[1]吴皓然,谢玉玲,钟日晨.2018.安徽金寨银水寺铅锌矿床流体包裹体和同位素地球化学特征.大地构造与成矿学,优先出版:001.doi:10.16539/j.ddgzyckx.2019.04.018
 WU Haoran,XIE Yuling,ZHONG Richen.2018.Geology, Fluid Inclusion and Stable Isotopes of the Yinshuisi Zn-Pb Deposit, Jinzhai County, Anhui Province.Geotectonica et Metallogenia,优先出版:001.doi:10.16539/j.ddgzyckx.2019.04.018
点击复制

安徽金寨银水寺铅锌矿床流体包裹体和同位素地球化学特征
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2018年优先出版
页码:
001
栏目:
其它
出版日期:
2019-12-30

文章信息/Info

Title:
Geology, Fluid Inclusion and Stable Isotopes of the Yinshuisi Zn-Pb Deposit, Jinzhai County, Anhui Province
文章编号:
1001-1552(2019)05-0000-024
作者:
吴皓然 谢玉玲 钟日晨 王 莹 安卫军
北京科技大学 土木与资源工程学院, 北京 100083
Author(s):
WU Haoran XIE Yuling ZHONG Richen WANG Ying and AN Weijun
School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China
关键词:
银水寺矽卡岩Pb-Zn矿床 流体包裹体 C-H-O-S-Pb同位素 岩浆热液 大别造山带
Keywords:
Yinshuisi skarn Pb-Zn deposit fluid inclusion C-H-O-S-Pb isotopes magmatic hydrothermal solution Dabie Orogen
分类号:
P611
DOI:
10.16539/j.ddgzyckx.2019.04.018
文献标志码:
A
摘要:
银水寺铅锌矿床位于大别造山带北缘, 是该区最大的矽卡岩型矿床。矿体主要发育在中元古界庐镇关岩群仙人冲组大理岩与郑堂子组千枚岩之间的层间破碎带以及正长花岗斑岩与大理岩的接触带。矿床先后经历了四个成矿阶段, 矽卡岩阶段(I)、石英-钨矿阶段(II)、石英-化物阶段(III)、碳酸盐阶段(IV)。矽卡岩阶段(I)主要发育绿帘石、阳起石、石英、绿泥石、磁铁矿及少量金属硫化物等; 石英-钨矿阶段(II)主要发育石英、方解石、萤石及少量白钨矿和金属硫化物; 石英-化物阶段(III)广泛发育闪锌矿、方铅矿、黄铜矿等金属硫化物及石英、方解石、萤石、绿泥石等; 碳酸盐阶段(IV)主要发育方解石、石英及少量黄铁矿。矿床中发育三种类型流体包裹体, 包括富CO2水溶液包裹体(AC类)、气液两相水溶液包裹体(L类)和含子晶多相包裹体(S型)。根据流体包裹体岩相学、显微测温、激光拉曼研究结果, 矽卡岩阶段主要有富CO2包裹体和气液两相水溶液包裹体, 均一温度为314~400 ℃、盐度变化范围较大(1.1%~19.3% NaCleqv); 石英-钨矿阶段发育气液两相水溶液包裹体、含子晶多相包裹体和富CO2包裹体, 后两者均一温度相近(263~349 ℃)、盐度差异较大(32.8%~41% NaCleqv和0.8%~6.1% NaCleqv), 表明流体发生了沸腾作用; 石英-化物阶段主要发育气液两相水溶液包裹体, 均一温度为230~332 ℃, 盐度为0.2%~8.9% NaCleq; 碳酸盐阶段只发育气液两相水溶液包裹体, 显示低温(162~245 ℃)、低盐度(0.2%~5.6% NaCleqv)的特征。矿床不同成矿阶段石英、绿帘石中流体包裹体中水的H-O同位素结果表明,δ18Ofluid值从早到晚逐渐减小,其中矽卡岩阶段为-1.3‰~4.7‰、石英-化物阶段为-5.1‰ ~-3.1‰,表明银水寺矿床早期成矿流体主要为岩浆来源,并在成矿过程中不断有大气降水的加入。石英流体包裹体中CO2的C同位素测试结果表明,矽卡岩阶段δ13CV-PDB值为-9.2‰,石英-化物阶段为-25.8‰~-15.4‰,表明早期成矿流体中碳质主要来自岩浆,石英-硫化物阶段有大量有机碳加入,其可能与流体和富含有机质的地层反应有关。矿石中主要金属硫化物的δ34S值(1.7‰~4.4‰)显示了深源硫的特征。Pb同位素变化范围集中(206Pb/204Pb=16.55~16.705,207Pb/204Pb=15.369~15.459,208Pb/204Pb=37.463~37.767),显示壳慢混源的特点。随着成矿作用的进行,岩浆流体与碳酸盐围岩地层发生水岩交代反应形成矽卡岩,该过程造成了成矿矽卡岩阶段磁铁矿和少量闪锌矿的沉淀; 断裂活动造成热液体系压力下降,流体发生沸腾,CO2、HF进入气相并逃逸促使矿床中钨的沉淀; 同时大气降水沿裂隙灌入,混合作用导致流体的温度、盐度降低,Cl-浓度下降,造成矿床中铅锌的大面积沉淀。
Abstract:
The Yinshuisi Zn-Pb deposit, located in the eastern border of Qinling-Dabie metallogenic belt, Jinzhai County, Anhui Province, is the largest Skarn deposit in Dabieshan region. Orebodies mainly occur in the fracture zones between the marble of the Xianrenchong Formation and phyllites of Zhengtangzi Formation, Luzhenguan Group, or in the contact zones between syeno-granite porphyry and marble. Four main paragenetic stages of Yinshuisi skarn formation and ore deposition have been recognized based on petrographic observation, which are skarn stage I composed of actinolite-epidote±quartz±chlorite±magnetite