[1]邓 尚,刘雨晴,刘 军.2021.克拉通盆地内部走滑断裂发育、演化特征及其石油地质意义: 以塔里木盆地顺北地区为例.大地构造与成矿学,优先出版:001-16.doi:10.16539/j.ddgzyckx.2020.05.015
 DENG Shang,LIU Yuqing,LIU Jun.2021.Structural Styles and Evolution Models of Intracratonic Strike-slipFaults and the Implications for Reservoir Exploration andAppraisal: A Case Study of the Shunbei Area, Tarim Basin.Geotectonica et Metallogenia,优先出版:001-16.doi:10.16539/j.ddgzyckx.2020.05.015
点击复制

克拉通盆地内部走滑断裂发育、演化特征及其石油地质意义: 以塔里木盆地顺北地区为例
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2021年优先出版
页码:
001-16
栏目:
出版日期:
2021-12-31

文章信息/Info

Title:
Structural Styles and Evolution Models of Intracratonic Strike-slipFaults and the Implications for Reservoir Exploration andAppraisal: A Case Study of the Shunbei Area, Tarim Basin
作者:
邓 尚1 2 3 刘雨晴1 刘 军2 韩 俊2 王 斌1 赵 锐1
1.中国石化 石油勘探开发研究院, 北京 100083; 2.中国石化 西北油田分公司, 新疆 乌鲁木齐 830011;3.马永生科学家工作室, 北京 100083
Author(s):
DENG Shang1 2 3 LIU Yuqing1 LIU Jun2 HAN Jun2 WANG Bin1 and ZHAO Rui1
1. Sinopec Petroleum Exploration and Development Research Institute, Beijing 100083, China; 2. Sinopec NorthwestOilfield Company, Urumqi 830011, Xinjiang, China; 3. Ma Yongsheng’s Laboratory, Beijing 100083, China
关键词:
复合构造样式 演化模式 走滑断裂 控藏特征 塔里木盆地
Keywords:
Composite structure evolution model strike-slip faults control the hydrocarbon accumulation Tarim Basin
DOI:
10.16539/j.ddgzyckx.2020.05.015
文献标志码:
A
摘要:
在详细刻画与定量分析顺北地区走滑断裂几何学特征的基础上, 解剖了走滑断裂典型构造样式, 建立了主干断裂演化模式, 并结合生产动态资料探讨了走滑断裂差异演化对规模储集体发育部位、油气沿断裂带差异分布的控制作用:(1) 顺北地区普遍具有“纵向分层变形、主滑移带平面分段”的空间结构特征, 纵向分层变形分界面多为岩性界面, 平面分段主要发育于中下奥陶统碳酸盐岩(勘探目的层)。平面分段中叠接变形段长宽比相似, 均值为3.2。(2) 顺北地区走滑断裂在目的层同时发育有“压脊?堑”复合构造样式, 上覆地堑构造是下伏压脊构造在后期活动时拖曳上覆地层形成的伴生构造。(3) 顺北地区走滑断裂演化受控于盆地南、北不同区域应力场的叠加作用, 演化早期最大主应力方向从南到北发生了NNE 向到NNW 向的逆时针偏转, 为顺北5 断裂弧形构造行迹的发育奠定了基础。(4) 压脊构造与压隆段边界断面类似, 根部沟通烃源, 具有“控储、控藏”特征。地堑构造自上而下发育至目的层, 不直接沟通烃源, 暂未钻遇规模性储集体。研究区走滑断裂晚期活动强度可控制晚期高成熟油气充注程度。
Abstract:
Based on detailed structural characterization and geometric analysis, the structural styles and evolution models ofthe strike-slip faults in the Shunbei area are determined and proposed, respectively. Incorporated with the analysis ofproduction data, the control of strike-slip fault evolution on the formation of reservoir space, on the heterogeneous distributionof hydrocarbon along the faults are discussed. New findings include the following: (1) The strike-slip faults in the Shunbeiarea are characterized by “layered deformation” in profile, they display subvertical segments as “principal displacement zone”at depth and en echelon normal fault zones where relatively shallow. The interfaces between “layered deformation” arecommonly lithological boundaries, and fault segmentations are usually developed in the carbonate rocks (i.e., target layers forexploration). The length to width ratio of the step-over structures between segments is a constant value approximately of 3.2;(2) “Pressure ridges and graben” composite structures are also developed in the strike-slip faults in the Shunbei area. Theformation of overlying graben structure are associated with the movement of underlying pressure ridges; (3) The evolution ofthe strike-slip faults in the Shunbei area is controlled by the superposition of stress fields in the northern and southern regions.Such a superposition caused a counterclockwise rotation of the maximum compressive stress from NNE-orientation in thesouth to the NNW-orientation in north, which shaped the curved trace of the Shunbei 5 at the early stage of evolution; and(4) Pressure ridges and push-up step-overs cut through source rocks at depth, and they both can control the hydrocarbonaccumulation in the carbonate rocks developed above the source rocks. In contrast, graben structures are not directlyconnected with source rocks due to their nature of downward propagation into the carbonate rocks, and no reservoirsassociated with graben faults have been discovered so far. In the study area, intensity of fault movements at later stages cancontrol the charge amount of hydrocarbons at higher maturity levels.

