[1]徐 阳,凌明星,薛 硕.2020.鄂尔多斯盆地双龙地区砂岩型铀矿富集、迁移和成矿机制.大地构造与成矿学,44(5):937-957.doi:10.16539/j.ddgzyckx.2020.05.008
 XU Yang,LING Mingxing,XUE Shuo.2020.Enrichment, Transportation and Ore Forming Mechanism of Sandstone-type Uranium Deposits in Shuanglong Area, Ordos Basin.Geotectonica et Metallogenia,44(5):937-957.doi:10.16539/j.ddgzyckx.2020.05.008
点击复制

鄂尔多斯盆地双龙地区砂岩型铀矿富集、迁移和成矿机制
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2020年44卷05期
页码:
937-957
栏目:
构造地质与成矿学
出版日期:
2020-10-20

文章信息/Info

Title:
Enrichment, Transportation and Ore Forming Mechanism of Sandstone-type Uranium Deposits in Shuanglong Area, Ordos Basin
文章编号:
1001-1552(2020)05-0937-021
作者:
徐 阳1.2.3 凌明星1* 薛 硕1.2.3 刘玉龙2 孙卫东3.4.5
1.中国科学院 广州地球化学研究所, 同位素地球化学国家重点实验室, 广东 广州510640; 2.中国科学院 广州地球化学研究所 矿物学与成矿学重点实验室, 广东 广州 510640; 3.中国科学院大学, 北京 100049; 4.中国科学院 海洋研究所, 山东 青岛 266071; 5.中国科学院 青藏高原地球科学卓越创新中心, 北京 100101
Author(s):
XU Yang1.2.3 LING Mingxing1* XUE Shuo1.2.3 LIU Yulong2 and SUN Weidong3.4.5
1. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China; 2. CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China; 4. Institute of Oceanography, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; 5. CAS Center for Excellent in Tibetan Plateau Earth Sciences, Beijing 100101, China
关键词:
鄂尔多斯盆地 双龙地区 砂岩型铀矿 成矿机制
Keywords:
Ordos Basin Shuanglong area sandstone-type uranium deposit ore forming mechanism
分类号:
P611
DOI:
10.16539/j.ddgzyckx.2020.05.008
文献标志码:
A
摘要:
铀是一个国家经济发展和国防建设重要的矿产资源, 鄂尔多斯盆地分布着数十个重要的砂岩型铀矿, 是我国重要的产铀基地之一, 然而关于砂岩型铀矿的富集、迁移和成矿机制仍然存在很大争议。本文以鄂尔多斯盆地研究程度相对较低的双龙地区砂岩型铀矿为研究对象, 从构造背景、矿物蚀变特征和地球化学等方面入手, 探讨其成矿机制。矿物蚀变特征表明, 岩心样品自上至下在氧化带、过渡带(矿化位置)和还原带分别发育不同的蚀变类型。微量元素地球化学特征显示U与Th、Pb、Mo、Zr、Hf和REE等元素正相关性明显。对黄铁矿的研究表明, 热液成因黄铁矿与铀的富集关系密切。过渡带样品中石英次生加大边的流体包裹体中主要成分为H2O、CO2? 3 、HCO? 3和CH4等, 表明成矿与碳酸盐热液有关。过渡带样品方解石C、O同位素特征(δ13CV-PDB=?12.4‰~?8.3‰, δ18OV-SMOW=13.0‰~15.1‰)和含CH4流体包裹体指示该地区受到有机质的还原作用。综合研究表明, 中生代中期开始, 鄂尔多斯盆地周围铀背景值较高的古老岩体为盆地提供了铀源; 中生代晚期?燕山运动造成深部碳酸盐低温热液沿断裂侵入到地层中, 并携带六价铀进行迁移; 白垩系烃类等有机质沿构造裂隙自下而上的运移导致了铀的富集; 地表水等的流体动力导致含铀热液与有机质不断混合反应, 将六价铀还原成四价铀, 并在直罗组中沉淀富集成矿。
Abstract:
Uranium is an important mineral resource for a country’s economy and national defense. In recent years, a series of sandstone-type uranium deposits have been discovered in the Ordos Basin, thus this type of ores has become one of the most important uranium resources in China. However, so far, there are still great controversies about the enrichment, transportation and ore forming mechanism of the