[1]董 瑞,王 核,闫庆贺.2019.西昆仑甜水海地块巴颜喀拉山群地球化学特征和碎屑锆石U-Pb年代学特征: 对物源及构造环境的启示.大地构造与成矿学,43(6):1236-1257.doi:10.16539/j.ddgzyckx.2019.06.011
 DONG Rui,WANG He,YAN Qinghe.2019.Geochemical Characteristics and Zircon U-Pb Ages of the Bayankalashan Group in the Tianshihai Terrain of the West Kunlun Orogenic Belt: Implication for its Provenance and Tectonic Environment.Geotectonica et Metallogenia,43(6):1236-1257.doi:10.16539/j.ddgzyckx.2019.06.011
点击复制

西昆仑甜水海地块巴颜喀拉山群地球化学特征和碎屑锆石U-Pb年代学特征: 对物源及构造环境的启示
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2019年43卷06期
页码:
1236-1257
栏目:
岩石大地构造与地球化学
出版日期:
2019-12-15

文章信息/Info

Title:
Geochemical Characteristics and Zircon U-Pb Ages of the Bayankalashan Group in the Tianshihai Terrain of the West Kunlun Orogenic Belt: Implication for its Provenance and Tectonic Environment
文章编号:
1001-1552(2019)06-1236-022
作者:
董 瑞12 王 核1* 闫庆贺12 张晓宇12 魏小鹏12 李 沛12 周楷麟12
1.中国科学院 广州地球化学研究所 矿物学与成矿学重点实验室, 广东 广州 510640; 2.中国科学院大学, 北京 100049
Author(s):
DONG Rui12 WANG He1* YAN Qinghe12 ZHANG Xiaoyu12 WEI Xiaopeng12 LI Pei12 and ZHOU Kailin12
1. CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemisty, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
西昆仑造山带 巴颜喀拉山群 地球化学 碎屑锆石U-Pb年龄 物源 构造环境
Keywords:
West Kunlun Orogenic Belt Bayankalashan Group geochemistry detrital zircon U-Pb dating provenance tectonic background
分类号:
P597; P595
DOI:
10.16539/j.ddgzyckx.2019.06.011
文献标志码:
A
摘要:
松潘-甘孜-巴颜喀拉沉积盆地位于青藏高原东北部, 主体地层为三叠系巴颜喀拉山群, 其形成与特提斯演化密切相关。前人对盆地中东部进行了大量研究工作, 但对盆地西部的研究较为薄弱。西昆仑甜水海地块位于松潘-甘孜-巴颜喀拉沉积盆地西部, 区内广泛出露三叠系巴颜喀拉山群, 是区域地层系统的重要组成部分。本文选取甜水海地块阿克萨依地区的该套地层进行全岩地球化学及锆石U-Pb年代学研究, 限定其形成时代及物质来源, 探讨沉积构造背景。该区巴颜喀拉山群浅变质碎屑沉积岩最年轻碎屑锆石年龄峰与侵入其中的岩体限定了该区巴颜喀拉山群沉积时代为209~ 246 Ma。成分变异指数(ICV)与化学蚀变指数(CIA)的研究表明原岩成熟度中等, 化学风化作用较弱。微量、稀土元素含量及比值(如, La、Ce、Th、U、Hf、∑REE及LaN/YbN)与大陆岛弧碎屑沉积物特征值较为接近, 结合构造判别图解, 我们认为该套浅变质碎屑岩可能沉积于大陆岛弧相关的盆地中, 这与松潘-甘孜-巴颜喀拉沉积盆地东部的大地构造环境相似, 支持其为盆地西延的观点。岩相学、地球化学、锆石形态及年龄特征分析表明, 研究区巴颜喀拉山群主要接受西昆仑造山带内的近源碎屑沉积, 少量前寒武纪碎屑可能来自冈瓦那大陆北缘。
Abstract:
The Songpan-Ganzi-Bayankala Basin is located in the northeastern part of the Tibetan Plateau, the formation of which, as well as the dominant strata, the Bayankalashan Group, is closely related to the evolution of Tethys. Study of the Bayankalashan Group could provide insight into the tectonic evolution of both the basin and the Tethys. However, most of the previous studies focused on the eastern part of the basin, while the western part is not well documented. As an important part of regional stratigraphy system, the Bayankalashan Group sedimentary rocks are also widely distributed in the Tianshuihai terrane, which is tectonically located in the western part of the Songpan-Ganzi-Bayankala Basin. Here, we present the first systematic geochemistry and zircon U-Pb study of the Bayankalashan Group in the Akesayi area, Tianshuihai terrain. These data are used to constrain the age and provenance of the Bayankalashan Group in this area, and discuss the tectonic evolution and background. The youngest detrital zircon U-Pb peak age of the Bayankalashan Group and the age of granite rocks which intrude it constrain a forming age of 209 – 246 Ma for the Bayankalashan Group. Their low index of compositional variability (ICV~1) and chemical index of alteration (CIA<75) imply relatively low maturity and weak chemical weathering for their source. The characteristics of trace element contents and ratios (e.g., La, Ce, Th, U, Hf, ∑REE and LaN/YbN) for rocks from the Bayankalashan Group are similar to clasitic rocks deposited in continental arc setting. The similar sedimentary age and environment for the overall sedimentary rocks in the Songpan-Ganzi-Bayankala Basin support that Tianshuihai terrane is the western part of the Songpan-Ganzi-Bayankala Basin. The study of petrographical facies, geochemistry, morphology of zircon and its age spectrum indicate that the sediments were derived from felsic rocks of the West Kunlun Orogenic Belt related the Proto- and Paleo-Tethys evolution. Besides, a small amount of Precambrian components may have came from the northern margin of Gondwana.