assemblage, quartz-scheelite stage II make up of quartz-calcite±fluorite± scheelite assemblage, quartz-sulfides stage III constituted of sphalerite- galena-chalcopyrite-quartz-calcite±fluorite± chlorite±pyrite±pyrrhotite assemblage, and carbonate stage IV represented by calcite±quartz±pyrite assemblage. However, three types of fluid inclusions have been identified in Yinshuisi Zn-Pb deposit, including aqueous three-phase CO2-rich fluid inclusions (AC-type), aqueous two-phase fluid inclusions (L-type), and daughter mineral-bearing three-phase fluid inclusions (S-type). Microthermometry and Laser Raman Spectroscopy reveal that, AC-type and L1-type fluid inclusions occur in stage I with homogenization temperature of 314 ℃ to 400 ℃ and salinities of 1.1% to 19.3% NaCleqv, S-type and coexisting AC-type inclusions appear in stage II displaying homogenization temperatures of 263 ℃ to 349 ℃ and salinities ranging from 32.8% to 41% NaCleqv and 0.8% to 6.1% NaCleqv, L-type inclusions occurring in stage III and stage IV present the homogenization temperature of 230 ℃ to 332 ℃ and 162 ℃ to 245 ℃, and salinities ranging between 0.2% to 8.9% NaCleqv and 0.2% to 5.6% NaCleqv respectively. According to these observations, it appears that fluid boiling occurred during stage II and mixing fluid took place during the stage III. Oxygen isotopes data from quartz and epidote minerals, which, give a calculated δ18Ofluid values of -1.3‰ to 4.7‰ and -5.1‰ to -3.1‰ for stage I and III respectively, reveal that, the early fluid in Yinshuisi Zn-Pb deposit could derive from magmatic origin, with a significant contribution of meteoric water during the ore forming process. The 13C values of fluids decrease from -9.2‰ to -25.8‰ indicating the involvement of organic carbon from sediments in the primary magma source. Sulfur isotope values of sulfides give a narrow δ34S interval of 1.7‰ to 4.4‰ indicating the provenance of sulfur from deep magma. 206Pb/204Pb (16.55 to 16.705), 207Pb/204Pb (15.369 to 15.459) and 208Pb/204Pb (37.463 to 37.767) values of sulfides point up the ore-forming metals from mixing source, mantle and crust. Thus, the development of the mineralization during the metasomatic process of marble by magmatic fluids resulted to the precipitation of magnetite in the stage I, follow by the decreasing of pressure in the hydrothermal system due to the faulting activity, leading to the fluid boiling, gas release (CO2, HF) and precipitation of tungsten. Meanwhile, the metallogenic elements or metals such as Pb, Zn and Cu concentrated in the solution with high salinity which blends with meteoric water resulting to the sharp decrease of temperature and salinity and Zn-Pb ore-forming precipitation.

参考文献/References:

安徽省地质调查院. 2011. 安徽省金寨县银水寺铅锌矿成矿要素报告.
蔡应雄, 谭娟娟, 杨红梅, 卢山松, 段瑞春, 邱啸飞, 程顺波, 杨小莉. 2015. 湘南铜山岭铜多金属矿床成矿物质来源的S、Pb、C同位素约束. 地质学报, 89(10): 1792-1803.