sandstone-type uranium deposits in the Ordos Basin. In this paper, we conducted an integrated research of tectonic background, mineral alteration and geochemical characteristics on the Shuanglong sandstone-type uranium deposit in the Ordos Basin to decipher its ore forming mechanism. The drill core samples of oxidation, transition (mineralization zone) and reduction zones from top to bottom show contrast characteristics of mineral alteration. The samples have U contents positively correlated with Th, Pb, Mo and REE. Pyrite is closely related to the uranium enrichment, indicative of a hydrothermal origin. The fluid inclusions of the samples in transition zone mainly contain H2O, CO2? 3, HCO3? and CH4, which indicates that the ore-forming hydrothermal fluid is carbonate-type. The carbon and oxygen isotopic compositions (from ?12.4‰ to 8.3‰ and from 13.0‰ to 15.1‰, respectively) and CH4 bearing fluid inclusion indicate that this region was reductive due to the high contents of organic materials. The uranium rich rocks around the Ordos Basin acted as the uranium source since the middle Mesozoic. The deep carbonate-type hydrothermal fluid driven by the Yanshanian movement in the late Mesozoic percolated the strata along the faults and leached uranium in the rocks. The organic materials migrated upwards along the structural fractures during the Cretaceous and led to the uranium enrichment. Hydrodynamics of surface water led to continuous mixing of uranium hydrothermal solution and organic materials, which resulted in uranium precipitation, enrichment and mineralization in the strata of the Zhiluo Formation.

参考文献/References:

陈建平, 黄第藩. 1997. 鄂尔多斯盆地东南缘煤矿侏罗系原油油源. 沉积学报, 15(2): 100-104.
陈祖伊, 郭庆银. 2007. 砂岩型铀矿床硫化物还原富集铀的机制. 铀矿地质, 23(6): 321-327.
陈祖伊, 郭庆银. 2010. 砂岩型铀矿床层间氧化带前锋区稀有元素富集机制. 铀矿地质, 26(1): 1-8.
戴金星, 李剑, 罗霞, 张文正, 胡国艺, 马成华, 郭建民, 葛守国. 2005. 鄂尔多斯盆地大气田的烷烃气碳同位素组成特征及其气源对比. 石油学报, 26(1): 18-26.
邓平, 沈渭洲, 凌洪飞, 叶海敏, 王学成, 濮巍, 谭正中. 2003a. 地幔流体与铀成矿作用: 以下庄矿田仙石铀矿床为例. 地球化学, 32(6): 13-21.
邓平, 舒良树, 谭正中. 2003b. 诸广-贵东大型铀矿聚集区富铀矿成矿地质条件. 地质论评, 49(5): 486-494.
杜乐天. 1982. 花岗岩型铀矿文集. 北京: 原子能出版社: 1-102.
冯乔, 张小莉, 王云鹏, 樊爱萍, 柳益群. 2006. 鄂尔多斯盆地北部上古生界油气运聚特征及其铀成矿意义. 地质学报, 80(5): 136-140.
何卫军. 2007. 鄂尔多斯盆地南部侏罗系直罗组-安定组沉积体系研究. 西安: 西北大学博士学位论文: 15-30.
胡俊华, 郭科锋. 2017. 鄂尔多斯盆地南缘砂岩型铀矿找矿潜力分析. 铀矿地质, 33(3): 137-143.
黄贤芳, 刘德长, 杜乐天, 赵英俊. 2005. 一种新的砂岩铀矿成矿类型: 构造-油气型. 世界核地质科学, 22(3): 141-146.
雷开宇. 2016. 鄂尔多斯盆地北部和南部直罗组沉积-物源对比研究及其意义. 西安: 西北大学硕士学位论文: 50-120.