参考文献/References:

崔加伟, 郑有业, 田立明, 孙君一, 董俊. 2016. 松潘-甘孜造山带北部岗龙地区巴颜喀拉山群地球化学特征和锆石U-Pb年代学特征: 对物源及构造环境的启示. 矿物岩石地球化学通报, 35(4): 719-742.
刘飞. 2006. 松潘-甘孜及龙门山地区碎屑沉积岩地球化学研究. 北京: 中国地质大学(北京)硕士学位论文: 1-85.
刘颖, 刘海臣, 李献华. 1996. 用ICP-MS准确测定岩石样品中的40余种微量元素. 地球化学, 25(6): 552-558.
任纪舜, 肖黎薇. 2004. 1∶25万地质填图进一步揭开了青藏高原大地构造的神秘面纱. 地质通报, 23(1): 1-11.
陕西省地质调查院. 2006. 1∶25万区域地质调查报告康西瓦福.
孙鸿烈. 1996. 青藏高原研究的新进展. 地球科学进展, 11(6): 18-24.
佟鑫, 周汉文, 朱云海, 林启祥, 李益龙, 毛武林, 张赟昀, 吴继光, 马智勇. 2014. 青海格尔木市黑海地区三叠系巴颜喀拉山群变质碎屑岩地球化学特征及物源分析. 岩石矿物学杂志, 33(4): 630-644.
涂湘林, 张红, 邓文峰, 凌明星, 梁华英, 刘颖, 孙卫东. 2011. RESOlution激光剥蚀系统在微量元素原位微区分析中的应用. 地球化学, 40(1): 83-98.
汪玉珍, 方锡廉. 1987. 西昆仑山、喀喇昆仑山花岗岩类时空分布规律的初步探讨. 新疆地质, 5(1): 9-24.
汪正江, 陈洪德, 张锦泉. 2000. 物源分析的研究与展望. 沉积与特提斯地质, 20(4): 104-110.
王宗起, 闫全人, 闫臻, 张宗清, 王涛, 卢海峰. 2003. 从周边造山过程判断松潘-甘孜的构造性质//青藏高原及邻区地质与资源环境学术讨论会论文摘要汇编. 成都: 124.
魏小鹏, 王核, 胡军, 慕生禄, 丘增旺, 闫庆贺, 李沛. 2017. 西昆仑大红柳滩二云母花岗岩地球化学和地质年代学研究及其地质意义. 地球化学, 46(1): 66- 80.
魏小鹏. 2018. 西昆仑造山带三叠纪花岗岩类时空分布、岩石成因及其构造背景. 广州: 中国科学院广州地球化学研究所博士学位论文: 6-10.
许志琴, 侯立玮, 王大可, 王宗秀. 1990. 中国西南部松潘-甘孜中生代碰撞型造山带的薄壳构造及前陆逆冲系. 中国地质科学院院报, 20(1): 126-129.
闫义, 林舸, 王岳军, 郭锋. 2002. 盆地陆源碎屑沉积物对源区构造背景的指示意义. 地球科学进展, 17(1): 85-90.
张传林, 陆松年, 于海锋, 叶海敏. 2007. 青藏高原北缘西昆仑造山带构造演化: 来自锆石SHRIMP及LA- ICP-MS测年的证据. 中国科学(D辑), 37(2): 145-154.
朱迎堂. 2006. 可可西里-巴颜喀拉三叠纪沉积盆地的形成及演化. 成都: 成都理工大学博士学位论文: 1-20.
Andersen T. 2005. Detrital zircons as tracers of sedimentary provenance: Limiting conditions from statistics and numerical simulation. Chemical Geology, 216: 249-270.
Berry R F, Jenner G A, Meffre S and Tubrett M N. 2001. A North American provenance for Neoproterozoic to Cambrian sandstones in Tasmania? Earth and Planetary Science Letters, 192(2): 207-222.
Bhatia M R. 1983. Plate-tectonics and geochemical composition of sandstones. Journal of Geology, 91(6): 611-627.
Bhatia M R. 1985. Rare-earth element geochemistry of Australian Paleozoic graywackes and mudrocks-prove-nance and tectonic control. Sedimentary Geology, 45(1-2): 97-113.
Bhatia M R and Crook K A W. 1986. Trace-element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92(2): 181-193.
Black L P, Kamo S L, Allen C M, Aleinikoff J N, Davis D W, Korsch R J and Foudoulis C. 2003. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200(1-2): 155-170.
Condie K C. 1993. Chemical-composition and evolution of the upper continental-crust-contrasting results from surface samples and shales. Chemical Geology, 104(1-4): 1-37.
Cox R, Lowe D R and Cullers R L. 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919-2940.
Ding L, Yang D, Cai F L, Pullen A, Kapp P, Gehrels G E, Zhang L Y, Zhang Q H, Lai Q Z, Yue Y H and Shi R D. 2013. Provenance analysis of the Mesozoic Hoh-Xil- Songpan-Ganzi turbidites in northern Tibet: Implications for the tectonic evolution of the eastern Paleo-Tethys Ocean. Tectonics, 32(1): 34-48.