柴广路, 李双应. 2016. 北淮阳东段佛子岭群变质岩地球化学特征及其地质意义. 地学前缘, 23(4): 29-45.
杜建国. 2000. 大别造山带中生代岩浆作用与成矿地球化学研究. 合肥: 合肥工业大学博士学位论文: 14-36.
杜建国, 常丹燕, 戴圣潜, 孙先如. 2001. 大别山区域成矿体系与成矿规律的初步研究. 安徽地质, 11(2): 140- 149.
杜建国, 孙先如. 1998. 大别造山带金属矿床成矿基本特征. 安徽地质, 8(4): 22-23.
杜建国, 张鹏. 1999. 大别造山带北部的中生代火山岩. 现代地质, 13(1): 57-65.
侯满堂, 王党国, 杨宗让, 高杰. 2007. 陕西马元地区铅锌矿地质特征及找矿远景. 中国地质, 34(1): 101-109.
黄皓, 薛怀民. 2012. 北淮阳早白垩世金刚台组火山岩LA-ICP-MS锆石U-Pb年龄及其地质意义. 岩石矿物学杂志, 31(3): 371-381.
江来利, 胡召齐. 2014. 大别山东段的变质地层格架. 安徽地质, 24(1): 1-6.
李法岭. 2011. 河南大别山北麓千鹅冲特大隐伏斑岩型钼矿床地质特征及成矿时代. 矿床地质, 30(3): 457-468.
李剑锋, 王可勇, 陆继胜, 张雪冰, 权鸿雁, 王承洋, 魏良民. 2015. 内蒙古红岭铅锌矿床成矿流体地球化学特征及矿床成因. 地球科学, 40(6): 995-1005.
李腊梅, 谢玉玲, 李凤国, 贾璐, 陈伟, 王莹, 李政. 2017. 内蒙古东不拉格钼铅锌矿床的成矿年代及成矿流体特征. 大地构造与成矿学, 41(1): 108-121.
李龙, 郑永飞, 周建波. 2001. 中国大陆地壳铅同位素演化的动力学模型. 岩石学报, 17(1): 61-68.
李曙光, 李秋立, 侯振辉, 杨蔚, 王莹. 2005. 大别超高压变质岩的冷却史及折返机制. 岩石学报, 21(4): 1117- 1124.
刘汉彬, 金贵善, 李军杰, 韩娟, 张建锋, 张佳, 钟芳文, 郭东侨. 2013. 铀矿地质样品的稳定同位素组成测试方法. 世界核地质科学, 30(3): 174-179.
刘晓强, 闫峻, 王爱国. 2018. 北淮阳汞洞冲铅锌矿区石英正长斑岩成因. 地质学报, 92(1), 41-64.
卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 2004. 流体包裹体. 北京: 科学出版社: 241-249.
陆三明, 彭海辉, 盛中烈. 2002. 北淮阳构造带东段铅锌矿找矿前景. 安徽地质, 12(2): 114-119.
陆三明, 阮林森, 赵丽丽, 王波华, 张怀东, 王国光, 陈芳. 2016. 安徽金寨县沙坪沟钼铅锌矿田两期成岩成矿作用. 地质学报, 90(6): 1167-1181.
陆三明, 徐晓春, 彭智. 2005. 北淮阳构造带东段隐爆角砾岩型多金属矿床的地质特征及成因. 地质与勘探, 41(3): 7-11.
彭智, 陆三明, 徐晓春. 2005. 北淮阳构造带东段金-多金属矿床区域成矿规律. 合肥工业大学学报(自然科学版), 28(4): 364-368.
邱检生, 王德滋, 刘洪, 凌文黎. 2002. 大别造山带北缘后碰撞富钾火山岩: 地球化学与岩石成因. 岩石学报, 18(3): 319-330.
任继舜, 陈廷愚, 牛宝贵, 刘志刚, 刘凤仁. 1992. 中国东部及邻区大陆岩石圈的构造演化与成矿. 北京: 科学出版社: 1-203.
谭应佳. 1997. 北淮阳梅山群的隶属及其地质构造若干问题. 现代地质, 11(2): 92-99.
汤加富, 钱存超, 娄清. 2001. 安徽大别山及邻区区域地质调查进展与问题讨论. 中国区域地质, 20(2): 128- 136.
唐相伟, 杨泽强, 郭跃闪. 2017. 河南省肖畈钼(铜)矿床流体包裹体研究及成矿模式. 矿产与地质, 31(2): 209- 219.