雷盼盼. 2015. 鄂尔多斯盆地西南缘构造演化及其对奥陶系油气成藏条件的影响. 西安: 西北大学硕士学位论文: 22-78.
李子颖, 方锡珩, 陈安平, 欧光习, 孙晔, 张珂, 夏毓亮, 周文斌, 陈法正, 李满根. 2009. 鄂尔多斯盆地东北部砂岩型铀矿叠合成矿模式. 铀矿地质, 25(2): 65-70.
刘成东, 李志文, 刘江浩, 梁良. 2016. 地幔流体参与铀成矿作用的研究进展——以粤北花岗岩型铀矿矿集区为例. 铀矿地质, 32(4): 193-199.
刘池洋. 2005. 盆地多种能源矿产共存富集成藏(矿)研究进展. 北京: 科学出版社: 5-20.
刘池洋, 赵红格, 桂小军, 岳乐平, 赵俊峰, 王建强. 2006. 鄂尔多斯盆地演化-改造的时空坐标及其成藏(矿)响应. 地质学报, 80(5): 5-26.
刘汉彬, 夏毓亮, 田时丰. 2007. 东胜地区砂岩型铀矿成矿年代学及成矿铀源研究. 铀矿地质, 23(1): 23-29.
刘洪涛, 李忠满, 李大中. 2011. 黄铁矿标型特征在找矿中的应用: 以赵家堡子金矿为例. 矿物学报, 31(S1): 58-60.
柳益群, 冯乔, 杨仁超, 樊爱萍, 邢秀娟. 2006. 鄂尔多斯盆地东胜地区砂岩型铀矿成因探讨. 地质学报, 80(5): 761-767.
罗照华. 1999. 太行山造山带岩浆活动及其造山过程反演. 北京: 地质出版社: 279-284.
闵茂中, 彭新建, 王金平, 尹琳, 张光辉, 徐惠芳, 李朋富. 2003. 铀的微生物成矿作用研究进展. 铀矿地质, 19(5): 2-8.
彭小华, 曹惠锋, 刘厚宁. 2018. 鄂尔多斯盆地南部双龙地区铀成矿特征分析. 世界核地质科学, 35(1): 8-15.
任战利. 1995. 利用磷灰石裂变径迹法研究鄂尔多斯盆地地热史. 地球物理学报, 38(3): 339-350.
王建强. 2010. 鄂尔多斯盆地南部中新生代演化-改造及盆山耦合关系. 西安: 西北大学博士学位论文: 20-120.
王联魁, 刘铁庚. 1987. 华南花岗岩铀矿H、O、S、Pb同位素研究. 地球化学, (1): 67-78.
吴柏林, 刘池阳, 张复新, 方锡衍, 刘雄. 2006. 东胜砂岩型铀矿后生蚀变地球化学性质及其成矿意义. 地质学报, 80(5): 740-747.
夏毓亮, 林锦荣, 侯艳先, 刘汉彬, 范光. 2001. 伊犁盆地砂岩型铀矿同位素地质特征. 全国同位素地质年代学同位素地球化学学术讨论会.
夏毓亮, 林锦荣, 刘汉彬, 范光, 侯艳先. 2003. 中国北方主要产铀盆地砂岩型铀矿成矿年代学研究. 铀矿地质, 19(3): 129-136.
肖荣阁, 刘敬党, 费红彩, 刘军, 原振雷, 王翠芝. 2008. 岩石矿床地球化学. 北京: 地震出版社: 20-145.
肖新建. 2004. 东胜地区砂岩铀矿低温流体成矿作用地球化学研究. 北京: 核工业北京地质研究院博士学位论文: 20-43.
薛春纪. 2010. 鄂尔多斯盆地砂岩型铀成矿中两种流体系统相互作用——地球化学证据和流体动力学模拟. 矿床地质, 29(1): 134-142.
