[1]韩 珂,杨兴科,何虎军.2020.南秦岭汉阴北部金矿田脆-韧性剪切带控矿特征及构造变形-成矿年代学研究.大地构造与成矿学,44(5):801-818.doi:10.16539/j.ddgzyckx.2020.05.001
 HAN Ke,YANG Xingke,HE Hujun.2020.Characteristics of Ore-controlling Brittle-ductile Shear Zone and Ages of Deformation and Mineralization in the Northern Hanyin Gold Field, South Qinling, China.Geotectonica et Metallogenia,44(5):801-818.doi:10.16539/j.ddgzyckx.2020.05.001
点击复制

南秦岭汉阴北部金矿田脆-韧性剪切带控矿特征及构造变形-成矿年代学研究
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2020年44卷05期
页码:
801-818
栏目:
构造地质学
出版日期:
2020-10-20

文章信息/Info

Title:
Characteristics of Ore-controlling Brittle-ductile Shear Zone and Ages of Deformation and Mineralization in the Northern Hanyin Gold Field, South Qinling, China
文章编号:
1001-1552(2020)05-0801-018
作者:
韩 珂1 杨兴科1.2* 何虎军1.2 晁会霞1.2 杨龙伟1 张伟胜1
1.长安大学 地球科学与资源学院, 陕西 西安 710054; 2.长安大学 西部矿产资源与地质工程教育部重点实验室, 陕西 西安 710054
Author(s):
HAN Ke1 YANG Xingke1.2* HE Hujun1.2 CHAO Huixia1.2 YANG Longwei1 and ZHANG Weisheng1
1. School of Earth Science and Resources, Chang’an University, Xi’an 710054, Shaanxi, China; 2. Key Laboratory of West Mineral Resources and Geology Engineering Ministry of Education, Xi’an 710054, Shaanxi, China
关键词:
南秦岭 金矿田 脆-韧性剪切带 面理 构造变形-成矿年代 陆内造山
Keywords:
South Qinling gold field brittle-ductile shear zone foliation structure deformation-mineralization age intracontinental orogeny
分类号:
P613
DOI:
10.16539/j.ddgzyckx.2020.05.001
文献标志码:
A
摘要:
陕南汉阴北部金矿田位于南秦岭-北大巴山逆冲推覆系中。矿田内赋矿地层为下志留统梅子垭组(S1m)浅变质强变形片岩, 构造格架为5条次级近EW走向的脆-韧性剪切带。由于矿田成因类型、脆-韧性剪切带性质及构造期次划分、构造控矿特征、构造-成矿时代等关键问题研究仍存在争议和不足, 从而制约矿田深部找矿。为此, 本文采用矿田(区)大比例尺构造-蚀变岩相填图、锆石U-Pb和黑云母40Ar-39Ar测年等方法, 查明金矿田脆-韧性剪切带内至少存在3期构造变形, 其中以第二期(S2)构造变形为主, 形成矿田内右行走滑-逆冲推覆控矿脆-韧性剪切带, 走向NW-NWW, 倾向NE-NNE。剪切带与蚀变矿化带空间位置关系套合较好, 矿体产状变化受剪切带及S2期构造面理控制, 剪切带的纵向脆性、韧性变形分带分别控制石英脉型和构造蚀变岩型矿化分布。脆-韧性剪切带内未发生剪切变形、且产状与剪切带产状近乎一致的花岗闪长岩脉锆石U-Pb年龄(180.2±3.6 Ma)和含矿黑云母变斑晶化蚀变岩黑云母40Ar-39Ar年龄(178.4±0.8 Ma), 表明剪切带的活动时代应为178 Ma左右, 属早侏罗世, 处在南秦岭陆内造山期。结合前人获得的同构造带西段羊坪湾金矿载金黄铁矿Rb-Sr同位素年龄(208±0.88 Ma), 表明金矿田的成矿作用可能始于晚三叠世, 延续到侏罗纪, 贯穿于脆-韧性剪切带变形活动期, 即金成矿期为晚三叠世-侏罗纪。下一步找矿远景区应位于矿田脆-韧性剪切带内与金矿化密切相关的蚀变带发育部位。
Abstract:
The northern Hanyin gold field occurs in the South Qinling-North Daba Mountain thrust nappe in the southern Shaanxi province. The ore bodies are hosted in the highly deformed low-grade metamorphosed schists of the Lower Silurian Meiziya Formation (S1m), and controlled by five near NW striking brittle-ductile shear zones. Issues such as genetic types of the ore deposits, properties of the brittle-ductile shear zones and structural stages, structural ore-controlling characteristics, and ages of deformation and mineralization are still unclear, which significantly hinder the deep ore-prospecting in the orefield. To address the issues listed above, we carried out large-scale structure-alteration facies mapping and zircon U-Pb and biotite 40Ar-39Ar isotope dating of the brittle-ductile shear zones in the ore field. Three stages of structure deformation were recognized in the right-slip-thrust-uplifted ore-controlling brittle-ductile shear zone in the ore field, with the second stage (S2) as the dominant stage of deformation. The shear zone is NW-NWW striking, dipping to NE-NNE. The ore mineralization is closely related to brittle-ductile shearing. The occurrences of ore bodies are strictly controlled by the shear zone, the S2 foliation in particular; whereas the vertical zonation of the brittle-ductile deformation of the shear zone controls the distribution of mineralization types, i.e., the brittle and ductile deformation zones controlled the quartz vein and altered rock types, respectively. Zircon U-Pb age (180.2±3.6 Ma) of the undeformed granodiorite and 40Ar-39Ar plateau age (178.4±0.8 Ma) of biotite phenocryst in the brittle-ductile shear zone indicate that the brittle-ductile deformation in ore field took place at about 178 Ma, which belongs to the Early Jurassic intracontinental orogenic period of the South Qinling. Gold-bearing pyrite in the Yangpingwan gold deposit, which is located in the western part of the same structural belt that hosts the Huanglong gold deposit, has Rb-Sr isochron age of 208±0.88 Ma. Therefore, it is reasonable to infer that the gold mineralization initiated before the brittle-ductile shearing in the ore field and continued through the prolonged structural deformation. We thus suggest that further prospecting should be focused on the brittle-ductile shear zone, especially areas with strong alteration.