滕霞, 黄德志, 卢洋, 汪龙. 2018. 宁芜陶村磁铁矿矿床成矿流体及成矿作用. 大地构造与成矿学, 42(1): 73- 83.
王波华, 张怀东, 王萍, 徐晓春, 郝越进. 2016. 北淮阳地区与斑岩型钼矿床相关岩浆岩的地质地球化学特征及成因. 地学前缘, 23(4): 46-62.
王根节, 张怀东, 项斌, 王波华, 郝越进. 2010. 北淮阳构造带东段中生代岩浆活动与多金属成矿作用. 安徽地质, 20(4): 267-272.
王立社, 张复新, 侯俊富, 房波, 周燕. 2012. 秦岭山阳水沟口组黑色岩系微量元素地球化学及其沉积成矿背景的指示意义. 中国地质, 39(2): 311-325.
王清晨. 2013. 大别山造山带高压-高压变质岩的折返过程. 岩石学报, 29(5): 1607-1620.
王清晨, 从柏林. 1998. 大别山超高压变质带的大地构造框架. 岩石学报, 14(4): 481-492.
王岳军, 范蔚茗, 郭锋, 彭头平. 2003. 北大别晚中生代火山岩的地球化学特征及对北大别构造属性的启示. 地学前缘, 10(4): 529-538.
吴开兴, 胡瑞忠, 毕献武, 彭建堂, 唐群力. 2002. 矿石铅同位素示踪成矿物质来源综述. 地质地球化学, 30(3): 73-81.
谢玉玲, 徐九华, 何知礼, 李树岩, 李建平. 2000. 太白金矿流体包裹体中黄铁矿和铁白云石等子矿物的发现及成因意义. 矿床地质, 19(1): 54-60.
谢智, 陈江峰, 张巽, 周泰禧. 2003. 北淮阳晓天盆地早白垩世玄武岩地球化学: 富集地幔的证据. 矿物岩石地球化学通报, 26(1): 26-31.
徐兆文, 刘苏明, 陈伟, 左昌虎, 李红超, 杨小男, 王浩, 杨青原. 2013. 河南省新县大银尖钼矿床同位素地球化学研究. 地质论评, 59(5): 983-992.
薛怀民, 董树文, 刘晓春. 2002. 北大别东部白垩纪埃达克质火山岩及其锆石U-Pb年代学. 地球化学, 31(5): 455-463.
杨经绥, 许志琴, 张建新, 张泽明, 刘福来, 吴才来. 2009. 中国主要高压-高压变质带的大地构造背景及俯冲/折返机制的探讨. 岩石学报, 25(7): 1529-1560.
杨梅珍, 陆建培, 付静静, 任爱琴, 王世峰. 2014. 桐柏山老湾金矿带与燕山期岩浆作用有关的岩浆热液金多金属矿床成矿作用——来自地球化学、年代学证据及控矿构造地质约束. 矿床地质, 33(3): 651-666.
杨梅珍, 曾键年, 任爱琴, 陆建培, 覃永军, 李法岭. 2012. 大别山北缘西段双桥中生代火山岩地球化学及锆石U-Pb同位素年代学. 岩石矿物学杂志, 31(2): 133- 144.
杨泽强. 2007. 河南商城县汤家坪钼矿辉钼矿铼-同位素年龄及地质意义. 矿床地质, 26(3): 289-295.
杨泽强, 万守全, 马宏卫, 唐中刚. 2008. 河南商城县汤家坪钼矿床地球化学特征与成矿模式. 地质学报, 82(6): 788-794.
杨祝良, 沈加林, 沈渭洲, 谢方贵, 陶奎元. 2002. 大别山北缘中生代火山-入岩锶-同位素组成特征及其物质来源. 岩石矿物学杂志, 21(3): 223-230.
曾广乾, 何良伦, 张德明, 黄磊, 杨坤光. 2017. 黔西罐子窑铅锌矿床Pb同位素研究及地质意义. 大地构造与成矿学, 41(2): 305-314.
张道涵, 魏俊浩, 付乐兵, 王大钊, 刘金科. 2017. 贺兰山北段牛头沟金矿床成矿流体和成矿物质来源: 来自H-O-S-Pb同位素的证据. 大地构造与成矿学, 41(2): 325-337.
张怀东, 王波华, 郝越进, 程松, 项斌. 2012. 安徽沙坪沟斑岩型钼矿床地质特征及综合找矿信息. 矿床地质, 31(1): 41-51.