参考文献/References:

安海亭, 李海银, 王建忠, 都小芳. 2009. 塔北地区构造和演化特征及其对油气成藏的控制. 大地构造与成矿学, 33(1): 142–147.
陈槚俊, 何登发, 孙方源, 王峰, 张伟康. 2019. 塔北古隆起的三维地质结构及相关问题探讨. 地学前缘, 26(1):121–133.
邓尚, 李慧莉, 韩俊, 崔德育, 邹榕. 2019. 塔里木盆地顺北5号走滑断裂中段活动特征及其地质意义. 石油与天然气地质, 40(5): 990–999.
邓尚, 李慧莉, 张仲培, 吴鲜, 张继标. 2018. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系. 石油与天然气地质, 39(5): 878–888.
杜洋, 樊太亮, 高志前. 2016. 塔里木盆地中下奥陶统碳酸盐岩地球化学特征及其对成岩环境的指示——以巴楚大板塔格剖面和阿克苏蓬莱坝剖面为例. 天然气地球科学, 27(8): 1509–1523.
顾忆, 万旸璐, 黄继文, 庄新兵, 王斌, 李淼. 2019. “大埋深、高压力”条件下塔里木盆地超深层油气勘探前景.石油实验地质, 41(2): 157–164.
韩晓影, 汤良杰, 曹自成, 魏华动, 付晨阳. 2018. 塔中北坡“复合花状”构造发育特征及成因机制. 地球科学,43(2): 525–537.
何登发, 周新源, 杨海军, 管树巍, 张朝军. 2008. 塔里木盆地克拉通内古隆起的成因机制与构造类型. 地学前缘, 15( 2) : 207–221.
贾承造. 2004. 塔里木盆地板块构造与大陆动力学. 北京:石油工业出版社: 1–96.
焦方正. 2018. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景. 石油与天然气地质, 39(2): 207–216.
李兵, 邓尚, 李王鹏, 高利君, 许杰. 2019. 塔里木盆地塔河地区走滑断裂体系活动特征与油气地质意义. 特种油气藏, 26(4): 45–51.
李映涛, 漆立新, 张哨楠, 云露, 曹自成, 韩俊, 尤东华,肖红琳, 肖重阳. 2019. 塔里木盆地顺北地区中?奥陶统断溶体储层特征及发育模式. 石油学报, 40(12):1470–1484.
吕海涛, 张哨楠, 马庆佑. 2017. 塔里木盆地中北部断裂体系划分及形成机制探讨. 石油实验地质, 39(4):444–452.
马德波, 邬光辉, 朱永峰, 陶小晚, 陈利新, 李鹏飞, 袁苗, 孟广仁. 2019. 塔里木盆地深层走滑断层分段特征及对油气富集的控制: 以塔北地区哈拉哈塘油田奥陶系走滑断层为例. 地学前缘, 26(1): 225–237.
马永生, 何治亮, 赵培荣, 朱宏权, 韩俊, 尤东华, 张军涛. 2019. 深层?深层碳酸盐岩储层形成机理新进展. 石油学报, 40(12): 1415–1425.
宁飞, 金之钧, 张仲培, 云金表, 张继标. 2018. 塔中北坡走滑断裂成因机理与油气成藏. 石油与天然气地质,39(1): 98–106.
漆立新. 2020. 塔里木盆地顺北超深断溶体油藏特征与启示. 中国石油勘探, 25(1): 102–111.
任建业, 阳怀忠, 胡德胜, 张俊霞, 王珊. 2012. 塔里木盆地中央隆起带断裂活动及其对海相克拉通解体的作用. 地球科学, 37(4): 645–653.
王璐瑶, 邓尚, 张仲培, 张继标, 文山师. 2017. 顺8北三维区“串珠”发育特征与油气地质意义. 特种油气藏,24(6): 66–71.
邬光辉, 陈志勇, 曲泰来, 王春和, 李浩武, 朱海燕. 2012.塔里木盆地走滑带碳酸盐岩断裂相特征及其与油气关系. 地质学报, 86(2): 219–227
杨勇, 汤良杰, 刁新东, 谢大庆. 2018. 塔里木盆地雅克拉断凸断裂差异变形特征及其控制因素. 石油与天然气地质, 39(1): 89–97.
赵锐, 赵腾, 李慧莉, 邓尚, 张继标. 2019. 塔里木盆地顺北油气田断控缝洞型储层特征与主控因素. 特种油气藏, 26(5): 8–13.
Aydin A. 2000. Fractures, faults, and hydrocarbon entrapment,migration and flow. Marine and Petroleum Geology,17(7): 797–814.
Aydin A and Nur A. 1982. Evolution of pull-apart basins andtheir scale independence. Tectonics, 1(1): 91–105.
Aydin A and Nur A. 1985. The types and role of stepovers instrike-slip tectonics. Society of Economic Paleontologistsand Mineralogists, Special Publications, 37: 35–44.
Billi A, Salvini F and Storti F. 2003. The damage zone-faultcore transition in carbonate rocks: Implications for faultgrowth, structure and permeability. Journal of StructuralGeology, 25(11): 1779–1794.
Cruikshank K M and Aydin A. 1995. Unweaving the jointsin Entrada Sandstone, Arches National Park, Utah, USA. Journal of Structural Geology, 17(3): 409–421.
Cunningham W D and Mann P. 2007. Tectonics of strike-sliprestraining and releasing bends. Geological Society,London, Special Publications, 290(1): 1–12.
Deng S, Li H L, Zhang Z P, Zhang J B and Yang X. 2019.Structural characterization of intracratonic strike-slipfaults in the central Tarim Basin. AAPG Bulletin, 103(1):109–137.
Ferrill D A, Morris A P, McGinnis R N, Smart K J, Wigginton SS and Hill N J. 2017. Mechanical stratigraphy and normalfaulting. Journal of Structural Geology, 94: 275–302.