参考文献/References:

白龙安. 2005. 陕西省汉阴县黄龙金矿床地质特征及找矿标志. 地质找矿论丛, 20(S1): 24-27.
陈柏林. 2000. 糜棱岩型金矿金元素丰度与构造变形的关系. 矿床地质, 19(1): 17-25.
陈虹, 胡健民, 武国利, 田蜜. 2014. 南秦岭构造带中段晚中生代陆内变形特征与侧向挤出构造. 吉林大学学报(地球科学版), 44(6): 1906-1927.
陈鹏, 施炜. 2015. 南秦岭造山带韧性剪切系中-晚侏罗世运动学分析与力学机制探讨. 地球科学进展, 30(1): 69-77.
董树文, 张岳桥, 李秋生, 高锐, 胡健民. 2014. 论大巴山陆内造山带. 北京: 地质出版社: 1-347.
董云鹏, 查显峰, 付明庆, 张茜, 杨钊, 张燕. 2008. 秦岭南缘大巴山褶皱-冲断推覆构造的特征. 地质通报, 27(9): 1493-1508.
杜坚. 2014. 安康北部志留系金矿地质特征及找矿前景探讨. 中国矿山工程, 43(5): 39-43.
杜玉良, 汤中立, 蔡克勤, 李文渊, 张韬. 2003. 秦岭-祁连造山带印支-燕山期构造与大型-超大型矿床的形成关系. 矿床地质, 22(1): 65-71.
樊培贺. 2015. 南秦岭汉阴县金斗坡-汉滨区柳树坪脆-韧性剪切带控矿构造特征与金矿成矿富集规律. 西安: 长安大学硕士学位论文: 1-113.
方维萱, 卢纪英, 张国伟. 1999. 南秦岭及邻区大陆动力成矿系统及成矿系列特征与找矿方向. 西北地质科学, 20(2): 3-18.
冯明伸, 杨建东. 1994. 安康地区北部韧性推覆构造基本特征及对金矿成矿控制作用. 陕西地质, 12(1): 17-26.
高怀雄, 李卫波, 许锋. 2016. 陕西石泉-旬阳金矿成矿规律研究与矿产资源预测报告. 西安: 陕西省地质调查院: 13-156.
高雅宁. 2017. 南秦岭汉阴北部金矿田陆内造山期构造-岩浆-成矿规律及成矿模式研究. 西安: 长安大学博士学位论文: 1-136.
弓虎军, 朱赖民, 孙博亚, 李犇, 郭波. 2009a. 南秦岭沙河湾、曹坪和柞水岩体锆石U-Pb年龄、Hf同位素特征及其地质意义. 岩石学报, 25(2): 248-264.
弓虎军, 朱赖民, 孙博亚, 李犇, 郭波, 王建其. 2009b. 南秦岭地体东江口花岗岩及其基性包体的锆石U-Pb年龄和Hf同位素组成. 岩石学报, 25(11): 3029-3042.
郭岐明, 陈清敏, 王强, 张拴厚. 2018. 陕西秦岭造山带中生代构造体制与成矿作用研究项目成果报告. 西安: 陕西省地质调查院: 1-300.
胡健民, 孟庆任, 白武明, 赵国春. 2002. 南秦岭构造带中-晚古生代伸展构造作用. 地质通报, 21(8-9): 471- 477.
胡健民, 孟庆任, 陈虹, 武国利, 渠洪杰, 高卫, 陈文. 2011. 秦岭造山带内宁陕断裂带构造演化及其意义. 岩石学报, 27(3): 657-671.
胡健民, 施炜, 渠洪杰, 陈虹, 武国利, 田蜜. 2009. 秦岭造山带大巴山弧形构造带中生代构造变形. 地学前缘, 16(3): 49-68.
李福让, 侯俊富, 杨弘, 王启. 2009. 陕西石泉县羊坪湾金矿床地质-地球化学特征及金的富集规律. 中国地质, 36(1): 174-183.
李会民. 1997. 石泉-汉阴北部金矿带地质特征. 陕西地质, 15(2): 48-57.
李三忠, 张国伟, 李亚林, 赖绍聪, 李宗会. 2002. 秦岭造山带勉略缝合带构造变形与造山过程. 地质学报, 76(4): 469-483.
梁文天. 2009. 秦岭造山带东西秦岭交接转换区陆内构造特征与演化过程. 西安: 西北大学博士学位论文: 1-168.
刘欢, 高栋, 鲁浩, 罗德智, 张国鹏, 焦建刚. 2016. 陕西汉阴北部梅子垭组变质作用研究. 西北地质, 49(2): 237-247.
毛景文, 谢桂青, 张作衡, 李晓峰, 王义天, 张长青, 李永峰. 2005. 中国北方中生代大规模成矿作用的期次及其地球动力学背景. 岩石学报, 21(1): 171-190.
祁东. 2015. 汉阴北部吴家湾地区金矿床控矿因素与矿床成因研究. 西安: 长安大学硕士学位论文: 1-87.
秦江锋. 2010. 秦岭造山带晚三叠世花岗岩类成因机制及深部动力学背景. 西安: 西北大学博士学位论文: 1-183.
王东生, 王瑞廷, 代军治, 王长安, 李建华, 陈荔湘. 2009. 秦岭造山带金属矿床的“二元控矿”特征. 地质学报, 83(11): 1719-1729.
王靖华, 张复新, 于在平, 于岚. 2002. 秦岭金属矿床成矿系列与大陆造山带构造动力学背景. 中国地质, 29(2): 192-196.
王平安, 陈毓川. 1997. 秦岭造山带构造-成矿旋回与演化. 地质力学学报, 3(1): 12-22.
吴闻人, 王北颖, 冯明伸. 1991. 陕西省南秦岭造山带中部韧性剪切带的形成、演化及其与金矿成矿关系研究. 西安: 陕西省地质矿产局: 1-203.
