[1]张贵山,方维萱,彭 仁.2019.云南个旧三叠纪高钾质火山岩锆石U-Pb年代学、岩石成因及构造意义.大地构造与成矿学,43(6):1219-1235.doi:10.16539/j.ddgzyckx.2019.06.007
 ZHANG Guishan,FANG Weixuan,PENG Ren and ZHENG Houyi.2019.Zircon U-Pb Chronology, Origin and Tectonic Significance of the Triassic High Potassic Volcanic Rock from Gejiu, Yunnan, Southwestern China.Geotectonica et Metallogenia,43(6):1219-1235.doi:10.16539/j.ddgzyckx.2019.06.007
点击复制

云南个旧三叠纪高钾质火山岩锆石U-Pb年代学、岩石成因及构造意义
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2019年43卷06期
页码:
1219-1235
栏目:
岩石大地构造与地球化学
出版日期:
2019-12-15

文章信息/Info

Title:
Zircon U-Pb Chronology, Origin and Tectonic Significance of the Triassic High Potassic Volcanic Rock from Gejiu, Yunnan, Southwestern China
文章编号:
1001-1552(2019)06-1219-017
作者:
张贵山12 方维萱2* 彭 仁1 郑厚义3
1.长安大学 地球科学与资源学院 陕西 西安 710065; 2.有色金属矿产地质调查中心, 北京 100012; 3.中化地质矿山总局化工地质调查总院, 北京 100013
Author(s):
ZHANG Guishan12 FANG Weixuan2* PENG Ren1 and ZHENG Houyi3
1. School of Earth Science and Resources, Chang’an University, Xi’an 710065, Shaanxi, China; 2. China Nonferrous Metals Geology Survey, Beijing 100012, China; 3. General Institute of Geological Survey, China Chemical Geology and Mine Bureau, Beijing 100013, China
关键词:
锆石U-Pb年龄 高钾质 苦橄岩 地球化学 个旧
Keywords:
zircon U-Pb dating high-potassium picrite geochemistry Gejiu
分类号:
P597; P595
DOI:
10.16539/j.ddgzyckx.2019.06.007
文献标志码:
A
摘要:
个旧卡房段三叠纪高钾质火山岩赋存于个旧组(T2g), 锆石U-Pb测年结果显示火山岩年龄为214.5±2.2 Ma, 代表了个旧地区三叠纪火山岩活动的重要期次。该火山岩为一套碱性高钾质苦橄岩, 具有富Ti特征, 其SiO2含量为39.28%~44.56%, MgO含量为11.87%~17.81%, Mg#值介于0.69~0.82之间, TiO2含量为1.79%~3.11%、Ti/Y=641~1124, K2O/Na2O值为1.25~25.95; 不同程度富集轻稀土元素(LREE)、大离子亲石元素(Rb、Ba、K)和高场强元素(Nb、Ta、Zr、Hf), 轻重稀土元素分馏明显, δEu和δCe异常不明显, 研究表明岩浆演化过程中未发生地壳物质混染作用, 具有原生岩浆的特征。个旧高钾质苦橄岩源自饱满型富含金云母地幔橄榄岩部分熔融, 具有较高的熔融平衡温度(1554 ℃)和平衡压力(3.6 GPa), 岩浆熔融的深度大约在115 km, 可能来自地幔热点轴的部分熔融。个旧高钾质苦橄岩形成的大地构造背景为三叠纪弧后裂谷盆地, 其形成与软流圈地幔物质上涌或地幔热点活动密切相关。
Abstract:
The Triassic volcanic rocks of the Gejiu Group (T2g) outcrop in the Kafang area of Gejiu. These rocks have zircon U-Pb ages of 214.5±2.2 Ma, and indeed, Triassic is an important period of volcanic activities in the Gejiu region. The Kafang volcanic rocks have SiO2 of 39.28% to 44.56%, MgO of 11.87% to 17.81%, Mg# from 0.69 to 0.82, TiO2 from 1.79% to 3.11%, Ti/Y ratios from 641 to 1124, and K2O/Na2O ratios from 1.25 to 25.95, indicating a high K alkaline picrite and titanium-rich signature. These volcanic rocks are relatively enriched in LREE, LILE (Rb, Ba, K) and HFSE (Nb, Ta, Zr, Hf). The rocks are characterized by steeply right dipping chondrite normalized REE patterns with insignificant Eu and Ce anomalies. It is inferred that the magma of the volcanic rocks was derived from the mantle without significant crustal contamination. The Gejiu high K picrite was likely derived from partial melting of phlogopite-rich mantle peridotite. Besides, the magma was formed at high temperature (1554 ℃) and pressure (3.6 GPa), i.e., about 115 km deep, which may relate to mantle plume. We propose that the Gejiu high K picrite may have been formed in a Triassic back-arc rifted basin and possibly related to asthenospheric mantle upwelling or mantle plume.

