe J. 1983. Geometry and kinematics of fault-bend folding. American Journal Science, 283: 684-721.
Suppe J and Medwedeff D A. 1990. Geometry and kinematics of fault-propagation folding. Eclogae Geologica Helvetiae, 83: 409-454.
Tan X B, Xu X W, Lee Y H, Lu R Q, Liu Y D, Xu C, Li K, Yu G H and Kang W J. 2017. Late Cenozoic thrusting of major faults along the central segment of Longmen Shan, eastern Tibet: Evidence from low-temperature thermochronology. Tectonophysics, 712: 145-155.
Tapponnier P, Peltzer G, LeDain A Y, Armijol R and Cobbold P R. 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12): 611-616.
Tapponnier P, Xu Z Q, Roger F, Meyer B, Arnaud N, Wittlinger G and Yang J S. 2001. Oblique stepwise rise and growth of the Tibet plateau. Science, 294: 1671- 1677.
Wang E Q, Kirby E, Furlong K P, Soest M van, Xu G, Shi X, Kamp P J J and Hodges K V. 2012. Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nature Geoscience, 5(9): 640-645. doi: 10.1038/ NGEO1538.
Wang Q, Niu F L, Gao Y and Chen Y T. 2016. Crustal structure and deformation beneath the NE margin of the Tibetan plateau constrained by teleseismic receiver function data. Geophysical Journal International, 204: 167-179.
Wang X, Chen L, Ai Y S, Xu T, Jiang M M, Ling Y and Gao Y F. 2018. Crustal structure and deformation beneath eastern and northeastern Tibet revealed by P-wave receiver functions. Earth and Planetary Science Letters, 497: 69-79.
Wu C, Li H B, Leloup P H, Yu C Q, Si J L, Liu D L, Pan J W, Chevalier M L and Gong Z. 2014. High-angle fault responsible for the surface ruptures along the northern segment of the Wenchuan Earthquake Fault Zone: Evidence from the latest seismic reflection profiles. Tectonophysics, 619-620: 159-170. http://dx.doi.org/ 10.1016/j.tecto.2013.09.015
Xue S, Bai D H, Chen Y, Ma X B, Chen L, Li X and Yan Y L. 2019. Contrasting crustal deformation mechanisms in the Longmenshan and West Qinling orogenic belts, NE Tibet, revealed by magnetotelluric data. Journal of Asian Earth Sciences, 176: 120-128.
Yin A. 2010. A special issue on the great 12 May 2008 Wenchuan earthquake (Mw7.9): Observations and unanswered questions. Tectonophysics, 491(1-4): 1-9. https://doi.org/10.1016/j.tecto.2010.05.019

备注/Memo

备注/Memo:
收稿日期: 2019-07-23; 改回日期: 2019-11-15
项目资助: 国家重大专项课题(2016ZX05003-001)和中国石油科技部重大专项(2016E-0601、2019B-0503)联合资助。
第一作者简介: 杨庚(1965-), 男, 高级工程师, 从事构造地质学及石油地质研究工作。Email: yanggeng@petrochina.com.cn
更新日期/Last Update: 2020-12-20