许志琴. 1987. 扬子板块北缘的大型深层滑脱构造及动力学分析. 中国区域地质, (4): 289-300.
闫臻, 王宗起, 陈雷, 刘树文, 任涛, 徐学义, 王瑞廷. 2014. 南秦岭山阳-柞水矿集区构造-岩浆-成矿作用. 岩石学报, 30(2): 401-414.
杨宏宇. 2017. 南秦岭沈坝一带柳坑金矿段地质地球化学特征与成矿规律. 西安: 长安大学硕士学位论文: 1-93.
杨兴科, 韩珂, 吴旭, 王北颖, 王新, 杨宏宇, 何虎军, 晁会霞, 于恒彬. 2016. 南秦岭陆内造山构造变形特征与演化: 石泉-汉阴北部一带晚印支-燕山期构造变形分析. 地学前缘, 23(4): 72-80.
杨兴科, 何虎军, 张康. 2011. 陕西安康汉阴县铁佛-汉滨区流芳志留系岩金矿田构造及快速评价勘查方法研究报告. 西安: 长安大学地质调查研究院: 13-186.
杨兴科, 姬金生, 张连昌, 曾章仁. 1998. 东天山大型韧性剪切带基本特征与金矿预测. 大地构造与成矿学, 22(3): 209-218.
杨志华, 朱志军, 王北颖, 周美夫, 赵太平, 苏生瑞, 张虹波, 赵晓宁. 2002. 南秦岭山柞旬-安康地区的两次逆冲推覆和Ⅱ型造山带基本特征. 西北地质, 35(1): 1-14.
姚书振, 丁振举, 周宗桂, 陈守余. 2002. 秦岭造山带金属成矿系统. 地球科学, 27(5): 599-604.
于恒彬. 2013. 东秦岭宁陕-镇安一带晚印支-早燕山期构造-岩浆演化与金钼成矿特征分析. 西安: 长安大学硕士学位论文: 1-89.
于在平, 崔海峰. 2003. 造山运动与秦岭造山. 西北大学学报(自然科学版), 33(1): 65-69.
袁学诚. 1997. 秦岭造山带地壳构造与楔入成山. 地质学报, 71(3): 227-235.
张国伟, 孟庆任, 赖绍聪. 1995. 秦岭造山带的结构构造. 中国科学(B辑), 25(9): 994-1003.
张国伟, 孟庆任, 于在平, 孙勇, 周鼎武, 郭安林. 1996. 秦岭造山带的造山过程及其动力学特征. 中国科学(D辑), 26(3): 193-200.
张康. 2012. 南秦岭汉阴北部志留系金矿田构造控矿规律及找矿标志研究. 西安: 长安大学硕士学位论文: 1-93.
张苏楠, 刘建朝, 杨兴科. 2012. 陕南汉阴金矿田中浅变质岩特征及形成温压条件探讨. 西北地质, 45(S1): 170-172.
朱赖民, 张国伟, 李犇, 郭波, 姚安平, 弓虎军. 2009. 与秦岭造山有关的几个关键成矿事件及其矿床实例. 西北大学学报(自然科学版), 39(3): 381-391.
Chen H, Hu J M, Wu G L, Shi W, Geng Y Y and Qu H J. 2015. Apatite fission-track thermochronological constraints on the pattern of late Mesozoic-Cenozoic uplift and exhumation of the Qinling Orogen, central China. Journal of Asian Earth Sciences, 114(4): 649-673.
Dong Y P, Liu X M, Zhang G W, Chen Q, Zhang X N, Li W and Yang C. 2012. Triassic diorites and granitoids in the Foping area: Constraints on the conversion from subduction to collision in the Qinling orogen, China. Journal of Asian Earth Sciences, 47(S1): 123-142.
Dong Y P, Sun S S, Yang Z, Liu X M, Zhang F F, Li W, Cheng B, He D F and Zhang G W. 2017. Neoproterozoic subduction-accretionary tectonics of the South Qinling Belt, China. Precambrian Research, 293(5): 73-90.
Dong Y P, Zhang X N, Liu X M, Li W, Chen Q, Zhang G W, Zhang H F, Yang Z, Sun S S and Zhang F F. 2015. Propagation tectonics and multiple accretionary processes of the Qinling Orogen. Journal of Asian Earth Sciences, 104(S1): 84-98.