Enkelmann E, Weislogel A, Ratschbacher L, Eide E, Renno A and Wooden J. 2007. How was the Triassic Songpan- Ganzi basin filled? A provenance study. Tectonics, 26(4). doi: 10.1029/2006TC002078
Fedo C M, Nesbitt H W and Young G M. 1995. Unraveling the effects of potassium metasomatism in sedimentary- rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23(10): 921-924.
Fedo C M, Sircombe K N and Rainbird R H. 2003. Detrital zircon analysis of the sedimentary record. Mineralogy and Geochemistry, 53(1): 277-303.
Floyd P A and Leveridge B E. 1987. Tectonic environment of the Devonian gramscatho basin, south cornwall- framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological Society, 144: 531-542.
Floyd P A, Leveridge B E, Franke W, Shail R and Dorr W. 1990. Provenance and depositional environment of rhenohercynian synorogenic greywackes from the Giessen-Nappe, Germany. Geologische Rundschau, 79(3): 611-626.
Gu X X. 1994. Geochemical characteristics of the Triassic Tethys-turbidites in northwestern Sichuan, China — Implications for provenance and interpretation of the tectonic setting. Geochimica et Cosmochimica Acta, 58(21): 4615-4631.
Hofmann A. 2005. The geochemistry of sedimentary rocks from the Fig Tree Group, Barberton greenstone belt: Implications for tectonic, hydrothermal and surface processes during mid-Archaean times. Precambrian Research, 143(1-4): 23-49.
Hu J, Wang H, Huang C Y, Tong L X, Mu S L and Qiu Z W. 2016. Geological characteristics and age of the Dahongliutan Fe-ore deposit in the Western Kunlun orogenic belt, Xinjiang, northwestern China. Journal of Asian Earth Sciences, 116: 1-25.
Kalsbeek F, Frei D and Affaton P. 2008. Constraints on provenance, stratigraphic correlation and structural context of the Volta basin, Ghana, from detrital zircon geochronology: An Amazonian connection? Sedimentary Geology, 212(1-4): 86-95.
Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G and Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43.
Liu Z, Jiang Y H, Jia R Y, Zhao P and Zhou Q. 2015. Origin of Late Triassic high-K calc-alkaline granitoids and their potassic microgranular enclaves from the western Tibet Plateau, Northwest China: Implications for Paleo-Tethys evolution. Gondwana Research, 27(1): 326-341.
McLennan S M. 1989. Rare earth elements in sedimentary rocks; Influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21: 169-200.
McLennan S M and Taylor S R. 1991. Sedimentary rocks and crustal evolution: Tectonic setting and secular trends. The Journal of Geology, 99(1): 1-21.
Metcalfe I. 2011. Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Research, 19(1): 3-21.
Metcalfe I. 2013. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33.
Nance W B and Taylor S R. 1976. Rare earth element patterns and crustal evolution — I. Australian post-Archean sedimentary rocks. Geochimica et Cosmochimica Acta, 40(12): 1539-1551.
