[1]王 浩,宋茂双,李建峰.2020.云南白云石大理岩变形性质的高温高压实验研究.大地构造与成矿学,44(5):852-863.doi:10.16539/j.ddgzyckx.2020.05.005
 WANG Hao,SONG Maoshuang,LI Jianfeng.2020.Experimental Study on Deformation Property of Yunnan Dolomite Marble Under High-temperature and High-pressure Conditions.Geotectonica et Metallogenia,44(5):852-863.doi:10.16539/j.ddgzyckx.2020.05.005
点击复制

云南白云石大理岩变形性质的高温高压实验研究
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2020年44卷05期
页码:
852-863
栏目:
构造地质学
出版日期:
2020-10-20

文章信息/Info

Title:
Experimental Study on Deformation Property of Yunnan Dolomite Marble Under High-temperature and High-pressure Conditions
文章编号:
1001-1552(2020)05-0852-012
作者:
王 浩1.2 宋茂双1* 李建峰1* 张桂男3 邵同宾1 王晓宁1.2 王思猛1.2
1.中国科学院 广州地球化学研究所, 同位素地球化学国家重点实验室, 广东 广州 510640; 2.中国科学院大学, 北京 100049; 3.中国科学院 深海科学与工程研究所, 海南 三亚 572000
Author(s):
WANG Hao1.2 SONG Maoshuang1* LI Jianfeng1* ZHANG Guinan3 SHAO Tongbin1 WANG Xiaoning1.2 and WANG Simeng1.2
1. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. CAS Key Laboratory for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, Hainan, China
关键词:
白云石大理岩 变形机制 显微构造 晶内塑性 位错蠕变
Keywords:
dolomite marble deformation mechanism microstructure intra-crystalline plasticity dislocation creep
分类号:
P545
DOI:
10.16539/j.ddgzyckx.2020.05.005
文献标志码:
A
摘要:
本文选择采自云南大理的天然粗粒白云石大理岩(d≈560 μm)作为初始样品, 利用Paterson气体介质高温高压流变仪在围压100~300 MPa、温度25~1000 ℃、应变速率10?6~10?4 s?1条件下开展了轴向压缩变形实验, 厘定出低温晶内塑性和高温位错蠕变两种变形机制。低温晶内塑性机制发生在25~700 ℃温度条件下, 在25 ℃(室温)时变形样品在显微构造上以突变的波状消光(位错滑移)、少量的力学机械双晶(变形双晶)和沿解理面的微破裂为特征; 而在500~700 ℃时以发育大量密集分布且厚度较小的变形双晶为特征。高温位错蠕变机制发生在温度>700 ℃条件下, 以广泛发育平滑的波状消光为特征, 伴有一定量的间距较宽、厚度较大的变形双晶, 且双晶边界迁移作用明显, 同时可以观察到白云石分解形成的细小的矿物颗粒; 应变量增大时, 沿颗粒边界发生的动态重结晶作用增强, 形成细粒的重结晶矿物颗粒。此外, 在高温条件下(T≥700 ℃)随着应变量增大白云石逐渐分解导致有效围压降低和颗粒细化, 诱发应变局部化从而形成剪切带, 剪切带内由于应变集中双晶滑移、错断、颗粒旋转和细化比剪切带之外更加显著。本研究初步获得了云南白云石大理岩不同温度、压力条件下的流变强度、显微构造演化特征和变形机制的实验数据, 为正确认识白云石大理岩在天然变形中的行为提供了实验依据。
Abstract:
To understand the deformation behavior of coarse-grained Yunnan dolomite marble (d≈560 μm) at high-temperature and high-pressure, tri-axial compression deformation experiments were conducted at confining pressure of 100-300 MPa, temperature of 25-1000 ℃ and strain rate of 10?6-10?4 s?1 using Paterson gas-medium deformation apparatus. The flow strength of the Yunnan dolomite marble increases with both strain rate and confining pressure, but the strain rate dependence is relatively weak. The flow strength changes significantly with temperature, showing a very weak temperature dependence (increases slightly with temperature) at T≤700 ℃ but decreases rapidly at T>700 ℃ with increasing temperature, which allows us to distinguish two deformation mechanisms, low-temperature intra-crystalline plasticity and high-temperature dislocation creep, correspondingly. Optical microscopy observation reveals that deformed samples in the intra-crystalline plasticity regime (T≤700 ℃) are featured mainly by wide-spread well-developed undulating extinctions at room temperature and mechanical twins of high density at temperature of 500-700 ℃, while those samples in the dislocation creep regime (T>700 ℃) are characterized by undulating extinctions and mechanical twins with larger thickness and lower density than those mechanical twins in intra-crystalline plasticity regime. It is found in deformed samples at T≥700 ℃ that some dolomite grains was partly decomposed forming recrystallized fine grains along grain-boundary. When strain is large enough (ε>20%) at T≥700 ℃, much recrystallized fine-grains are localized at grain boundaries due to decomposition of dolomite which lead to the formation of shear zones, and then flow strength is dominated by the shear zones, showing approximately steady-state creep after strain softening in stress-strain curves. This work provides new experimental data of flowing strength, micro-structural characteristics and deformation mechanism for the Yunnan dolomite marble, and will contribute to better understanding on deformation behavior of dolomite marble in nature.