Flodin E A and Aydin A. 2004. Evolution of a strike-slipfault network, Valley of Fire State Park, southern Nevada.Geological Society of America Bulletin, 116(1–2): 42–59.
Fossen H. 2010. Structural Geology. New York: CambridgeUniversity Press: 1–463.
Gogonenkov G N and Timurziev A I. 2010. Strike-slip faultsin the West Siberian basin: Implications for petroleumexploration and development. Russian Geology andGeophysics, 51(3): 304–316.
Han X Y, Deng S, Tang L J and Cao Z C. 2017. Geometry,kinematics and displacement characteristics of strikeslipfaults in the northern slope of Tazhong uplift inTarim Basin: A study based on 3D seismic data. Marineand Petroleum Geology, 88: 410–427.
Han X Y, Tang L J, Deng S and Cao Z C. 2020. Spatialcharacteristics and controlling factors of the strike-slipfault zones in the northern slope of Tazhong Uplift,Tarim Basin: Insight from 3D seismic data. Acta GeologicaSinica-English Edition, 94(2): 516–529.
Harding T P. 1974. Petroleum traps associated with wrenchfaults. AAPG bulletin, 58(7): 1290–1304.
Ma D B, Wu G H, Scarselli N, Luo X S, Han J F and Chen ZY. 2019. Seismic damage zone and width-throw scalingalong the strike-slip faults in the Ordovician carbonatesin the Tarim Basin. Petroleum Science, 16(4): 752–762.
Mann P. 2007. Global catalogue, classification and tectonicorigins of restraining-and releasing bends on active andancient strike-slip fault systems. Geological Society,London, Special Publications, 290(1): 13–142.
Martin E S. 2016. The distribution and characterization ofstrike-slip faults on Enceladus. Geophysical ResearchLetters, 43(6): 2456–2464.
McClay K and Bonora M. 2001. Analog models ofrestraining stepovers in strike-slip fault systems. AAPGBulletin, 85(2): 233–260.
Myers R and Aydin A. 2004. The evolution of faults formedby shearing across joint zones in sandstone. Journal ofStructural Geology, 26(5): 947–966.
Olson J E and Pollard D D. 1991. The initiation and growthof en echelon veins. Journal of Structural Geology,13(5): 595–608.
Pollard D D and Fletcher R C. 2005. Fundamentals ofstructural geology. New York: Cambridge UniversityPress: 1–497.
Qiu H B, Deng S, Cao Z C, Yin T and Zhang Z P. 2019. Theevolution of the complex anticlinal belt withcrosscutting strike-slip faults in the central Tarim Basin,NW China. Tectonics, 38(6): 2087–2113.
Woodcock N H, Dickson J A D and Tarasewicz J P T. 2007.Transient permeability and reseal hardening in faultzones: Evidence from dilation breccia textures. GeologicalSociety, London, Special Publications, 270(1): 43–53.
Wu G H, Kim Y S, Su Z, Yang P F, Ma D B and Zheng D M.2020. Segment interaction and linkage evolution in aconjugate strike-slip fault system from the Tarim Basin,NW China. Marine and Petroleum Geology, 112:104054.

备注/Memo

备注/Memo:
收稿日期: 2020-04-26; 改回日期: 2020-09-09
项目资助: 国家自然科学基金企业创新发展联合基金项目(U19B6003)、中石化科技部项目(P20062)联合资助。
第一作者简介: 邓尚(1987–), 男, 博士, 高级工程师, 主要从事构造地质与石油地质综合研究。Email: shang_deng@126.com
通信作者: 刘雨晴(1990–), 女, 博士, 主要从事构造地质与石油地质综合研究。Email: liuyqsmile@163.com
更新日期/Last Update: 2020-11-23