[1]吴 凯,张丽鹏,江小燕.2020.云南铺台山花岗斑岩的地球化学特征、锆石SHRIMP U-Pb年龄及其地质意义.大地构造与成矿学,44(5):986-997.doi:10.16539/j.ddgzyckx.2020.05.011
 WU Kai,ZHANG Lipeng,JIANG Xiaoyan.2020.Geochemical Characteristics and SHRIMP Zircon U-Pb Age of the Putaishan Granite Porphyry and Their Geological Implications.Geotectonica et Metallogenia,44(5):986-997.doi:10.16539/j.ddgzyckx.2020.05.011
点击复制

云南铺台山花岗斑岩的地球化学特征、锆石SHRIMP U-Pb年龄及其地质意义
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2020年44卷05期
页码:
986-997
栏目:
岩石大地构造与地球化学
出版日期:
2020-10-20

文章信息/Info

Title:
Geochemical Characteristics and SHRIMP Zircon U-Pb Age of the Putaishan Granite Porphyry and Their Geological Implications
文章编号:
1001-1552(2020)05-0986-012
作者:
吴 凯1 张丽鹏2.3 江小燕4 张玉泉4 孙卫东2.3.5 袁洪林1
1.西北大学 地质学系, 大陆动力学国家重点实验室, 陕西 西安 710069; 2.青岛海洋科学与技术国家实验室 海洋地质过程与环境功能实验室, 山东 青岛 266061; 3.中国科学院 海洋研究所 深海研究中心, 山东 青岛 266071; 4.中国科学院 广州地球化学研究所 矿物学与成矿学重点实验室, 广东 广州 510640; 5.中国科学院 青藏高原地球科学卓越创新中心, 北京 100101
Author(s):
WU Kai1 ZHANG Lipeng2.3 JIANG Xiaoyan4 ZHANG Yuquan4 SUN Weidong2.3.5 and YUAN Honglin1
1. State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, Shanxi, China; 2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, Shandong, China; 3. Center of Deep Sea Research, Institute of Oceanography, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; 4. CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China; 5. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China
关键词:
碱性侵入岩 铺台山 锆石SHRIMP U-Pb年龄 哀牢山-金沙江碱性岩带
Keywords:
alkaline intrusion Putaishan zircon SHRIMP U-Pb Ailaoshan-Jinshajiang fault
分类号:
P67
DOI:
10.16539/j.ddgzyckx.2020.05.011
文献标志码:
A
摘要:
云南省鹤庆县铺台山花岗斑岩是哀牢山-金沙江碱性岩带北衙-六合地区的一个钾质碱性侵入体。本文对该岩体进行了全岩主、微量元素和锆石SHRIMP U-Pb年龄分析。结果显示铺台山花岗斑岩显示出高钾、富碱的特征, 同时具有低全岩Mg#值(0.20~0.32), 低母岩浆温度和岩浆氧逸度, 以及较浅的岩浆起源深度。锆石定年结果为~34 Ma, 指示岩体侵位时代为始新世。结合前人对该区域碱性侵入岩Pb同位素研究结果和花岗斑岩锆石核部年龄(218~541 Ma), 认为哀牢山-金沙江地区发生强烈剪切-走滑的过程中, 哀牢山-金沙江新生代富碱侵入岩带中的氧化性富钾斑岩体可能与古俯冲带下被扰动的碳酸盐化地幔橄榄岩的部分熔融有关; 同时印度板块和欧亚板块碰撞造成哀牢山-金沙江地区的强烈伸展和剪切作用诱发地幔上涌, 地幔上涌带来的热量使得深部地壳脱水并产生还原性流体, 铺台山花岗斑岩可能就是富钾地壳物质在这些还原性流体的参与下发生减压熔融的产物。
Abstract:
The Putaishan granite porphyry is an alkali-rich intrusion in Heqin, Yunnan province. In this study, we conducted whole-rock major and trace element analyses and zircon SHRIMP U-Pb dating of the Putaishan granite porphyry. The Putaishan granite porphyry has high K2O and Na2O+K2O contents, low Mg# (0.20-0.32), low magma temperature, oxygen fugacity and shallow melting depth. Zircon SHRIMP U-Pb dating yielded a crystallization age of ca.34 Ma, indicating that the Putaishan intrusion was emplaced in the Eocene epoch. Combined the obtained ages (218-541 Ma) of zircon cores and previous Pb isotope results on alkali intrusions in this region, we propose that the Cenozoic oxidized alkali-rich intrusions in the Ailaoshan-Jinshajiang belt are possibly resulted from partial melting of carbonated metasomatized mantle peridotite beneath the ancient subduction zone during the divergent strike-slip movements of the Ailaoshan-Jinshajiang faults. Meanwhile, the extension and shearing caused by the collision between the India and the Eura-Asia block in the Ailaoshan-Jinshajiang region triggered the upwelled mantle that supplied heat for dehydration of the deep crust which produced crust-derived reduced fluids, and the decompression melting of the lower crustal materials with the aid of such reductive fluids resulted in the formation of the Putaishan granite porphyry.

