[1]蔡周荣,卢丽娟,黄强太.2018.红河断裂带类微生物状纳米颗粒的发现及其构造意义.大地构造与成矿学,优先出版:001-10.doi:10.16539/j.ddgzyckx.2020.02.016
 CAI Zhourong,LU Lijuan,HUANG Qiangtai.2018.Discovery of Microbial-like Nanoparticles in the Red River Fault Zone and Its Tectonic Significance.Geotectonica et Metallogenia,优先出版:001-10.doi:10.16539/j.ddgzyckx.2020.02.016
点击复制

红河断裂带类微生物状纳米颗粒的发现及其构造意义
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2018年优先出版
页码:
001-10
栏目:
出版日期:
2020-12-30

文章信息/Info

Title:
Discovery of Microbial-like Nanoparticles in the Red River Fault Zone and Its Tectonic Significance
作者:
蔡周荣12 卢丽娟3 黄强太12 李建峰4 肖 阳12 杨 鹏12 陆杏欣12 张 程12 黎雨晗3
1.中山大学 海洋科学学院, 广东 珠海 519082; 2.南方海洋科学与工程广东省实验室(珠海), 广东 珠海 519082; 3.中国科学院 南海海洋研究所 边缘海地质重点实验室, 广东 广州 510301; 4.中国科学院 广州地球化学研究所, 广东 广州 510640
Author(s):
CAI Zhourong12 LU Lijuan3 HUANG Qiangtai12 LI Jianfeng4 XIAO Yang12 YANG Peng12 LU Xingxin12 ZHANG Cheng12 and LI Yuhan3
1. School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, Guangdong, China; 2. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, Guangdong, China; 3. CAS Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, China; 4. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China
关键词:
纳米颗粒 红河断裂带 成分分析 形成机理 构造意义
Keywords:
nanoparticles the Red River Fault zone component analysis formation mechanism tectonic significance
分类号:
P542
DOI:
10.16539/j.ddgzyckx.2020.02.016
文献标志码:
A
摘要:
通过扫描电镜(SEM)观察, 首次在红河断裂带内的花岗糜棱岩中发现类微生物状纳米颗粒。高分辨率平插能谱分析结果表明, 该类微生物状纳米颗粒成分中的C元素平均含量约为10%, 指示无机成因, 并非某些菌类微生物, 结合XRD分析结果分析表明该类纳米颗粒成分来自花岗糜棱岩的造岩矿物。通过大量各种形貌特征的纳米颗粒观察、筛查和规律分析, 对类微生物状纳米颗粒的形成机理及构造意义进行了探讨, 认为其形成过程可以分为岩石破裂形成球粒状纳米颗粒、球粒状纳米颗粒粘聚形成片状、片状纳米颗粒卷曲成管状以及管状纳米颗粒脱落聚集等四个阶段, 其中后三个阶段为纳米颗粒的后生构造变形阶段, 指示着红河断裂带构造环境的多期次变化。断裂带内球粒状纳米颗粒可能是在宏观构造应力场作用下的最小变形产物, 其结构或变形特征蕴含丰富的宏观构造活动信息, 是传统构造地质学研究方法之外的新思路和新手段。
Abstract:
Recently microbial-like nanoparticles were firstly found in the granitic mylonite in the Red River Fault zone by the observation of Scanning Electron Microscopy. High-resolution Energy Spectrum analysis results show that the microbial-like nanoparticles contain carbon with about 10%, which indicates they were formed by inorganic rather than fungi. These findings, together with the XRD analysis results reveal that the microbial-like nanoparticles are derived from the rock-forming minerals of the granite mylonite. Moreover, a large number of nanoparticles with various morphological features are observed and analyzed, and the formation mechanism and tectonic significance of microbial-like nanoparticles are discussed. We believe that the formation process of the microbial-like nanoparticles can be divided into four stages, which including the formation of granular nanoparticles when the rock fracture, the aggregation of granular nanoparticles to form the sheet-like nanoparticles, the process of tubular nanoparticles curled from sheet-like nanoparticles, and the shedding and aggregation of tubular nanoparticles. The later three formation stages of the microbial-like nanoparticles are the tectonic deformation stages of the nanoparticles, indicating multiple changes in the tectonic setting of the Red River Fault zone. The granular nanoparticles in the fault zone may be the smallest deformation products under the macroscopic tectonic stress field. The structure or deformation characteristics contain rich information of the macroscopic tectonic activities, which will provide a new idea and new way to solve the traditional tectonic geology research.