Han L, Zhou Y S and He C R. 2013. Water-enhanced plastic deformation in felsic rocks. Science China: Earth Sciences, 56(2): 203-216.
Hu J M, Chen H, Qu H J, Wu G L, Yang J X and Zhang Z Y. 2012. Mesozoic deformations of the Dabashan in the southern Qinling orogen, central China. Journal of Asian Earth Sciences, 47(S1): 171-184.
Koppers A A P. 2002. ArArCALC-software for 40Ar/39Ar age calculations. Computer and Geosciences, 28(5): 605-619.
Li J H, Zhang Y Q, Dong S W and Shi W. 2013. Structural and geochronological constraints on the Mesozoic tectonic evolution of the North Dabashan zone, South Qinling, central China. Journal of Asian Earth Sciences, 64(3): 99-114.
Li S Z, Jahn B M, Zhao S J, Dai L M, Li X Y, Suo Y H, Guo L L, Wang Y M, Liu X C, Lan H Y, Zhou Z Z, Zheng Q L and Wang P C. 2017. Triassic southeastward subduction of North China Block to South China Block: Insights from new geological, geophysical and geochemical data. Earth-Science Reviews, 166(3): 270-285.
Li S Z, Kusky T M, Wang L, Zhang G W, Lai S C, Liu X C, Dong S W and Zhao G C. 2007. Collision leading to multiple-stage large-scale extrusion in the Qinling orogen: Insights from the Mianlue suture. Gondwana Research, 12(1-2): 121-143.
Li S Z, Zhao S J, Liu X, Cao H H, Yu S, Li X Y, Yu S Y and Suo Y H. 2018. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia. Earth-Science Reviews, 186(11): 37-75.
Liu L P, Li S Z, Liu B, Liu E S, Dai L M and Zhang G W. 2012. Geometry and timing of Mesozoic deformation in the western part of the Xuefeng Tectonic Belt (South China): Implication for intra-continental deformation. Journal of Asian Earth Sciences, 49(S1): 328-336.
Liu S F, Li W P, Wang K, Qian T and Jiang C X. 2015. Late Mesozoic development of the southern Qinling-Dabieshan foreland fold-thrust belt, Central China, and its role in continent-continent collision. Tectonophysics, 644-645(3): 220-234.
Meng Q R and Zhang G W. 2000. Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics, 323(3): 183-196.
Sang H Q, Wang F, He H Y, Wang Y L, Yang L K and Zhu R X. 2006. Intercalibration of ZBH-25 biotite reference material untilized for K-Ar and 40Ar-39Ar age determination. Acta Petrologica Sinica, 22(12): 3059-3078.