薛伟, 薛春纪, 池国祥, 彭云彪, 王凯. 2010. 鄂尔多斯盆地东胜砂岩型铀矿微量和稀土元素地球化学特征. 现代地质, 24(4): 776-784.
闫小雄. 2001. 鄂尔多斯中生代盆地古物源分析与沉积环境格局恢复. 西安: 西北大学硕士学位论文: 12-22.
杨晓勇, 凌明星, 孙卫东, 苗建宇, 刘池洋. 2006. 鄂尔多斯盆地砂岩型铀矿流体包裹体特征. 石油学报, 27(6): 28-33.
杨晓勇, 罗贤冬, 凌明星. 2007. 鄂尔多斯盆地含铀砂岩碳酸盐胶结物C-O同位素研究及地质意义. 中国科学技术大学学报, 37(8): 979-985.
杨晓勇, 罗贤冬, 凌明星, 赖小东. 2008. 鄂尔多斯盆地砂岩型铀矿床地球化学特征及其地质意义. 地质论评, 54(4): 539-549.
杨晓勇, 凌明星, 赖小东. 2009. 鄂尔多斯盆地东胜地区地浸砂岩型铀矿成矿模型. 地学前缘, 16(2): 239-249.
杨兴科, 杨永恒, 季丽丹, 苏春乾, 郑孟林, 赵亮. 2006. 鄂尔多斯盆地东部热力作用的期次和特点. 地质学报, 80(5): 705-711.
张龙. 2017. 鄂尔多斯盆地北部天然气逸散与铀成矿效应. 西安: 西北大学博士学位论文: 20-35.
张如良. 2004. 鄂尔多斯深盆气与铀矿化关系初探. 铀矿地质, 20(4): 213-218.
张万良. 2018. 烃源岩=铀源岩: 砂岩铀矿成矿物质来源新思考. 矿产与地质, 32(1): 1-7.
赵俊峰, 刘池洋, 梁积伟, 王晓梅, 喻林, 黄雷, 刘永涛. 2010. 鄂尔多斯盆地直罗组-安定组沉积期原始边界恢复. 地质学报, 84(4): 553-569.
赵振华. 1997. 微量元素地球化学原理. 北京: 科学出版社: 20-201.
朱西养, 汪云亮, 王志畅, 张成江, 刘建华. 2003. 东胜砂岩型铀矿微量元素地球化学特征初探. 地球与环境, 31(2): 39-45.
Adams M W W. 1994. Biochemical diversity among sulfur-dependent, hyperthermophilic microorganisms. FEMS Microbiology Reviews, 15(2-3): 261-277.
Akhtar S, Yang X Y and Pirajno F. 2017. Sandstone type uranium deposits in the Ordos Basin, Northwest China: A case study and an overview. Journal of Asian Earth Sciences, 146: 367-382.
Bo L, Wang Y H and Qian X L. 1997. Two Ordovician unconformities in North China: Their origins and relationships to regional carbonate-reservoir characteristics. Carbonates and Evaporites, 12(2): 177-184.
Bralia A, Sabatini G and Troja F. 1979. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems. Mineralium Deposita, 14(3): 353-374.
Cai C F, Dong H L, Li H T, Xiao X J, Ou G X and Zhang C M. 2007a. Mineralogical and geochemical evidence for coupled bacterial uranium mineralization and hydrocarbon oxidation in the Shashagetai deposit, NW China. Chemical Geology, 236(1-2): 169-179.
Cai C F, Li H T, Qin M K, Luo X R, Wang F Y and Ou G X. 2007b. Biogenic and petroleum-related ore-forming processes in Dongsheng uranium deposit, NW China. Ore Geology Reviews, 32(1-2): 262-274.
Cao B F, Bai G P, Zhang K X, Zhang L K and He B. 2016. A comprehensive review of hydrocarbons and genetic model of the sandstone-hosted Dongsheng uranium deposit, Ordos Basin, China. Geofluids, 132: 624-650.