张理刚. 1995. 东亚岩石圈块体地质: 上地幔、基底和花岗岩同位素地球化学及其动力学. 北京: 科学出版社: 1-252.
赵子福, 郑永飞, 魏春生, 吴元保. 2004. 大别山中生代中酸性岩浆岩锆石U-Pb定年、元素和氧同位素地球化学研究. 岩石学报, 20(5): 1151-1174.
钟增球, 索书田, 游振东. 1998. 大别山高压、超高压变质期后伸展构造格局. 地球科学, 23(3): 225.
朱江, 彭三国, 彭练红, 雷天赐, 龚银杰, 刘兴平. 2017. 安徽东溪浅成低温热液型金矿床成矿流体特征和形成时代——流体包裹体和赋矿安山岩U-Pb年代学约束. 岩石矿物学杂志, 36(5): 593-604.
Andrew A, Godwin C I and Sinclair A J. 1984. Mixing line isochrones: A new interpretation of galena lead isotope data from southeastern British Columbia. Economic Geology, 79: 919-932.
Bertelli M, Baker T, Cleverley J S and Ulrich T. 2009. Geochemical modelling of a Zn-Pb skarn: Constraints from LA-ICP-MS analysis of fluid inclusions. Journal of Geochemical Exploration, 102(1): 13-26.
Brown P E and Essene E J. 1985. Activity variations attending tungsten skarn formation, Pine Creek, California. Contributions to Mineralogy and Petrology, 89(4): 358-369.
Chacko T, Riciputi R, Cole R and Horita J. 1999. A new technique for determining equilibrium hydrogen isotope fractionation factors using the ion microprobe: Application to the epidote-water system. Geochimica et Cosmochimica Acta, 63: 1-10.
Chaussidon M and Lorand J P. 1990. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France): An ion microprobe study. Geochimica et Cosmochimica Acta, 54(10): 2835-2846.
Chen F C, Deng J, Shu Q H, Li G J, Cui X L, Zhao F and Wang Q F. 2017a. Geology, fluid inclusion and stable isotopes (O, S) of the Hetaoping distal skarn Zn-Pb deposit, northern Baoshan block, SW China. Ore Geology Reviews, 90: 913-927.
Chen Y J, Wang P, Li N, Yang Y F and Pirajno F. 2017b. The collision-type porphyry Mo deposits in Dabie Shan, China. Ore Geology Reviews, 81: 405-430.
Clayton R N, O’Neil J L and Mayeda T K. 1972. Oxygen isotope exchange between quartz and water. Journal of Geophysical Research Atmospheres, 77(17): 3057-3067.
Dilles J H, Solomon G C, Taylor H P and Einaudi M T. 1992. Oxygen and hydrogen isotope characteristics of hydrothermal alteration at the Ann-Mason porphyry copper deposit, Yerington, Nevada. Economic Geology, 87: 44-63.
Doe B R and Stacey J S. 1974. The application of lead isotopes to the problems of ore genesis and ore prospect evaluation: A review. Economic Geology, 69(6): 757-776.
Doe B R and Zartman R E. 1979. Plumbotectonics: The Phanerozoic // Barnes H L. Geochemistry of Hydro-hermal Ore Deposits. New York: John Wiley and Sons: 22-70.
Einaudi M T, Meinert L D and Newberry R J. 1981. Skarn deposits. Economic Geology, 75: 317-391.
Faure G and Mensing T M. 2005. Isotopes: Principles and Applications. 3rd ed. John Wiley and Sons, New York: 256-283.
Fournier R O. 1999. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Economic Geology, 94: 1193-1211.
Hacker B R, Schbacher L and Webb L. 1998. U/Pb zircon ages const rain the architecture of the ultra high pressure Qinling-Dabie orogen, China. Earth and Planetary Science Letters, 161(1-4): 215-231.
Hall D L, Sterner S M and Bodnar R J. 1988. Freezing pointdepression of NaCl-KCl-H2O solutions. Economic Geology, 83(1): 197-202.
Hezarkhani A, Williams-Jones A E and Gammons C H. 1999. Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran Mineral. Deposita, 34(8): 770-783.
Hoefs J. 2009. Stable Isotope Geochemistry. 6th ed. Springer-Verlag, Berlin Heidelberg: 1-285.
Kamvong T and Zaw K. 2009. The origin and evolution of skarn-forming fluids fromthe Phu Lon deposit, northern Loei Fold Belt, Thailand: Evidence from fluid inclusion and sulfur isotope studies. Journal of Asian Earth Sciences, 34(5): 624-633.