Shi W, Zhang Y Q, Dong S W, Hu J M, Wiesinger M, Ratschbacher L, Jonckheere R, Li J H, Tian M, Chen H, Wu G L, Qu H J, Ma L C and Li H L. 2012. Intra-continental Dabashan orocline, southwestern Qinling, Central China. Journal of Asian Earth Sciences, 46(3): 20-38.
Shi Y, Yu J H and Santosh M. 2013. Tectonic evolution of the Qinling orogenic belt, Central China: New evidence from geochemical, zircon U-Pb geochronology and Hf isotopes. Precambrian Research, 231(7): 19-60.
Steiger R H and Jager E. 1977. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36(3): 359-362.
Wang X X, Wang T and Zhang C L. 2013. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process. Journal of Asian Earth Sciences, 72(8): 129-151.
Zhang Y Q, Dong S W, Zhao Y and Zhang T. 2008. Jurassic tectonics of North China: A synthetic view. Acta Geologica Sinica, 82(2): 310-326.
Zhang Y Q, Shi W, Li J H, Wang R R, Li H L and Dong S W. 2010. Formation mechanism of the Dabashan foreland arc-shaped structural belt. Acta Geologica Sinica, 84(9): 1300-1315.
Zhou Y S, He C R and Yang X S. 2008. Water contents and deformation mechanism in ductile shear zone of middle crust along the Red River fault in southwestern China. Science in China Series D: Earth Science, 51(10): 1411-1425.
Zhou Z J, Mao S D, Chen Y J and Santosh M. 2016. U-Pb ages and Lu-Hf isotopes of detrital zircons from the southern Qinling Orogen: Implications for Precambrian to Phanerozoic tectonics in central China. Gondwana Research, 35(7): 323-337.

相似文献/References:

[1]查显锋,董云鹏,李玮.南秦岭佛坪隆起的成因探讨——构造解析的证据.大地构造与成矿学,2010.34(3):331.
 ZHA Xianfeng,DONG Yunpeng,LI Wei.Uplifting Process of Foping Dome in Southern Qinling:Constrained by Structural Analysis.Geotectonica et Metallogenia,2010.44(5):331.

备注/Memo

备注/Memo:
收稿日期: 2019-01-02; 改回日期: 2019-03-28
项目资助: 中国地质调查局项目“陕西石泉-旬阳金矿整装勘查区关键基础地质研究”(12120114014201)、中央高校基本科研项目“矿田构造与找矿预测”(310827153408)、镇安西部矿集区岩浆作用与钨钼成矿研究项目(220127180292)和秦岭成矿带典型矿集区勘查成果集成与技术支撑研究项目(214027160195)联合资助。
第一作者简介: 韩珂(1990-), 男, 博士研究生, 矿床普查与勘探专业。Email: 877415765@qq.com
通信作者: 杨兴科(1961-), 男, 教授, 博士生导师, 主要从事构造地质学、矿田构造与成矿预测教学与研究工作。Email: xky61@163.com
更新日期/Last Update: 2020-10-20