[1]苏 晔,李光来,唐 傲.2020.赣中聚源钨矿区花岗斑岩锆石U-Pb年代学、岩石地球化学和Sr-Nd-Hf同位素特征及成因探讨.大地构造与成矿学,44(5):971-985.doi:10.16539/j.ddgzyckx.2020.05.010
 SU Ye,LI Guanglai,TANG Ao.2020.Zircon U-Pb Age, Petrochemistry, Sr-Nd-Hf Isotopic Features and Genesis of Granite Porphyry from Juyuan Tungsten Deposit in Central Jiangxi Province.Geotectonica et Metallogenia,44(5):971-985.doi:10.16539/j.ddgzyckx.2020.05.010
点击复制

赣中聚源钨矿区花岗斑岩锆石U-Pb年代学、岩石地球化学和Sr-Nd-Hf同位素特征及成因探讨
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2020年44卷05期
页码:
971-985
栏目:
岩石大地构造与地球化学
出版日期:
2020-10-20

文章信息/Info

Title:
Zircon U-Pb Age, Petrochemistry, Sr-Nd-Hf Isotopic Features and Genesis of Granite Porphyry from Juyuan Tungsten Deposit in Central Jiangxi Province
文章编号:
1001-1552(2020)05-0971-015
作者:
苏 晔1.2 李光来1* 唐 傲1 李成祥1 韦星林3 尹晓燕1
1.东华理工大学 放射性地质与勘探技术国防重点学科实验室, 江西 南昌 330013; 2.甘肃省地质环境监测院, 甘肃 兰州 730050; 3.江西省核工业地质局, 江西 南昌 330046
Author(s):
SU Ye1.2 LI Guanglai1* TANG Ao1 LI Chengxiang1 WEI Xinglin3 and YIN Xiaoyan1
1. Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang 330046, Jiangxi, China; 2. Environment Monitoring Institute of Gansu Province, Lanzhou 730050, Gansu, China; 3. Jinagxi Nuclear Industry Geological Bureau, Nanchang 330046, Jiangxi, China
关键词:
锆石U-Pb定年 岩石地球化学 Sr-Nd-Hf同位素 花岗斑岩 赣中
Keywords:
zircon U-Pb age petrological geochemistry Sr-Nd-Hf isotopic granite porphyry central Jiangxi province
分类号:
P581.121; P597.3
DOI:
10.16539/j.ddgzyckx.2020.05.010
文献标志码:
A
摘要:
聚源钨矿是赣中地区的一个大型石英脉型白钨矿床。通过对与矿床密切相关的花岗斑岩开展锆石U-Pb年代学、岩石地球化学以及Sr-Nd-Hf同位素研究, 结果表明, 其形成年龄为152.4±1.0 Ma。花岗斑岩具有高硅(SiO2=75.08%~ 76.11%), 富碱(K2O+Na2O=7.82%~8.70%), 富钾(K2O=4.57%~5.39%), 强过铝质(A/CNK=1.05~1.20, 均值>1.1)的特征; 富集Rb、Th、U、K、Sm等元素, 强烈亏损Ba、Sr、P、Ti、Zr和Eu等元素, 与S型花岗岩特征类似; 轻稀土元素富集, 重稀土元素亏损((La/Yb)N=14.07~15.89), Eu强烈亏损(δEu=0.04~0.11)。岩石的ISr值介于0.709702~0.717566之间, 平均为0.714717, εNd(t)值为?8.8~?8.1, 锆石εHf(t)值在?11.9~?9.3之间, 两阶段Nd模式年龄和两阶段Hf模式年龄分别为1.60~1.66 Ga、1.78~1.95 Ga, 这些特征表明聚源花岗斑岩岩浆源区主要为古元古代地壳物质。岩体形成与燕山早期华南地区岩石圈伸展-减薄有关。
Abstract:
The Juyuan tungsten deposit, located in the central Jiangxi province, is a large quartz vein type scheelite deposit. Geochronological, geochemical and Sr-Nd-Hf isotope geochemical investigations were carried out on the Juyuan granite porphyry which is believed to be closely related to the formation of the Juyuan tungsten deposit. LA-ICP-MS zircon U-Pb dating results showed that the Juyuan granite porphyry was formed at 152.4±1.0 Ma. The granite porphyry is a S-type granite. It has high contents of SiO2 (SiO2=75.08%-76.11%), Alk (K2O+Na2O=7.82%-8.70%), K2O (K2O=4.57%-5.39%) and high ratios of A/CNK (A/CNK=1.05-1.20, mean value>1.1). The granite porphyry is enriched in Rb, U, Th, K, Sm and a strong negative anomalies of P, Ti, Zr, Ba, Sr and Eu, which is typical for S type granite. The granite porphyry is also enriched in LREE and depleted in HREE, and has an obvious negative Eu anomalies (δEu=0.04-0.11). The granite porphyry has initial 87Sr/86Sr values varying in range of 0.709702 to 0.717566, with an average of 0.714717, εNd(t) values of ?8.8 to ?8.1, and zircon εHf(t) values of ?11.9 to ?9.3, Nd and Hf model ages of 1.60-1.66 Ga and 1.78-1.95 Ga, these characteristics indicate that the granite porphyry was originated from partial melting of Paleoproterozoic crustal rocks. The granite porphyry is formed in lithospheric extending-thinning environment during the Early Yanshanian in South China.

参考文献/References:

陈骏, 陆建军, 陈卫峰, 王汝成, 马东升, 朱金初, 张文兰, 季峻峰. 2008. 南岭地区钨锡铌钽花岗岩及其成矿作用. 高校地质学报, 14(4): 459-473.
陈毓川, 裴荣富, 张宏良. 1989. 南岭地区与中生代花岗岩类有关的有色及稀有金属矿床地质. 中国地质科学院院报, 20: 79-85.
方贵聪, 陈毓川, 陈郑辉, 曾载淋, 张永忠, 童启荃. 2014. 赣南盘古山钨矿床锆石U-Pb和辉钼矿Re-Os年龄及其意义. 地球学报, 35(1), 76-84.
何发林, 刘春生, 周先军. 2015. 江西省崇仁县聚源钨矿资源储量核实报告.
胡瑞忠, 毛景文, 范蔚茗, 华仁民, 毕献武, 钟宏, 宋谢炎, 陶琰. 2010. 华南陆块陆内成矿作用的一些科学问题. 地学前缘, 17(2): 13-26.
花友仁. 1984. 华南地区的地壳演化和钨矿床的形成. 地质与勘探, (5): 3-13.
华仁民, 陈培荣, 张文兰, 陆建军. 2005a. 论华南地区中生代3次大规模成矿作用. 矿床地质, 24(2): 99-107.
华仁民, 陈培荣, 张文兰, 姚军明, 林锦富, 张展适, 顾晟彦. 2005b. 南岭与中生代花岗岩类有关的成矿作用及其大地构造背景. 高校地质学报, 79(3): 601.
华仁民, 李光来, 张文兰, 胡东泉, 陈培荣, 陈卫锋, 王旭东. 2010. 华南钨和锡大规模成矿作用的差异及其原因初探. 矿床地质, 29(1): 9-23.
华仁民, 毛景文. 1999. 试论中国东部中生代成矿大爆发. 矿床地质, 18(4): 300-308.
华仁民, 张文兰, 陈培荣, 王汝成. 2003. 赣南大吉山与漂塘花岗岩及有关成矿作用特征对比. 高校地质学报, 9(4): 609-619.
蒋国豪. 2004. 氟、氯对热液钨、铜成矿的制约——以江西德兴铜矿、大吉山钨矿为例. 贵阳: 中国科学院地球化学研究所博士学位论文: 1-100.
蒋少涌, 赵葵东, 姜耀辉, 戴宝章. 2008. 十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及成因讨论. 高校地质学报, 14(4): 496-509.
李光来, 华仁民, 韦星林, 王定生, 黄小娥, 周龙全. 2013. 赣南铁山垅含钨花岗岩的岩石地球化学特征. 矿物学报, 33(S2): 16-17.