Nesbitt H W and Young G M. 1982. Early proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885): 715-717.
Rogers J J W. 1996. A history of continents in the past three billion years. Journal of Geology, 104(1): 91-107.
Roser B P, Coombs D S, Korsch R J and Campbell J D. 2002. Whole-rock geochemical variations and evolution of the arc-derived Murihiku Terrane, New Zealand. Geological Magazine, 139(6): 665-685.
Roser B P and Korsch R J. 1986. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology, 94(5): 635-650.
Rudnick R and Gao S. 2003. The role of lower crustal recycling in continent formation. Geochimica et Cosmochimica Acta, 67(18): A403.
Sengor A M C. 1985. East Asian tectonic college. Nature, 318(6041): 16-17.
Sun S S and Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313-345.
Wang C L, Zhang L C, Dai Y P and Lan C Y. 2015. Geochronological and geochemical constraints on the origin of clastic meta-sedimentary rocks associated with the Yuanjiacun BIF from the Lüliang Complex, North China. Lithos, 212-215: 231-246.
Xiao W J, Windley B F, Chen H L, Zhang G C and Li J L. 2002. Carboniferous-Triassic subduction and accretion in the western Kunlun, China: Implications for the collisional and accretionary tectonics of the northern Tibetan Plateau. Geology, 30(4): 295-298.
Xiao W J, Windley B F, Liu D Y, Jian P, Liu C Z, Yuan C and Sun M. 2005. Accretionary tectonics of the Western Kunlun Orogen, China: A Paleozoic-early Mesozoic, long-lived active continental margin with implications for the growth of southern Eurasia. Journal of Geology, 113(6): 687-705.
Yang D B, Xu W L, Xu Y G, Wang Q H, Pei F P and Wang F. 2012. U-Pb ages and Hf isotope data from detrital zircons in the Neoproterozoic sandstones of northern Jiangsu and southern Liaoning Provinces, China: Implications for the Late Precambrian evolution of the southeastern North China Craton. Precambrian Research, 216: 162-176.
Yuan C, Sun M, Zhou M F, Zhou H, Xiao W J and Li J L. 2003. Absence of Archean basement in the South Kunlun Block: Nd-Sr-O isotopic evidence from granitoids. Island Arc, 12(1): 13-21.
Zhang C L, Zou H B, Ye X T and Chen X Y. 2018. Tectonic evolution of the NE section of the Pamir Plateau: New evidence from field observations and zircon U-Pb geochronology. Tectonophysics, 723: 27-40.
Zhou D and Graham S A. 1996. Extrusion of the Altyn Tagh wedge: A kinematic model for the Altyn Tagh fault and palinspastic reconstruction of northern China. Geology, 24(5): 427-430.

备注/Memo

备注/Memo:
收稿日期: 2018-01-26; 改回日期: 2019-03-01 项目资助: “十二五”国家科技支撑计划项目“新疆南部三地州优势矿产预测评价关键技术研究”(2015BAB05B00)资助。 第一作者简介: 董瑞(1993–), 男, 博士研究生, 构造地质学专业。Email: 229239053@qq.com 通信作者: 王核(1966–), 男, 研究员, 主要从事成矿预测方面研究。Email: wanghe@gig.ac.cn
更新日期/Last Update: 2019-12-15