Keppler H. 1993. Influence if fluorine on the origin, ore-bearing and evolution of rare-metal granitic rocks. Contribution to Mineralogy Petrology, 114: 479-488.
Li S G, Xiao Y, Liou D, Chen Y, Ge N, Zhang Z, Sun S S, Cong B, Zhang R, Hart S R and Wang S. 1993. Collision of the North China and Yangtse Blocks and formation of coesite-bearing eclogites: Timing and processes. Chemical Geology, 109(1-4): 89-111.
Li W S, Ni P, Pan J Y, Wang G G, Chen L L, Yang Y L and Ding J Y. 2018. Fluid inclusion characteristics as an indicator for tungsten mineralization in the Mesozoic Yaogangxian tungsten deposit, central Nanling district, South. Journal of Geochemical Exploration, 192: 1-17.
Liu Y C, Gu X F, Li S G, Hou Z H and Song B. 2011. Multistage metamorphic events in granulitized eclogites from the North Dabie complex zone, central China: Evidence from zircon U-Pb age, trace element and mineral inclusion. Lithos, 122: 107-121.
Meinert L D, Dipple G M and Nicolescu S. 2005. World skarn deposits. Economic Geology, 100: 299-336.
Meinert L D, Hedenquist J W, Satoh H and Matsuhisa Y. 2003. Formation of anhydrous and hydrous skarn in Cu-Au ore deposits bymagmatic fluids. Economic Geology, 98: 147-156.
Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Economic Geology, 67(5): 551-578.
Ohmoto H and Goldhaber M B. 1997. Sulphur and carbon isotopes // Barnes H L. Geochemistry of Hydrothermal Ore Deposits. New York: John Wiley and Sons: 517- 612.
Ohmoto H and Rye R. 1979. Isotopes of Sulfur and Carbon. John Wiley and Sons, New York: 121-146.
Robb L. 2005. Introduction to Ore-forming Processes. Blackwell Pub: 149-151.
Roedder E. 1971. Fluid inclusion studies on the porphyry- type ore deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado. Economic Geology, 66: 98-118.
Roedder E. 1984. Fluid Inclusions: Reviews in mineralogy. Mineral Society of America, Washington: 1-644.
Seward T M. 1976. The stability of chloride complexes of silver in hydrothermal solutions up to 350 ℃. Geochimica et Cosmochimica Acta, 40(11): 1329-1341.
Shu Q, Lai Y, Sun Y, Wang C and Meng S. 2013. Ore genesis and hydrothermal evolution of the Baiyinnuo’er zinc-lead skarn deposit, northeast China: Evidence from isotopes (S, Pb) and fluid inclusions. Economic Geology, 108: 835-860.
Stacey J S and Kramers J D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26(2): 207-221.
Sushchevskaya T M and Bychkov A Y. 2010. Physi-ochemical mechanisms of cassiterite and wolframite precipitation in the granite-related hydrothermal system: Thermodynamic modeling. Geochemistry International, 48(12): 1246-1253.
Tang Y W, Li X F, Zhang X Q, Yang J L, Xie Y L, Lang T G, Huang Y F, Huang C and Yin R C. 2015. Some new data on the genesis of the Linghou Cu-Pb-Zn polymetallic deposit—Based on the study of fluid inclusions and C-H-O-S-Pb isotopes. Ore Geology Reviews, 71: 248-262.
Taylor Jr H P. 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology, 69(6): 843-883.
Taylor Jr H P, Frechen J and Degens E T. 1967. Oxygen and carbon isotope studies of carbonatites from the Laacher See District, West Germany and the Aln-District, Sweden. Geochimica et Cosmochimica Acta, 31: 407- 430.
Wang L Q, Cheng W B, Tang J X, Kang H R, Zhang Y and Li Z. 2016. U-Pb geochronology, geochemistry, and H-O-S-Pb isotopic compositions of the Leqingla and Xin’gaguo skarn Pb-Zn polymetallic deposits, Tibet, China. Ore Geology Review, 115: 80-96.
Wang Q, Wyman D A, Xu J F, Jian P, Zhao Z H, Li C F, Xu W, Ma J L and He B. 2007. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: Implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta, 71(10): 2609-2636.
Wood S A and Samson I.M. 2000. The hydrothermal geochemistry of tungsten in granitoid environments: I. Relative solubilities of ferberite and scheelite as a function of T, P, pH, and mNaCl. Economic Geology, 95: 143-182.
Wu Y B and Zheng Y F. 2013. Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong’an-Dabie-Sulu orogenic belt in central China. Gondwana Research, 23: 1402-1428.