参考文献/References:

邓军. 2013. 构造动力体制与复合造山作用——兼论三江复合造山带时空演化. 岩石学报, 29(4): 1099-1114.
邓万明, 黄萱, 钟大赉. 1998a. 滇西新生代富碱斑岩的岩石特征与成因. 地质科学, 33(4): 412-425.
邓万明, 黄萱, 钟大赉. 1998b. 滇西金沙江带北段的富碱斑岩及其与板内变形的关系. 中国科学: 地球科学, 28(2): 111-117.
丁慧霞, 侯青叶, 曹铁宁, 刘东盛, 黄丁伶, 王新宇. 2012. 滇西银厂坪花岗斑岩岩体的地球化学及年代学特征. 地学前缘, 19(3): 240-251.
段友强, 张正伟, 杨晓勇. 2015. 华北克拉通南缘张士英岩体大陆动力学背景: 来自地球化学、锆石U-Pb年龄和Hf同位素的证据. 岩石学报, 31(7): 1995-2008.
葛良胜. 2007. 滇西北富碱岩浆活动与金多金属成矿系统. 北京: 中国地质大学(北京)博士学位论文: 1-96.
侯增谦, 杨岳清, 曲晓明, 黄典豪, 吕庆田, 王海平, 余金杰, 唐绍华. 2004. 三江地区义敦岛弧造山带演化和成矿系统. 地质学报, 78(1): 109-120.
梁华英, 莫济海, 孙卫东, 张玉泉, 曾提, 胡光黔. 2009. 玉龙铜矿带马拉松多斑岩体岩石学及成岩成矿系统年代学分析. 岩石学报, 25(2): 385-392.
梁华英, 谢应雯, 张玉泉. 2004. 富钾碱性岩体形成演化对铜矿成矿制约——以马厂菁铜矿为例. 自然科学进展, 14(1): 116-120.
林清茶. 2007. 哀牢山-金沙江钾质碱性岩带地球化学特征及构造意义. 广州: 中国科学院广州地球化学研究所博士学位论文: 1-101.
刘敦一, 简平, 张旗, 张福勤, 石玉若, 施光海, 张光海, 张履桥, 陶华. 2003. 内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年: 早古生代洋壳消减的证据. 地质学报, 77(3): 317-327.
刘颖, 刘海臣, 李献华. 1996. 用ICP-MS准确测定岩石样品中的40余种微量元素. 地球化学, 25(6): 552-558.
吕伯西, 王增, 张能德. 1993. 三江地区花岗岩类及其成矿专属性. 北京: 地质出版: 1-328.
莫宣学, 邓晋福, 董方浏, 喻学惠, 王勇, 周肃, 杨伟光. 2001. 西南三江造山带火山岩-构造组合及其意义. 高校地质学报, 7(2): 121-138.
邱家骧, 李昌年, 喻学惠, 曾广策, 王顺金. 1993. 秦巴碱性岩. 北京: 地质出版社.
涂光炽, 张玉泉, 王中刚. 1982. 西藏南部花岗岩类地球化学. 北京: 科学出版社.
涂光炽, 张玉泉, 赵振华. 1984. 华南两个富碱侵入岩带的初步研究. 花岗岩地质与成矿关系. 南京: 江苏科学技术出版社.
王登红. 2001. 地幔柱的概念、分类、演化与大规模成矿——对中国西南部的探讨. 地学前缘, 8(3): 67-72.
吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238.
熊小林, 刘星成, 朱志敏, 李元, 肖万生, 宋茂双, 张生, 吴金花. 2011. 华北埃达克质岩与克拉通破坏: 实验岩石学和地球化学依据. 中国科学: 地球科学, 41(5): 75-88.
袁忠信, 白鸽. 1997. 中国碱性侵入岩的空间分布及有关金属矿床. 地质与勘探, 33(1): 42-48.
云南省地矿局区域地质测量大队. 1966. 中华人民共和国矿产图——鹤庆幅(G-47-XVII).
曾广策, 邱家骧. 1996. 碱性岩的概念及其分类命名综述. 地质科技情报, 15(1): 31-37.
张超, 戚学祥, 唐冠宗, 赵宇浩, 吉风宝. 2014. 滇西哀牢山构造带长安铜钼金矿集区碱性斑岩岩石地球化学、锆石U-Pb定年及其对成矿作用的约束. 岩石学报, 30(8): 2204-2216.
张玉泉, 谢应雯. 1997. 哀牢山-金沙江富碱侵入岩年代学和Sr、Nd同位素组成. 中国科学(D辑), 27(4): 289- 293.
张玉泉, 谢应雯, 涂光炽. 1987. 哀牢山-金沙江富碱侵入岩及其与裂谷构造关系初步研究. 岩石学报, 3(1): 19-28.
张玉泉, 钟孙霖. 1997. 藏东玉龙铜矿带含矿斑岩演化与成矿关系. 西藏地质, (2): 74-86.
Boehnke P, Watson E B, Trail D, Harrison T M and Schmitt A K. 2013. Zircon saturation re-revisited. Chemical Geology, 351: 324-334.
Chappell B W and White A J R. 1992. I- and S-type granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2): 1-26.
Chappell B W and White A J R. 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48(4): 489-499.
Collins W J, Beams S D, White A J R and Chappell B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contribu?tions to Minerology and Petrology, 80(2): 189-200.
Creaser R A, Price R C and Wormald R J. 1991. A-type granites revisited: Assessment of a residual-source model. Geology, 19: 163-166.
Dall’Agnol R and Oliveira D C. 2007. Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites. Lithos, 93(3-4): 215-233
Fitton J G. 1987. The Cameroon line, West Africa: A comparison between oceanic and continental alkaline volcanism // Fitton J G and Upton B G J. Alkaline Igneous Rocks. Geological Society, London, Special Publication, 30: 273-291.