Chen H H, Zhang Q M and Shi J X. 1997. Evidence of fluid inclusion for thermal fluid-bearing hydrocarbon movements in Qiongdongnan Basin, South China Sea. Science in China Series D: Earth Science, 40(6): 648-655.
Eckert T, Barnes A, Dhawan V and Frucht S. 1979. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems. Mineralium Deposita, 14(3): 353-374.
Fryer B J and Taylor R P. 1987. Rare-earth element distributions in uraninites: Implications for ore genesis. Chemical Geology, 63(1): 101-108.
Gao S, Rudnick R L, Yuan H L, Liu X M, Liu Y S, Xu WL, Ling W L, Ayers J, Wang X C, Wang Q H. 2004. Recycling lower continental crust in the North China craton. Nature, 432: 892-897.
Garden I R, Guscott S C, Burley S D, Foxford K A, Walsh J J and Marshall J. 2010. An exhumed palaeo-hydrocarbon migration fairway in a faulted carrier system, Entrada Sandstone of SE Utah, USA. Geofluids, 1(3): 195-213.
Huang W L, Bishop A M and Brown R W. 1986. The effect of fluid/rock ratio on feldspar dissolution and illite formation under reservoir conditions. Clay Minerals, 21(4): 585-601.
IAEA. 2020. World Uranium Geology, Exploration, Resources and Production. International Atomic Energy Agency, Vienna. 1-988.
Jiang L, Cai C F, Zhang Y D, Mao S Y, Sun Y G and Li K K. 2012. Lipids of sulfate-reducing bacteria and sulfur- oxidizing bacteria found in the Dongsheng uranium deposit. Chinese Science Bulletin, 57(11): 1311-1319.
Jobson A, Cook F D and Westlake D W. 1972. Microbial utilization of crude oil. Applied Microbiology, 23(6): 1082-1089.
Keller J and Hoefs J. 1995. Stable isotope characteristics of recent Natrocarbonatites from Oldoinyo Lengai // Bell K and Keller J. Carbonatite Volcanism. IAVCEI Procee?dings in Volcanology: 113-123.
Langmuir D. 1978. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochimica et Cosmochimica Acta, 42(6): 547-569.
Li Z Y, Fang X H, Chen A P, Ou G X, Xiao X J, Sun Y, Liu C Y and Wang Y. 2007. Origin of gray-green sandstone in ore bed of sandstone type uranium deposit in north Ordos Basin. Science in China Series D: Earth Sciences, 50(S2): 165-173.
Li R X and Li Y Z. 2011. The geologic features of mineralization at the Dongsheng uranium deposit in the Northern Ordos Basin (Central China). Russian Geology Geophysics, 52(6): 593-602.
Ling M X, Yang X Y, Wei S, Miao J Y and Liu C Y. 2006. REE/trace element characteristics of sandstone-type uranium deposits in the Ordos Basin. Chinese Journal of Geochemistry, 25(4): 355-365.
Liu S F. 1998. The coupling mechanism of basin and orogen in the western Ordos Basin and adjacent regions of China. Journal of Asian Earth Sciences, 16(4): 369-383.
Liu S F and Yang S G. 2015. Upper Triassic-Jurassic sequence stratigraphy and its structural controls in the western Ordos Basin, China. Basin Research, 12(1): 1-18.
Lottermoser B G. 1992. Rare-earth elements and hydro?thermal ore formation processes. Ore Geology Reviews, 7(1): 25-41.
McLennan S M and Taylor S R. 1979. Rare earth element mobility associated with uranium mineralisation. Nature, 282(5736): 247-250.
Ren Z L, Zhang S, Gao S L, Cui J P, Xiao Y Y and Xiao H. 2007. Tectonic thermal history and its significance on the formation of oil and gas accumulation and mineral deposit in Ordos Basin. Science in China Series D: Earth Science, 50(2): 27-38.
Reynolds R L, Goldhaber M B and Carpenter D J. 1982. Biogenic and nonbiogenic ore-forming processes in South Texas Uranium District, Panna Maria Deposit. AAPG Bulletin, 66(5): 622-623.