Xiong X, Zhao Z, Zhu J, Rao B and Lai M. 1998. Partitioning of F between aqueous fluids and albite granite melt and its petrogenetic and metallogenetic significance. Chinese Journal of Geochemistry, 17(4): 303-310.
Xu H J, Ma C Q, Song Y R, Zhang J F and Ye K. 2012. Early Cretaceous intermediate-mafic dykes in the Dabie orogen, eastern China: Petrogenesis and implications for crust-mantle interaction. Lithos, 154: 83-99.
Yang Y F, Wang P, Chen Y J and Li Y. 2017. Geochronology and geochemistry of the Tianmugou Mo deposit, Dabie Shan, eastern China: Implications for ore genesis and tectonic setting. Ore Geology Reviews, 81: 484-503.
Zartman R E and Doe B R. 1981. Plumbotectonics-the model. Tectonophysics, 75(1-2): 135-162.
Zartman R E and Haines S M. 1988. The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs—A case for bi-directional transport. Geochimica et Cosmochimica Acta, 52(6): 1327-1339.
Zeng Q D, Liu J M, Zhang Z L, Jia C S, Yu C M, Ye J and Liu H T. 2009. Geology and lead isotope study of the Baiyinnuo’er Zn-Pb-Ag deposit, south segment of the Da Hinggan Mountains, northeastern China. Resource Geology, 59: 170-180.
Zhang H F, Gao S, Zhong Z Q, Zhang B R, Zhang L and Hu S H. 2002. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids: Constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt, China. Chemical Geology, 186: 281-299.
Zhao Z F, Liu Z B and Chen Q. 2017. Melting of subducted continental crust: Geochemical evidence from Mesozoic granitoids in the Dabie-Sulu orogenic belt, east-central China. Journal of Asian Earth Sciences, 145: 260-277.
Zhao Z F and Zheng Y F. 2009. Remelting of subducted continental lithosphere: Petrogenesis of Mesozoic magmatic rocks in the Dabie-Sulu orogenic belt. Science in China Series D: Earth Science, 52: 1295-1318.
Zhao Z F, Zheng Y F, Wei C S and Wu Y B. 2007. Post-collisional granitoids from the Dabie orogeny in China: Zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos, 93(3): 248-272.
Zheng Y F. 1993. Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth and Planetary Science Letters, 120: 247-263.
Zheng Y F. 2008. A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt. Chinese Science Bulletin, 53: 3081-3104.
Zheng Y F, Fu B, Gong B and Li L. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu Orogen in China: Implications for geodynamics and fluid regime. Earth Science Reviews, 62: 105-161.
Zhou J X, Huang Z L, Zhou M F, Li X B and Jin Z G. 2013. Constraints of C-O-S-Pb isotope compositions and Rb-Sr isotopic age on the origin of the Tianqiao carbonate-hosted Pb-Zn deposit, SW China. Ore Geology Reviews, 53: 77-92.

相似文献/References:

[1]杨奎锋,杨坤光,马昌前.雪峰山安化—溆浦断裂带变形特征及ESR定年.大地构造与成矿学,2004.28(3):263.
 YANG Kuifeng,YANG Kunguang and Ma Changqian.DEFORMATION CHARACTERISTICS AND ESR DATING OF ANHUAXUPU FAULT BELT IN THE XUEFENG MOUNATAINS, HUNAN.Geotectonica et Metallogenia,2004.优先出版:263.
[2]李洁兰,王明艳,何 玲.澳大利亚爱博(Abra)铅-铜多金属矿床成矿流体性质及对矿床成因的制约.大地构造与成矿学,2014.38(3):598.
 LI Jielan,WANG Mingyan,and HE Ling.Characteristics of the Ore-forming Fluids and its Constraints on the Genesis of Abra Pb-Cu Deposit, Western Australia.Geotectonica et Metallogenia,2014.优先出版:598.
