参考文献/References:
蔡周荣, 向俊洋, 黄强太, 李建峰, 卢丽娟. 2018. 红河断裂韧性剪切带内纳米颗粒的形态及其构造意义. 地球科学, 43(5): 1524-1531.
曹淑云, 刘俊来, Bernd Leiss, Axel Vollbrecht, 邹运鑫, 赵春强. 2009. 哀牢山?红河剪切带左行走滑作用起始时间约束——点苍山高温糜棱岩的显微构造与热年代学证据. 地质学报, 83(10): 1388-1400.
陈敬中. 1994. 纳米科技的发展与纳米矿物学研究. 地质科技情报, 13(2): 32-38.
琚宜文, 孙岩, 万泉, 卢双舫, 何宏平, 吴建光, 张文静, 王国昌, 黄骋. 2016. 纳米地质学: 地学领域革命性挑战. 矿物岩石地球化学通报, 35(1): 1-20.
刘德良, 杨强, 李王晔, 孙岩, 张长鑫. 2004. 郯庐断裂南段韧性剪切带糜棱岩中纳米级颗粒的发现. 科学技术与工程, 4(1): 42-43.
刘俊来, 唐渊, 宋志杰, Tran My Dung, 翟云峰, 吴文彬, 陈文. 2011. 滇西哀牢山构造带: 结构与演化. 吉林大学学报(地球科学版), 41(5): 1285-1303.
孙岩, 琚宜文, 陆现彩, 晁洪太, 王志才. 2016. 从纳米层次重新认识变形的地质体. 矿物岩石地球化学通报, 35(1): 52-55.
孙岩, 陆现彩, 刘德良, 舒良树, 朱文斌, 郭继春. 2005. 断裂剪切带厘米级磨砾和纳米级磨粒的发现、命名及其油气地质意义. 高校地质学报, 11(4): 521-526.
孙岩, 陆现彩, Zhang Xihui, 刘浩, Lin Aiming. 2009. 变质岩透入性面理的纳米结构研究. 中国科学(D辑), 39(8): 1140-1147.
王二七, 樊春, 王刚, 石许华, 陈良忠, 陈智樑. 2006. 滇西哀牢山?点苍山形成的构造和地貌过程. 第四纪研究, 26(2): 220-227.
Cai Z R, Lu L J, Huang Q T, Li J F, Zhong L F, Xiang J Y, Xia B and Liu H L. 2019. Formation conditions for nanoparticles in a fault zone and their role in fault sliding. Tectonics, 38: 159-175.
Cao S Y, Neubauer F, Liu J L, Bernroider M, Cheng X, Li J, Yu Z and Genser J. 2017. Rheological weakening of high-grade mylonites during low-temperature retrogre?ssion: The exhumed continental Ailao Shan-Red River fault zone, SE Asia. Journal of Asian Earth Sciences, 139: 40-60.
Cao S Y, Neubauer F, Liu J L, Genser J and Leiss B. 2011. Exhumation of the Diancang Shan metamorphic complex along the Ailao Shan?Red River belt, Yunan, southwe?stern, China: Evidence from 40Ar/39Ar thermochronology. Journal of Asian Earth Sciences: 525-550. doi: 10.1016/ j.jseaes.2011.04.017
Chester F M, Evans J P and Biegel R L. 1993. Internal structure and weakening mechanisms of the San Andreas Fault. Journal of Geophysical Research: Solid Earth, 98(B1): 771-786. doi: 10.1029/92JB01866
De Paola N. 2013. Nano-powder coating can make fault surfaces smooth and shiny: Implications for fault mechanics? Geology, 41: 719-720.
De Paola N, Holdsworth R E, Viti C, Collettini C and Bullock R. 2015. Can grain size sensitive flow lubricate faults during the initial stages of earthquake propagation? Earth and Planetary Science Letters, 431: 48-58.
Gilley L D, Harrison T M, Leloup P H, Ryerson F J, Lovera O M and Wang J H. 2003. Direct dating of left-lateral deformation along the Red River shear zone, China and Vietnam. Journal of Geophysical Research, 108(B2). http: //dx.doi.org/10.1029/2001JB001726
Han R, Shimamoto T, Hirose T, Ree J H and Ando J I. 2007. Ultra-low friction of carbonate faults caused by thermal decomposition. Science, 316: 878?881. doi: 10.1126/ science.1139763
Harrison T M, Cheng W, Leloup H P, Ryerson F J and Tapponnier P. 1992. An early Miocence transition in deformation regime within the Red River fault zone, Yunnan, and its significance for Indo-Asian tectonics. Journal of Geophysical Research: Solid Earth, 97(B5): 7159-7182.
Leloup H P, Lacassin R, Tapponnier P, Sch?rer U, Zhong D L, Liu X H, Zhang L S, Ji S C and Phan T T. 1995. The Ailao Shan?Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectono?physics, 251(1-4): 3-10.
Liu J L, Tang Y, Tran M D, Cao S Y, Zhao Z C, Zhao Z D and Chen W. 2012. The nature of the Ailao Shan?Red River (ASRR) shear zone: Constraints from structural, microstructural and fabric analyses of metamorphic rocks from the Diancang Shan, Ailao Shan and Day Nui Con Voi massifs. Journal of Asian Earth Sciences, 47: 231-251.
Mazur S, Green C, Stewart M G, Whittaker J M, Williams S and Bouatmani R. 2012. Displacement along the Red River Fault constrained by extension estimates and plate reconstructions. Tectonics, 31(5). doi: 10.1029/ 2012TC003174.
Sammis C G and Ben-Zion Y. 2008. Mechanics of grain-size reduction in fault zones. Journal of Geophysical Research, 113(B02306). doi: 10.1029/2006JB004892
Sch?rer U, Zhang L S and Tapponnier P. 1994. Duration of strike-slip movement in large shear zones: The Red River belt, China. Earth and Planetary Science Letters, 126(4): 379-397.
Schoenbohm L M, Burchfiel B C, Chen L Z and Yin J Y. 2006. Miocene to present activity along the Red River fault, China, in the context of continental extrusion, upper-crustal rotation, and lower-crustal flow. Geological Society of America Bulletin, 118(5-6): 672-688.
Siman-Tov S, Aharonov E, Sagy A and Emmanuel S. 2013. Nanograins form carbonate fault mirrors. Geology, 41(6): 703-706.
Smeraglia L, Bettucci A, Billi E A, Carminati A, Cavallo G, Di Toro, Natali M, Passeri D, Rossi M and Spagnuolo E. 2017. Microstructural evidence for seismic and aseismic slips along clay-bearing, carbonate faults. Journal of Geophysical Research: Solid Earth, 122. doi: 10.1002/ 2017JB014042
Spagnuolo E, Plümper O, Violay M, Cavallo A and Di Toro G. 2015. Fast-moving dislocations trigger flash weakening in carbonate-bearing faults during earthquakes. Scientific Reports, 5: 16112. doi: 10.1038/srep16112
Tapponnier P, Lacassin R, Leloup P H, Sch?rer U, Zhong D L, Wu H W, Liu X H, Ji S C, Zhang L S and Zhong J Y. 1990. The Ailao Shan?Red River metamorphic belt: Tertiary left lateral shear between Indochina and South China. Nature, 243: 43l-437.