Foley S F and Fischer T P. 2017. An essential role for continental rifts and lithosphere in the deep carbon cycle. Nature Geoscience, 10(12): 897-902.
Frost B R and Frost C D. 2008. A geochemical classification for feldspathic igneous rocks. Journal of Petrology, 49(11): 1955-1969.
Frost B R and Lindsley D H. 1992. Equilibria among Fe-Ti oxides, pyroxenes, olivine, and quartz: Part Ⅱ. Application. American Mineralogist, 77: 1004.
Gao X Q, He W Y, Gao X, Bao X S and Yang Z. 2017. Constraints of magmatic oxidation state on minerali?zation in the Beiya alkali-rich porphyry gold deposit, western Yunnan, China. Solid Earth Sciences, 2(3): 65-78.
He W Y, Mo X X, He Z H, White N C, Chen J B, Yang K H, Wang R, Yu X H, Dong G C and Huang X F. 2015. The geology and mineralogy of the Beiya skarn gold deposit in Yunnan, southwest China. Economic Geology, 110(6): 1625-1641.
Hofmann A W. 2003. Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements // Holland H D and Turekian K K. Treatise on Geochemistry, 2: 61-101.
Huang W T, Liang H Y, Wu J, Zou Y Q and Zhang J. 2017. Formation of porphyry Mo deposit in a deep fault zone, example from the Dabaoshan porphyry Mo deposit in northern Guangdong, South China. Ore Geology Reviews, 81(2): 940-952.
Jiang X Y, Ling M X, Wu K, Zhang Z K, Sun W D, Sui Q L and Xia X P. 2018. Insights into the origin of coexisting A1- and A2-type granites: Implications from zircon Hf-O isotopes of the Huayuangong intrusion in the Lower Yangtze River Belt, eastern China. Lithos, 318- 319: 230-243.
Leloup P H, Lacassin R, Tapponnier P, Scharer U, Zhong D L, Liu X H, Zhang L S, Ji S C and Trinh P T. 1995. The Ailao Shan-Red River shear zone (Yunnan, China), tertiary transform boundary of Indo-China. Tectonophysics, 251(1-4): 13-84.
Miller C F, McDowell S M and Mapes R W. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31(6): 529-532.
Patin?o Douce A E and Beard J S. 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. Journal of Petrology, 36(3): 707-738.
Patriat P and Achache J. 1984. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 311(5987): 615- 621.
Peacock M A. 1931. Classification of igneous rock series. The Journal of Geology, 39: 54-67.
Rapp R P, Shimize N, Norman M D and Applegate G S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356.
Rapp R P and Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891-931.
Rittmann A. 1957. On the serial character of igneous rocks. Egyptian Journal of Geology, 1: 23-48.
Rittmann A. 1962. Volcanoes and Their Activity. New York: Interscience Publishers.
Rudnick R L and Gao S. 2003. Composition of the continental crust // Holland H D and Turekian K K. Treatise on Geochemistry, 3: 1-64.
Shand S J. 1922. The problem of the alkaline rocks. Proceeding of the Geological Society of South Africa, 25: 19-33.
Sun S S and McDonough W. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42: 313-345.