[3]杨鑫朋,余心起,王宗秀.西天山成矿带热液型金矿成矿地质条件及成矿物质来源对比.大地构造与成矿学,2015.39(4):633.doi:10.16539/j.ddgzyckx.2015.04.007
 YANG Xinpeng,YU Xinqi,WANG Zongxiu.Comparative Study on Ore-forming Conditions and Sources of the Hydrothermal Gold Deposits in the Chinese Western Tianshan.Geotectonica et Metallogenia,2015.优先出版:633.doi:10.16539/j.ddgzyckx.2015.04.007
[4]王 敏,白秀娟,胡荣国.湘东南锡田钨锡多金属矿床锡石40Ar/39Ar直接定年.大地构造与成矿学,2015.39(6):1049.doi:10.16539/j.ddgzyckx.2015.06.007
 WANG Min,BAI Xiujuan,HU Rongguo.Direct Dating of Cassiterite in Xitian Tungsten-Tin Polymetallic Deposit, South-East Hunan, by 40Ar/39Ar Progressive Crushing.Geotectonica et Metallogenia,2015.优先出版:1049.doi:10.16539/j.ddgzyckx.2015.06.007
[5]周云飞,徐九华,单立华.巴里坤小加山钨矿床的成矿流体及矿床成因.大地构造与成矿学,2016.4(1):086.doi:10.16539/j.ddgzyckx.2016.01.008
 ZHOU Yunfei,XU Jiuhua and SHAN Lihua.Ore-forming Fluid and Genesis of Xiaojiashan Tungsten Deposit in Barkol District.Geotectonica et Metallogenia,2016.优先出版:086.doi:10.16539/j.ddgzyckx.2016.01.008
[6]熊索菲,姚书振*,皮道会.上扬子地块东缘凹子岗锌矿床成矿流体特征.大地构造与成矿学,2016.4(3):465.doi:10.16539/j.ddgzyckx.2016.03.005
 XIONG Suofei,YAO Shuzhen*,PI Daohui.Characteristics of Ore-forming Fluid of the Aozigang Zinc Deposit in the East Margin of the Upper Yangtze Block.Geotectonica et Metallogenia,2016.优先出版:465.doi:10.16539/j.ddgzyckx.2016.03.005
[7]王蝶,毕献武*,卢焕章.金沙江–红河富碱侵入岩带斑岩型铜、金矿床的成矿流体研究.大地构造与成矿学,2017.41(1):091.doi:10.16539/j.ddgzyckx.2017.01.008
 WANG Die,BI Xianwu*,LU Huanzhang and LIU Zhangrong.Study of Ore-forming Fluid Associated with Alkali-rich Porphyries in the Jinshajiang?Red River in Continental Tectonic Setting.Geotectonica et Metallogenia,2017.优先出版:091.doi:10.16539/j.ddgzyckx.2017.01.008
[8]张道涵,魏俊浩,付乐兵.贺兰山北段牛头沟金矿床成矿流体和成矿物质 来源: 来自H-O-S-Pb同位素的证据.大地构造与成矿学,2017.41(2):325.doi:10.16539/j.ddgzyckx.2017.02.009
 ZHANG Daohan,WEI Junhao,FU Lebing.H-O-S-Pb Isotopic Constraints on Sources of the Ore-forming Fluids and Ore Metals in the Niutougou Gold Deposit in Northern Helanshan.Geotectonica et Metallogenia,2017.优先出版:325.doi:10.16539/j.ddgzyckx.2017.02.009
[9]贾润幸,方维萱,王 磊.新疆萨热克砂砾岩型铜矿床富烃类还原性盆地流体特征.大地构造与成矿学,2017.41(4):721.doi:10.16539/j.ddgzyckx.2017.04.008
 JIA Runxing,FANG Weixuan,WANG Lei.Hydrocarbon-rich Reducing Basin Fluid with in Sareke Glutenite Type Copper Deposit, Wuqia, Xinjiang.Geotectonica et Metallogenia,2017.优先出版:721.doi:10.16539/j.ddgzyckx.2017.04.008
[10]滕霞,黄德志*,卢洋.宁芜陶村磁铁矿矿床成矿流体及成矿作用.大地构造与成矿学,2018.42(1):073.doi:10.16539/j.ddgzyckx.2018.01.006
 TENG Xia,HUANG Dezhi*,LU Yang and WANG Long.Ore-forming Fluid and Mineralization of the Taocun Magnetite Deposit in the Ningwu Basin.Geotectonica et Metallogenia,2018.优先出版:073.doi:10.16539/j.ddgzyckx.2018.01.006

备注/Memo

备注/Memo:
收稿日期: 2018-09-21; 改回日期: 2018-12-21
项目资助: 国土资源部公益性行业基金项目(201011011)和中国地质调查局项目(2014-01-020-010)联合资助。
第一作者简介: 吴皓然(1991-), 男, 博士研究生, 矿床学专业。Email: wuhaoran0033@126.com
通信作者: 谢玉玲(1963-), 女, 教授, 博导, 从事矿床学和矿床地球化学方面研究。Email: yulingxie63@hotmail.com
更新日期/Last Update: 2019-09-03