参考文献/References:

蔡周荣, 向俊洋, 黄强太, 李建峰, 卢丽娟. 2018. 红河断裂韧性剪切带内纳米颗粒的形态及其构造意义. 地球科学, 43(5): 1524-1531.
曹淑云, 刘俊来, Bernd Leiss, Axel Vollbrecht, 邹运鑫, 赵春强. 2009. 哀牢山?红河剪切带左行走滑作用起始时间约束——点苍山高温糜棱岩的显微构造与热年代学证据. 地质学报, 83(10): 1388-1400.
陈敬中. 1994. 纳米科技的发展与纳米矿物学研究. 地质科技情报, 13(2): 32-38.
琚宜文, 孙岩, 万泉, 卢双舫, 何宏平, 吴建光, 张文静, 王国昌, 黄骋. 2016. 纳米地质学: 地学领域革命性挑战. 矿物岩石地球化学通报, 35(1): 1-20.
刘德良, 杨强, 李王晔, 孙岩, 张长鑫. 2004. 郯庐断裂南段韧性剪切带糜棱岩中纳米级颗粒的发现. 科学技术与工程, 4(1): 42-43.
刘俊来, 唐渊, 宋志杰, Tran My Dung, 翟云峰, 吴文彬, 陈文. 2011. 滇西哀牢山构造带: 结构与演化. 吉林大学学报(地球科学版), 41(5): 1285-1303.
孙岩, 琚宜文, 陆现彩, 晁洪太, 王志才. 2016. 从纳米层次重新认识变形的地质体. 矿物岩石地球化学通报, 35(1): 52-55.
孙岩, 陆现彩, 刘德良, 舒良树, 朱文斌, 郭继春. 2005. 断裂剪切带厘米级磨砾和纳米级磨粒的发现、命名及其油气地质意义. 高校地质学报, 11(4): 521-526.
孙岩, 陆现彩, Zhang Xihui, 刘浩, Lin Aiming. 2009. 变质岩透入性面理的纳米结构研究. 中国科学(D辑), 39(8): 1140-1147.
王二七, 樊春, 王刚, 石许华, 陈良忠, 陈智樑. 2006. 滇西哀牢山?点苍山形成的构造和地貌过程. 第四纪研究, 26(2): 220-227.
Cai Z R, Lu L J, Huang Q T, Li J F, Zhong L F, Xiang J Y, Xia B and Liu H L. 2019. Formation conditions for nanoparticles in a fault zone and their role in fault sliding. Tectonics, 38: 159-175.
Cao S Y, Neubauer F, Liu J L, Bernroider M, Cheng X, Li J, Yu Z and Genser J. 2017. Rheological weakening of high-grade mylonites during low-temperature retrogre?ssion: The exhumed continental Ailao Shan-Red River fault zone, SE Asia. Journal of Asian Earth Sciences, 139: 40-60.
Cao S Y, Neubauer F, Liu J L, Genser J and Leiss B. 2011. Exhumation of the Diancang Shan metamorphic complex along the Ailao Shan?Red River belt, Yunan, southwe?stern, China: Evidence from 40Ar/39Ar thermochronology. Journal of Asian Earth Sciences: 525-550. doi: 10.1016/ j.jseaes.2011.04.017
Chester F M, Evans J P and Biegel R L. 1993. Internal structure and weakening mechanisms of the San Andreas Fault. Journal of Geophysical Research: Solid Earth, 98(B1): 771-786. doi: 10.1029/92JB01866
De Paola N. 2013. Nano-powder coating can make fault surfaces smooth and shiny: Implications for fault mechanics? Geology, 41: 719-720.
De Paola N, Holdsworth R E, Viti C, Collettini C and Bullock R. 2015. Can grain size sensitive flow lubricate faults during the initial stages of earthquake propagation? Earth and Planetary Science Letters, 431: 48-58.
Gilley L D, Harrison T M, Leloup P H, Ryerson F J, Lovera O M and Wang J H. 2003. Direct dating of left-lateral deformation along the Red River shear zone, China and Vietnam. Journal of Geophysical Research, 108(B2). http: //dx.doi.org/10.1029/2001JB001726
Han R, Shimamoto T, Hirose T, Ree J H and Ando J I. 2007. Ultra-low friction of carbonate faults caused by thermal decomposition. Science, 316: 878?881. doi: 10.1126/ science.1139763
Harrison T M, Cheng W, Leloup H P, Ryerson F J and Tapponnier P. 1992. An early Miocence transition in deformation regime within the Red River fault zone, Yunnan, and its significance for Indo-Asian tectonics. Journal of Geophysical Research: Solid Earth, 97(B5): 7159-7182.