Sun S J, Sun W D, Zhang L P, Zhang R Q, Li C Y, Zhang H, Hu Y B and Zhang Z R. 2015. Zircon U-Pb ages and geochemical characteristics of granitoids in Nagqu area, Tibet. Lithos, 231: 92-102.
Sun W D, Hu Y H, Kamenetsky V S, Eggins S M, Chen M and Arculus R J. 2008. Constancy of Nb/U in the mantle revisited. Geochimica et Cosmochimica Acta, 72(14): 3542-3549.
Tapponnier P, Lacassin R, Leloup P H, Shharer U, Zhong D L, Wu H X, Liu X H, Ji S C, Zhang L S and Zhong J Y. 1990. The Ailaoshan-Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China. Nature, 343: 431-437.
Tran M D, Liu J L, Nguyen Q L, Chen Y, Tang Y, Song Z J, Zhang Z C and Zhao Z D. 2014. Cenozoic high-K alkaline magmatism and associated Cu-Mo-Au mineralization in the Jinping-Fan Si Pan region, southeastern Ailaoshan-Red River shear zone, southwestern China-northwestern Vietnam. Journal of Asian Earth Sciences, 79: 858- 872.
Watson E B and Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295-304.
Whalen J B, Currie K L and Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95: 407-419.
Wu K, Ling M X, Hu Y B, Guo J, Jiang X Y, Sun S J, Liang H Y, Liu X and Sun W D. 2018. Melt-fluxed melting of the heterogeneously mixed lower arc crust: A case study from the Qinling Orogenic Belt, Central China. Geochemistry, Geophysics, Geosystems, 19(6): 1767- 1788.
Xu L, Bi X W, Hu R Z, Zhang X C, Su W C, Qu W J, Hu Z C and Yang Y Y. 2012. Relationships between porphyry Cu-Mo mineralization in the Jinshajiang-Red River metallogenic belt and tectonic activity: Constraints from zircon U-Pb and molybdenite Re-Os geochronology. Ore Geology Reviews, 48: 460-473.
Yang W B, Niu H C, Hollings P, Zurevinski S E and Li N B. 2017. The role of recycled oceanic crust in the generation of alkaline A-type granites. Journal of Geophysical Research: Solid Earth, 122(12): 9775- 9783.
Yang W B, Niu H C, Shan Q, Chen H Y, Hollings P, Li N B, Yan S and Zartman R E. 2014. Geochemistry of primary-carbonate bearing K-rich igneous rocks in the Awulale Mountains, western Tianshan: Implications for carbon-recycling in subduction zone. Geochimica et Cosmochimica Acta, 143: 143-164.
Zhang G L, Chen L H, Jackson M G and Hofmann A W. 2017. Evolution of carbonated melt to alkali basalt in the South China Sea. Nature Geoscience, 10(3): 229-235.
Zhang H, Li C Y, Yang X Y, Sun Y L, Deng J H, Liang H Y and Sun W D. 2014. Shapinggou: The largest climax-type porphyry Mo deposit in China. International Geology Review, 56(3): 313-331.
Zhang L P, Zhang R Q, Wu K, Chen Y X, Li C Y, Hu Y B, He J J, Liang J L and Sun W D. 2018. Late Cretaceous granitic magmatism and mineralization in the Yingwuling W-Sn deposit, South China: Constraints from zircon and cassiterite U-Pb geochronology and whole-rock geochemistry. Ore Geology Reviews, 96: 115-129.

备注/Memo

备注/Memo:
收稿日期: 2018-11-20; 改回日期: 2020-03-15
项目资助: 国家自然科学基金青年基金项目(41903009)和第64批中国博士后科学基金(2018M643711)联合资助。
第一作者简介: 吴凯(1990-), 男, 博士后, 从事元素和同位素地球化学的研究工作。Email: wukaitwo@163.com
更新日期/Last Update: 2020-10-20