Shikazono N and Utada M. 1997. Stable isotope geoche?mistry and diagenetic mineralization associated with the Tono sandstone-type uranium deposit in Japan. Mineralium Deposita, 32(6): 596?-606.
Solodov I N, Nesterova M V, Shugina G A, Ganina N I, Shulik L S and Solodov D I. 2001. Protective geochemical properties of the U-bearing quartz sand at the Beshkak Deposit, Kyzyl Kum Region. Lithology Mineral Resources, 36(1): 43-62.
Spirakis C S. 1996. The roles of organic matter in the formation of uranium deposits in sedimentary rocks. Ore Geology Reviews, 11(S1-3): 53-69.
Sun S H and Liu S S. 1996. Tectono-thermal events in Ordos Basin, China. Chinese Science Bulletin, 41(24): 2070- 2073.
Taylor H P, Frechen J and Degens E T. 1967. Oxygen and carbon isotope studies of carbonatites from the Laacher See District, West Germany and The Aln? Aistrict, Sweden. Geochimica et Cosmochimica Acta, 31(3): 407-430.
Yang X Y, Ling M X, Sun W D, Luo X D, Lai X D, Liu C Y, Miao J Y and Sun W. 2009. The genesis of sandstone-type uranium deposits in the Ordos Basin, NW China: Constraints provided by fluid inclusions and stable isotopes. International Geology Review, 51(5): 34-40.
Yang Y X, Li W and Ma L. 2005. Tectonic and stratigraphic controls of hydrocarbon systems in the Ordos Basin: A multicycle cratonic basin in central China. AAPG Bulletin, 89: 255-269
Ye J Rand Lu M D. 2010. Geohistory modelling of cratonic basins: A case study of the Ordos Basin, NW China. Journal of Petroleum Geology, 20(3): 347-362.
Zhang L F, Sun M, Wang S G and Yu X Y. 1998. The composition of shales from the Ordos Basin, China: Effects of source weathering and diagenesis. Sedimentary Geology, 116(1-2): 129-141.
Zhang L P, Bai G P, Zhao K B and Sun C Q. 2006. Restudy of acid-extractable hydrocarbon data from surface geochemical survey in the Yimeng Uplift of the Ordos Basin, China: Improvement of geochemical prospecting for hydrocarbons. Marine and Petroleum Geology, 23(5): 0-542.
Zhao B, Zhang C H, Wang D Z, Huang Y, Tan K, Du R L and Liu J N. 2017. Contemporary kinematics of the Ordos block, North China and its adjacent rift systems constrained by dense GPS observations. Journal of Asian Earth Sciences, 135: 257-267.
Zobell C E. 1945. The role of bacteria in the formation and transformation of petroleum hydrocarbons. Science, 102(2650): 364-369.

相似文献/References:

[1]杨兴科,晁会霞,张哲峰.鄂尔多斯盆地东部紫金山岩体特征与形成的动力学环境——盆地热力-岩浆活动的深部作用典型实例剖析.大地构造与成矿学,2010.34(2):269.
 YANG Xingke,CHAO Huixia,ZHANG Zhefeng.Characteristics of the Zijinshan Complex and Its Dynamic Environment in the East of the Ordos Basin—Analysis of a Classic Example on the Deep Processes of Thermal-Magma Activity in the Basin.Geotectonica et Metallogenia,2010.44(5):269.
[2]潘爱芳,黎荣剑,赫英.鄂尔多斯盆地石油氯仿沥青稀土元素地球化学特征.大地构造与成矿学,2007.31(2):245.
 PAN Aifang,LI Rongjian and HE Ying.GEOCHEMICAL FEATURES OF THE RARE EARTH ELEMENTS IN PETROLEUM BITUMEN FROM THE ORDOS BASIN.Geotectonica et Metallogenia,2007.44(5):245.
[3]徐黎明,周立发,张义楷.鄂尔多斯盆地构造应力场特征及其构造背景.大地构造与成矿学,2006.3(4):455.