李岩, 潘小菲, 赵苗, 陈国华, 张天福, 刘茜, 张诚. 2014. 景德镇朱溪钨(铜)矿床花岗斑岩的锆石U-Pb年龄、地球化学特征及其与成矿关系探讨. 地质论评, 60(3): 693-708.
刘义茂, 戴橦谟, 卢焕章, 胥友志, 王昌烈, 康卫清. 1997. 千里山花岗岩成岩成矿的Ar-Ar和Sm-Nd同位素年龄. 中国科学(D辑), 27(5): 425-430.
刘颖. 2013. 江西省玉华山地区紫云山岩体年代学、地球化学特征及地质意义. 抚州: 东华理工大学硕士学位论文.
马东升. 2009. 钨的地球化学研究进展. 高校地质学报, 15(1): 19-34.
毛景文, 陈懋弘, 袁顺达, 郭春丽. 2011. 华南地区钦杭成矿带地质特征和矿床时空分布规律. 地质学报, 85(5): 636-658.
毛景文, 华仁民, 李晓波. 1999. 浅议大规模成矿作用与大型矿集区. 矿床地质, 18(4): 291-299.
毛景文, 谢桂青, 程彦博, 陈毓川. 2009. 华南地区中生代主要金属矿床模型. 地质论评, 55(3): 347-354.
毛景文, 谢桂青, 郭春丽, 陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景. 岩石学报, 23(10): 2329-2338.
毛景文, 谢桂青, 李晓峰, 张长青, 梅燕雄. 2004. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展. 地学前缘, 11(1): 45-55.
裴荣富, 邱小平. 1999. 成矿作用爆发异常及巨量金属堆积. 矿床地质, 18(4): 333-340.
裴荣富, 王永磊, 李莉, 王浩琳. 2008. 华南大花岗岩省及其与钨锡多金属区域成矿系列. 中国钨业, 23(1): 10-13.
沈渭洲, 凌洪飞, 李武显, 王德滋. 2000. 中国东南部花岗岩类的Nd模式年龄与地壳演化. 中国科学(D辑), 30(5): 471-478.
沈渭洲, 朱金初, 刘昌实, 徐士进, 凌洪飞. 1993. 华南基底变质岩的Sm-Nd同位素及其对花岗岩类物质来源的制约. 岩石学报, 9(2): 115-124.
舒良树, 周新民. 2002. 中国东南部晚中生代构造作用. 地质论评, 48(3): 249-260.
唐傲. 2016. 赣中紫云山过铝质花岗岩年代学、岩石地球化学及载铀矿物特征研究. 抚州: 东华理工大学硕士学位论文.
王德滋, 周金城, 刘昌实, 陈克荣, 周新民, 薛纪越, 楚雪君, 曾加湖. 1982. 浙江桐庐自碎二长花岗斑岩的特征和成因. 岩矿测试, 1(3): 15-24.
王汝成, 朱金初, 张文兰, 谢磊, 于阿朋, 车旭东. 2008. 南岭地区钨锡花岗岩的成矿矿物学: 概念与实例. 高校地质学报, 14(4): 485-495.
魏春生, 郑永飞, 赵子福. 2001. 中国东部A型花岗岩形成时代及物质来源的Nd-Sr-O同位素地球化学制约. 岩石学报, 17(1), 95-111.
吴福元, 李献华, 杨进辉, 郑永飞. 2007a. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238.
吴福元, 李献华, 郑永飞, 高山. 2007b. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220.
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604.
谢银财, 陆建军, 马东升, 章荣清, 高剑峰, 姚远. 2013. 湘南宝山铅锌多金属矿区花岗闪长斑岩及其暗色包体成因: 锆石U-Pb年代学、岩石地球化学和Sr-Nd-Hf同位素制约. 岩石学报, 29(12): 4186-4214.
徐先兵, 张岳桥, 贾东, 舒良树, 王瑞瑞. 2009. 华南早中生代大地构造过程. 中国地质, 36(3): 573-593.