参考文献/References:

李建峰, 宋茂双, 邵同宾, 夏莹, 王茜, 周微. 2013. Paterson气体介质高温高压流变仪轴向变形数据的校正方法. 大地构造与成矿学, 37(1): 127-137.
邵同宾, 嵇少丞, 李建峰, 王茜, 宋茂双. 2011. Paterson高温高压流变仪及其在岩石流变学中的应用. 大地构造与成矿学, 35(3): 457-476.
宋茂双, 邵同宾, 李建峰, 嵇少丞, 王茜. 2014. Carrara大理岩高温高压变形实验研究. 岩石学报, 30(2): 589-596.
张桂男, 宋茂双, 李建峰, 邵同宾, 王浩. 2018. Carrara大理岩在轴向压缩实验过程中的显微构造特征及变形机制研究. 大地构造与成矿学, 42(5): 786-797.
张豫宏, 周永胜, 姚文明, 何昌荣, 党嘉祥. 2017. 水对Carrara大理岩强度和变形机制影响的实验研究. 地震地质, 39(1): 54-66.
Barber D J, Heard H C and Wenk H R. 1981. Deformation of dolomite single crystals from 20-800 ℃. Physics and Chemistry of Minerals, 7(6): 271-286.
Barnhoorn A, Bystricky M, Burlini L and Kunze K. 2004. The role of recrystallization on the deformation behaviour of calcite rocks: Large strain torsion experiments on Carrara marble. Journal of Structural Geology, 26: 885-903.
Bestmann M, Kunze K and Matthews A. 2000. Evolution of a calcite marble shear zone complex on Thassos Island, Greece: Microstructural and textural fabrics and their kinematic significance. Journal of Structural Geology, 22(11): 1789-1807.
Casey M, Kunze K and Olgaard D L. 1998. Texture of Solnhofen Limestone deformed to high strains in torsion. Journal of Structural Geology, 20(2): 255-267.
Davis N E, Kronenberg A K and Newman J. 2008. Plasticity and diffusion creep of dolomite. Tectonophysics, 456: 127-146.
De Bresser J H P D, Urai J L and Olgaard D L. 2005. Effect of water on the strength and microstructure of Carrara marble axially compressed at high temperature. Journal of Structural Geology, 27: 265-281.
Delle Piane C D, Burlini L and Grobety B. 2007. Reaction- induced strain localization: Torsion experiments on dolomite. Earth and Planetary Science Letters, 256(1-2): 36-46.
Goldsmith J R. 1959. Some aspects of the geochemistry of carbonates // Abelson P H. Researches in Geochemistry, 1: 336-358.
Heitzmann P. 1987. Calcite mylonites in the Central Alpine “root zone”. Tectonophysics, 135: 207-215.
Holyoke C W, Kronenberg A K and Newman J. 2013. Dislocation creep of polycrystalline dolomite. Tectonophysics, 590: 72-82.
Holyoke C W, Kronenberg A K and Newman J. 2014. Microstructural evolution during strain localization in dolomite aggregates. Journal of Structural Geology, 69: 449-464.
Lockner D A. 1995. Rock failure // Ahrens T J. Rock Physics and Phase Relations — A Handbook of Physical Constants: American Geophysical Union Reference Shelf. Washington D C: American Geophysical Union: 127-147.
Molli G, Conti P, Giorgetti G, Meccheri M and Oesterling N. 2000. Microfabric study on the deformational and thermal history of the Alpi Apuane marbles (Carrara marbles), Italy. Journal of Structural Geology, 22(11): 1809-1825.
Neumann E R. 1969. Experimental recrystallization of dolomite and comparison of preferred orientations of calcite and dolomite in deformed rocks. Journal of Geology, 77(4): 426-438.
Pieri M, Burlini L, Kunze K, Stretton I and Olgaard D L. 2001. Rheological and microstructural evolution of Carrara marble with high shear strain: Results from high temperature torsion experiments. Journal of Structural Geology, 23(9): 1393-1413.
Renner J, Evans B and Siddiqi G. 2002. Dislocation creep of calcite. Journal of Geophysical Research: Solid Earth, 107(B12): 6-16.
Rutter E H. 1972. The influence of interstitial water on the rheological behaviour of calcite rocks. Tectonophysics, 14(1): 13-33.
Rutter E H. 1974. The influence of temperature, strain rate and interstitial water in the experimental deformation of calcite rocks. Tectonophysics, 22(3): 311-334.
Rutter E H. 1995. Experimental study of the influence of stress, temperature, and strain on the dynamic recrystallization of Carrara marble. Journal of Geophysical Research, 100(12): 24651-24663.
Schmid S M, Boland J N and Paterson M S. 1977. Superplastic flow in fine grained limestone. Tectonophysics, 43(3): 257-291.
Schmid S M, Paterson M S and Boland J N. 1980. High temperature flow and dynamic recrystallization in Carrara Marble. Tectonophysics, 65(3): 245-280.
Ulrich S, Schulmann K and Casey M. 2002. Microstructural evolution and rheological behaviour of marbles deformed at different crustal levels. Journal of Structural Geology, 24(5): 979-995.