Leloup H P, Lacassin R, Tapponnier P, Sch?rer U, Zhong D L, Liu X H, Zhang L S, Ji S C and Phan T T. 1995. The Ailao Shan?Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectono?physics, 251(1-4): 3-10.
Liu J L, Tang Y, Tran M D, Cao S Y, Zhao Z C, Zhao Z D and Chen W. 2012. The nature of the Ailao Shan?Red River (ASRR) shear zone: Constraints from structural, microstructural and fabric analyses of metamorphic rocks from the Diancang Shan, Ailao Shan and Day Nui Con Voi massifs. Journal of Asian Earth Sciences, 47: 231-251.
Mazur S, Green C, Stewart M G, Whittaker J M, Williams S and Bouatmani R. 2012. Displacement along the Red River Fault constrained by extension estimates and plate reconstructions. Tectonics, 31(5). doi: 10.1029/ 2012TC003174.
Sammis C G and Ben-Zion Y. 2008. Mechanics of grain-size reduction in fault zones. Journal of Geophysical Research, 113(B02306). doi: 10.1029/2006JB004892
Sch?rer U, Zhang L S and Tapponnier P. 1994. Duration of strike-slip movement in large shear zones: The Red River belt, China. Earth and Planetary Science Letters, 126(4): 379-397.
Schoenbohm L M, Burchfiel B C, Chen L Z and Yin J Y. 2006. Miocene to present activity along the Red River fault, China, in the context of continental extrusion, upper-crustal rotation, and lower-crustal flow. Geological Society of America Bulletin, 118(5-6): 672-688.
Siman-Tov S, Aharonov E, Sagy A and Emmanuel S. 2013. Nanograins form carbonate fault mirrors. Geology, 41(6): 703-706.
Smeraglia L, Bettucci A, Billi E A, Carminati A, Cavallo G, Di Toro, Natali M, Passeri D, Rossi M and Spagnuolo E. 2017. Microstructural evidence for seismic and aseismic slips along clay-bearing, carbonate faults. Journal of Geophysical Research: Solid Earth, 122. doi: 10.1002/ 2017JB014042
Spagnuolo E, Plümper O, Violay M, Cavallo A and Di Toro G. 2015. Fast-moving dislocations trigger flash weakening in carbonate-bearing faults during earthquakes. Scientific Reports, 5: 16112. doi: 10.1038/srep16112
Tapponnier P, Lacassin R, Leloup P H, Sch?rer U, Zhong D L, Wu H W, Liu X H, Ji S C, Zhang L S and Zhong J Y. 1990. The Ailao Shan?Red River metamorphic belt: Tertiary left lateral shear between Indochina and South China. Nature, 243: 43l-437.

相似文献/References:

[1]杨东辉,童亨茂,范彩伟.莺歌海盆地构造转折界面的确定及其地质意义.大地构造与成矿学,2019.43(3):590.doi:10.16539/j.ddgzyckx.2019.03.012
 YANG Donghui,TONG Hengmao,FAN Caiwei.Determination of the Tectonic Transformation Surface in Yinggehai Basin and its Geological Significance.Geotectonica et Metallogenia,2019.优先出版:590.doi:10.16539/j.ddgzyckx.2019.03.012

备注/Memo

备注/Memo:
收稿日期: 2019-05-20; 改回日期: 2019-10-30
项目资助: 广东省自然基金项目(2018A030313168, 2018B030311030)和国家自然科学基金项目(41776072, 41476039)资助。
第一作者简介: 蔡周荣(1979-), 男, 副教授, 主要从事构造地质研究。Email: caizhr@mail.sysu.edu.cn
通信作者: 黄强太(1986-), 男, 副教授。Email: huangqt7@mail.sysu.edu.cn
更新日期/Last Update: 2020-04-03