姚军明, 华仁民, 林锦富. 2005. 湘东南黄沙坪花岗岩LA-ICPMS锆石U-Pb定年及岩石地球化学特征. 岩石学报, 21(3): 688-696.
叶海敏, 张翔, 朱云鹤. 2016. 江西石门寺钨多金属矿床花岗岩独居石U-Pb精确定年及地质意义. 大地构造与成矿学, 40(1): 58-70.
袁中信, 张宗清. 1992. 南岭花岗岩类岩石Sm-Nd同位素特征及岩石成因探讨. 地质论评, 38(1): 1-15.
翟伟, 孙晓明, 邬云山, 孙红英, 华仁民, 李文铅. 2011. 粤北瑶岭钨矿成矿相关花岗岩的锆石SHRIMP年龄与40Ar/39Ar 成矿年龄及其地质意义. 矿床地质, 30(1): 21-32.
翟裕生. 1999. 论成矿系统. 地学前缘, 6(1): 13-27.
张文兰, 华仁民, 王汝成, 李惠民, 屈文俊, 季建清. 2009. 赣南漂塘钨矿花岗岩成岩年龄与成矿年龄的精确测定. 地质学报, 83(5): 659-670.
赵葵东, 蒋少涌, 姜耀辉, 刘敦一. 2006. 湘南骑田岭岩体芙蓉超单元的锆石SHRIMP U-Pb年龄及其地质意义. 岩石学报, 22(10): 2622-2616.
赵葵东, 蒋少涌, 朱金初, 李亮, 戴宝章, 姜耀辉, 凌洪飞. 2009. 桂东北花山-姑婆山侵入杂岩体和暗色包体的锆石微区Hf同位素组成及其成岩指示意义. 科学通报, 54(23): 3716-3725.
中国科学院贵阳地球化学研究所. 1979. 华南花岗岩类的地球化学. 北京: 科学出版社.
周新民. 2003. 对华南花岗岩研究的若干思考. 高校地质学报, 9(4): 556-565.
Bernard A, Symonds R B and Rose W L. 1990. Volatile transport and deposition of Mo, W and Re in high temperature magmatic fluids. Applied Geochemistry, 5(3): 317-326.
Chappell B and White A J R. 1992. I- and S-type granites in the Lachlan Fold Belt. Transactions Royal Society of Edinburgh: Earth Sciences: 83: 1-26.
Collins W J, Beams S D, White A J R and Chappell B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200.
Gilder S A, Gill J, Coe R S, Zhao X X, Liu Z W, Wang G X, Yuan K R, Liu W L, Kuang G D and Wu H R. 1996. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south china. Journal of Geophysical Research: Solid Earth, 1011(7): 16137-16154.
Holztf F, Dingwell D B and Behrens H. 1993. Effect of F, B2O3 and P2O5 on the solubility of water in haplogranite melts compared to natural silicate melts. Contributions to Mineralogy and Petrology, 113(4): 492-501.
Hu Z C, Liu Y S, Chen L, Zhou L, Li M, Zong K Q, Zhu L Y and Gao S. 2011. Contrasting matrix induced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution. Journal of Analytical Atomic Spectrometry, 26(2): 425-430.
Kempe U and Wolf D. 2006. Anomalously high Sc contents in ore minerals from Sn-W deposits: Possible economic significance and genetic implications. Ore Geology Reviews, 28(1): 103-122.
King P L, White A J R, Chappell B W and Allen C M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia. Journal of Petrology, 38(3): 371-391.
Li X H, Li Z X, Li W X and Wang Y J. 2006. Initiation of the Indosinian orogeny in South China: Evidence for a Permian magmatic arc on Hainan Island. The Journal of Geology, 114(3): 341-353.
Li Z X and Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35(2): 179-182.
Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q and Wang D B. 2010b. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571.
Liu Y S, Hu Z C, Zong K Q, Gao C G, Gao S, Xu J and Chen H H. 2010a. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535- 1546.
Maniar P D and Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635-643.
Middlemost E A K. 1994. Naming materials in the magma/ igneous rock system. Earth-Science Reviews, 37(3-4): 215-244.