相似文献/References:

[1]郭建华,朱美衡,刘辰生.湖南桑植—石门复向斜走廊剖面构造特征分析.大地构造与成矿学,2005.29(2):215.
 GUO Jianhua,ZHU Meiheng,LIU Chensheng.STRUCTURAL CHARACTERISTICS OF THE CORRIDOR SECTION IN SANGZHI-SHIMEN SYNCLINORE.Geotectonica et Metallogenia,2005.44(5):215.
[2]柏道远,熊 雄,杨 俊.齐岳山断裂东侧盆山过渡带褶皱特征及其变形机制.大地构造与成矿学,2015.39(6):1008.doi:10.16539/j.ddgzyckx.2015.06.003
 BAI Daoyuan,XIONG Xiong,YANG Jun.Characteristics and Dynamic Mechanisms of the Folds in the Basin-Mountain Transition Zone, East of the Qiyueshan Fault.Geotectonica et Metallogenia,2015.44(5):1008.doi:10.16539/j.ddgzyckx.2015.06.003
[3]杨克基,漆家福*,马宝军.库车坳陷克拉苏构造带盐上和盐下构造变形差异及其控制因素分析.大地构造与成矿学,2018.42(2):211.doi:10.16539/j.ddgzyckx.2018.02.002
 YANG Keji,QI Jiafu*,MA Baojun.Differential Tectonic Deformation of Subsalt and Suprasalt Strata in Kuqa Depression and Their Controlling Factors.Geotectonica et Metallogenia,2018.44(5):211.doi:10.16539/j.ddgzyckx.2018.02.002
[4]张桂男,宋茂双,李建峰.Carrara大理岩在轴向压缩实验过程中的显微构造特征及变形机制研究.大地构造与成矿学,2018.42(5):786.doi:10.16539/j.ddgzyckx.2018.05.001
 ZHANG Guinan,SONG Maoshuang,LI Jianfeng.Microstructural Characteristics and Deformation Mechanism of Carrara Marble in Axial Compression Experiments.Geotectonica et Metallogenia,2018.44(5):786.doi:10.16539/j.ddgzyckx.2018.05.001

备注/Memo

备注/Memo:
收稿日期: 2019-02-25; 改回日期: 2019-06-18
项目资助: 国家自然科学基金面上项目(41572198、41574079、41874107)和中国科学院战略性先导科技专项(XDB18000000)联合资助。
第一作者简介: 王浩(1990-), 男, 博士研究生, 矿物学、岩石学、矿床学专业。Email: wh2010wh@126.com
通信作者: 宋茂双(1965-), 男, 研究员, 主要从事高温高压岩石和矿物流变学研究。Email: msong@gig.ac.cn;
李建峰(1981-), 男, 工程师, 主要从事高温高压岩石和矿物流变学研究。Email: ljfgig@163.com
更新日期/Last Update: 2020-10-20