 XU Liming,ZHOU Lifa,ZHANG Yikai and DANG Ben.CHARACTERISTICS AND TECTONIC SETTING OF TECTONOSTRESS FIELD OF ORDOS BASIN.Geotectonica et Metallogenia,2006.44(5):455.
[4]潘爱芳,赫英,黎荣剑.鄂尔多斯盆地基底断裂与能源矿产成藏成矿的关系.大地构造与成矿学,2005.29(4):459.
 PAN Aifang,HE Ying,LI Rongjian and XI Xianwu.RELATION BETWEEN BASEMENT FRACTURES AND FORMATION OF ENERGY RESOURCES IN ORDOS BASIN.Geotectonica et Metallogenia,2005.44(5):459.
[5]孙少华,刘顺生,汪集.鄂尔多斯盆地热流场特征.大地构造与成矿学,1996.2(1):029.
 SUN Shaohua,LIU Shunsheng,WANG Jiyang.THE HEAT FLOW FIELD IN ORDOS BASIN,NW CHINA.Geotectonica et Metallogenia,1996.44(5):029.
[6]孙少华,刘顺生,汪集.鄂尔多斯盆地地温场与烃源岩演化特点.大地构造与成矿学,1996.2(3):255.
 SUN Shaohua,LIU Shunsheng,WANG Jiyang.TEMPERATURE FIELD AND EVALUATION OF PETROLEUM IN THE ORDOS BASIN.Geotectonica et Metallogenia,1996.44(5):255.
[7]邓昆.鄂尔多斯盆地古生代中央古隆起形成演化与油气勘探.大地构造与成矿学,2011.35(2):190.
 DENG Kun,ZHANG Shaonan.Formation and Tectonic Evolution of the Paleozoic Central Paleouplift of Ordos Basin and its Implications for OilGas Exploration.Geotectonica et Metallogenia,2011.44(5):190.
[8]高峰,王岳军,刘顺生.利用磷灰石裂变径迹研究鄂尔多斯盆地西缘热历史.大地构造与成矿学,2000.24(1):087.
 GAO Feng,WANG Yue-jun,LIU Shun-sheng.THERMAL HISTORY STUDY IN THE WEST OF THE ORDOS BASIN USING APATITE FISSION TRACK ANALYSIS.Geotectonica et Metallogenia,2000.44(5):087.
[9]张进,马宗晋,任文军.鄂尔多斯盆地西缘逆冲带南北差异的形成机制.大地构造与成矿学,2000.24(2):124.
 ZHANG Jin,MA Zong-jin,REN Wen-jun.THE MECHANISM OF THE DIFFERENCE BETWEEN THENORTHERN PART AND THE SOUTHERN PART OFTHE FOLD AND THRUST BELT ON THE WESTERNEDGE OF THE ORDOS BASIN,CHINA.Geotectonica et Metallogenia,2000.44(5):124.
[10]卫延召,戴金星,王多云.鄂尔多斯盆地鄂托克前旗地区古生界合成地震记录特征.大地构造与成矿学,2001.25(2):199.
 WEI Yanzhao,DAI Jinxing,WANG duoyun.CHARACTERISTICS OF SONIC SYNTHETIC SEISMOGRAMS OF THE PALAEOZOIC AT ERTUOKEQIANQI,ORDOS BASIN.Geotectonica et Metallogenia,2001.44(5):199.

备注/Memo

备注/Memo:
收稿日期: 2018-12-13; 改回日期: 2019-03-27
项目资助: 广东省自然科学基金(2015TQ01Z611、2014A030306032)和中国科学院青年创新促进会项目(2016315)联合资助。
第一作者简介: 徐阳(1992-), 男, 硕士研究生, 矿床学专业。Email: gigxuyang@foxmail.com
通信作者: 凌明星(1981-), 男, 研究员, 从事地球化学研究。Email: mxling@gig.ac.cn
更新日期/Last Update: 2020-10-20