Peccerillo R and Taylor S R. 1976. Geochemistry of Eocene calcalkaline volcanic rocks from the Kast Amonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81.
Rickwood P C. 1989. Boundary lines with in petrologic diagram which use oxides of major and minor element. Lithos, 22(4): 247-263.
Rollinson H R. 1993. Using geochemical date: Evaluation, presentation and interpretation. New York: Longman Group U K Ltd.
Sun S S and Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society London Special Publications, 42(1): 313-345.
Taylor S R and McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. London: Blackwell Scientific Publications: 57-72.
Taylor S R, Mclennan S M, Armstrong R L and Tarney J. 1981. The composition and evolution of the continental crust: Rare earth element evidence from sedimentary rocks. Philosophical Transactions of the Royal Society B Biological Sciences, 301(1461): 398-399.
Turekian K K and Wedepohl K H. 1961. Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72(2): 175-192.
Vervoort J D, Patchett P J, Blichert-Toft J and Albarède F. 1999. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth and Planetary Science Letters, 168(1-2): 79-99.
Vervoort J D, Patchett P J, Soderlund U and Baker M. 2004. Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf by isotope dilution using MC-ICPMS. Geochemistry Geophysics Geosystems, 5(11): 1-15.
Webster J D and Holloway J R. 1990. Partitioning of F and Cl between magmatic hydrothermal fluids and highly evolved granitic magmas // Stein H J and Hannah J L. Ore-bearing Granite Systems: Petrogenesis and Mineralizing Processes. Geological Society of America Special Paper, 246: 21-34.
Wood S A. 1992. Experimental determination of the solubility of WO3(s) and the thermodynamic properties of H2WO4(aq) in the range 300~600℃ at 1 kbar: Calculation of scheelite solubility. Geochimica et Cosmochimica Acta, 56(5): 1827-1836.
Xie L, Wang R C, Chen J, Zhu J C, Zhang W L, Wang D Z and Yu A P. 2009. Primary Sn-rich titianite in the Qitianling granite, Hunan Province, southern China: An important type of tin-bearing mineral and its implications for tin exploration. Chinese Science Bulletin, 54(5): 798-805.
Yan D P, Zhou M F, Song H L, Wang X W and Malpas J. 2003. Origin and tectonic significance of a Mesozoic multi-layer over-thrust system within the Yangtze Block (South China). Tectonophysics, 361(3): 239-254.
Yang J H, Wu F Y, Chung S L, Wilde S A and Chu M F. 2004. Multiple source for the origin of granites Geochemical and Nd/Sr isotopic evidence from the Gudaoling granite and its mafic enclaves, Northeast China. Geochimica et Cosmochimica Acta, 68(21): 4469-4483.
Zhao K D, Jiang S Y, Yang S Y, Dai B Z and Lu J J. 2012. Mineral chemistry, trace elements and Sr-Nd-Hf isotope geochemistry and petrogenesis of Cailing and Furong granites and mafic enclaves from the Qitianling batholith in the Shi-Hang zone, South China. Gondwana Research, 22(1): 310-324.
Zhou X M and Li W X. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326(3-4): 269-287.
Zhou X M, Sun T, Shen W Z, Shu L S and Niu Y L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29(1): 26-33.

相似文献/References:

[1]魏道芳,鲍征宇,付建明.湖南铜山岭花岗岩体的地球化学特征及锆石SHRIMP定年.大地构造与成矿学,2007.31(4):482.
 WEI Daofang,BAO Zhengyu and FU Jianming.GEOCHEMICAL CHARACTERISTICS AND ZIRCON SHRIMP UPB DATING OF THE TONGSHANLING GRANITE IN HUNAN PROVINCE,SOUTH CHINA.Geotectonica et Metallogenia,2007.44(5):482.
[2]焦建刚,汤中立,闫海卿.甘肃高台-临泽地区109-2隐伏岩体岩石地球化学特征.大地构造与成矿学,2007.31(2):218.
 JIAO Jiangang,TANG Zhongli,YAN Haiqing and LIU Ruiping.LITHOGEOCHEMICAL CHARACTERISTICS OF 109-2 HIDDEN ULTRAMAFIC INTRUSIONS AT GAOTAILINZE, GANSU PROVINCE.Geotectonica et Metallogenia,2007.44(5):218.
[3].外事简讯.大地构造与成矿学,1993.17(4):314.
[4]梁金城,邓继新,陈懋弘.桂西南早三叠世中酸性火山岩及其构造环境.大地构造与成矿学,2001.25(2):141.
 LIANG Jincheng,DENG Jixin,CHEN Maohong.THE EARLY TRIASSIC INTERMEDIATE-ACID VOLCANICS AND ITS TECTONIC ENVIRONMENT IN SOUTHWESTERN GUANGXI.Geotectonica et Metallogenia,2001.44(5):141.
[5]全铁军,孔华,王高.黄沙坪矿区花岗岩岩石地球化学、U-Pb年代学及Hf同位素制约.大地构造与成矿学,2012.36(4):597.
 QUAN Tiejun,KONG Hua.Petrogenesis of the Granites in the Huangshaping Area: Constraints from Petrochemistry, Zircon U-Pb Chronology and Hf Isotope.Geotectonica et Metallogenia,2012.44(5):597.
[6]温淑女.海南岛乐东地区志仲岩体锆石U-Pb年代学、Hf同位素研究及其构造意义.大地构造与成矿学,2013.37(2):294.
 WEN Shunv,LIANG Xinquan.Zircon U-Pb Ages, Hf Isotopic Composition of Zhizhong Granitic Intrusion in Ledong Area of Hainan Island and Their Tectonic Implications.Geotectonica et Metallogenia,2013.44(5):294.
[7]周 云,梁新权,梁细荣.湖南锡田含W-Sn A型花岗岩年代学与地球化学特征.大地构造与成矿学,2013.37(3):511.
 ZHOU Yun,LIANG Xinquan,LIANG Xirong.Geochronology and Geochemical Characteristics of the Xitian Tungsten-Tin-Bearing A-type Granites, Hunan Province, China.Geotectonica et Metallogenia,2013.44(5):511.
[8]蔡永丰.哀牢山新元古代斜长角闪岩的形成时代、 地球化学特征及其大地构造意义.大地构造与成矿学,2014.38(1):168.
 CAI Yongfeng,WANG Yuejun.Geochronological and Geochemical Characteristics of the Neoprote-rozoi?c Amphibolite from Ailaoshan Zone, Western Yunnan and its Tectonic Implications.Geotectonica et Metallogenia,2014.44(5):168.
[9]王崴平,陈毓川,王登红.赣南兴国县良村花岗岩锆石LA-ICP-MS U-Pb 年代学、岩石地球化学与成岩机制研究.大地构造与成矿学,2014.38(2):347.
 WANG Weiping,CHEN Yuchuan,WANG Denghong and CHEN Zhenyu.Zircon LA-ICP-MS U-Pb Dating and Petrogeochemistry of the Liangcun Granites and Their Petrogenesis, South Jiangxi.Geotectonica et Metallogenia,2014.44(5):347.
[10]郎兴海,唐菊兴,谢富伟.西藏雄村矿区南部玢岩的地质年代学、岩石地球化学及其地质意义.大地构造与成矿学,2014.38(3):609.
 LANG Xinghai,TANG Juxing,XIE Fuwei.Geochronology and Geochemistry of the Southern Porphyry in the Xiongcun District, Tibet and its Geological Implications.Geotectonica et Metallogenia,2014.44(5):609.

备注/Memo

备注/Memo:
收稿日期: 2019-01-01; 改回日期: 2019-06-15
项目资助: 国家自然科学基金项目(41862004、41972071)资助。
第一作者简介: 苏晔(1988-), 男, 硕士研究生, 地质工程专业。Email: sjj19881221@126.com
通信作者: 李光来(1983-), 男, 副教授, 硕士生导师, 从事花岗岩与成矿作用研究。Email: liguanglai@ecit.cn
更新日期/Last Update: 2020-10-20