参考文献/References:

陈毓川, 朱裕生. 1993. 中国矿床成矿模式.北京: 地质出版社: 209-2l1.
池际尚. 1988. 中国东部新生代玄武岩及上地幔研究. 武汉: 中国地质大学出版社: 24-32.
杜远生, 黄虎, 杨江海, 黄宏伟, 陶平, 黄志强, 胡丽沙, 谢春霞. 2013. 晚古生代-中三叠世右江盆地的格局和转换. 地质论评, 59(1): 1-11
方维萱, 贾润幸. 2011a. 云南个旧超大型锡铜矿区变碱性苦橄岩类特征与大陆动力学. 大地构造与成矿学, 35(1): 137-148.
方维萱, 张海, 贾润幸. 2011b. 滇桂个旧-那坡三叠纪弧后裂谷盆地动力学与成矿序列. 大地构造与成矿学, 35(4): 552-566.
黄文龙, 许继峰, 陈建林, 黄丰, 曾云川, 皮桥辉, 蔡永丰, 蒋兴洲. 2016. 云南个旧杂岩体年代学与地球化学: 岩石成因和幔源岩浆对锡成矿贡献. 岩石学报, 32(8): 2330-2346.
姜常义, 钱壮志, 姜寒冰, 唐冬梅, 张蓬勃, 朱士飞. 2007. 云南宾川-永胜-丽江地区低钛玄武岩和苦橄岩的岩石成因与源区性质. 岩石学报, 23(4): 777-792.
黎应书, 秦德先, 党玉涛, 洪托, 燕永锋. 2007. 云南个旧东区印支期玄武岩的时空分布. 成都理工大学学报(自然科学版), 34(1): 23-28.
黎应书, 秦德先, 邹滔, 贾福聚, 万朝英, 孙彩霞, 周年胜. 2008. 云南个旧拉丁尼克期玄武岩地球化学特征及其大地构造背景. 吉林大学学报(地球科学版), 38(4): 624-630.
刘汇川, 王岳军, 蔡永丰, 马莉燕, 邢晓婉, 范蔚茗. 2013. 哀牢山构造带新安寨晚二叠世末期过铝质花岗岩锆石U-Pb年代学及Hf同位素组成研究. 大地构造与成矿学, 37(1): 87-98.
毛景文, 程彦博, 郭春丽, 杨宗喜, 冯佳睿. 2008. 云南个旧锡矿田: 矿床模型及若干问题讨论. 地质学报, 82(11): 1455-1467.
秦德先, 黎应书, 谈树成, 陈爱兵, 薛传东, 范柱国, 党玉涛, 童祥, 武俊德, 李玉新, 王海云. 2006. 云南个旧锡矿的成矿时代. 地质科学, 41(1): 122-132.
孙书勤, 张成江, 赵松江. 2007. 大陆板内构造环境的微量元素判别. 大地构造与成矿学, 31(1): 104-109.
汪云亮, 张成江, 修淑之. 2001. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别. 岩石学报, 17(3): 413-421.
王学琨. 1993. 个旧卡房火山岩基本地质地球化学特征. 昆明理工学院学报, 18(5): 1-9.
伍勤生, 许俊珍, 杨志. 1984. 个旧含Sn花岗岩的Sr同位素特征及找矿标志的研究. 地球化学, 13(4): 293- 302.
徐启东, 夏庆林, 成秋明. 2009. 云南个旧矿集区区域构造-岩浆演化与锡铜多金属成矿系统. 地球科学, 34(2): 307-313.
冶金工业部西南冶金地质勘探公司(308队). 1984. 个旧锡矿地质. 北京: 冶金工业出版社: 26-29.
张海, 方维萱, 杜玉龙. 2014. 云南个旧卡房碱性火山岩地球化学特征及意义. 大地构造与成矿学, 38(1): 885-897.
张娟, 毛景文, 程彦博, 李肖龙. 2012. 云南个旧卡房蚀变玄武岩金云母40Ar-39Ar同位素年龄研究及意义. 中国地质, 39(6): 1647-1656.
张旗, 钱青, 王焰, 徐平, 韩松, 贾秀琴. 1999. 扬子地块西南缘晚古生代基性岩浆岩的性质与古特提斯洋的演化. 岩石学报, 15(4): 576-583.
张颖, 黄智龙, 罗泰义, 钱志宽, 张嘉玮, 孙建博. 2013. 云南个旧西区贾沙辉长-二长岩体SIMS锆石U-Pb定年及地球化学研究. 地球化学, 42(6): 523-543.
庄永秋, 王任重, 杨树培, 尹金明. 1996. 云南个旧锡铜多金属矿床. 北京: 地震出版社: 1-189.
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79.
Baker J A, Menzies M A, Thirlwall M F and Macpherson G G. 1997. Petrogenesis of Quaternary intraplate volcanism, Sana’a, Yemen: Implications for plume-lithosphere interaction and polybaric melt hybridization. Journal of Petrology, 38(10): 1359-1390.
Campbell I H and Griffiths R W. 1992. The changing nature of mantle hotspots through time: Implications for the chemical evolution of the mantle. The Journal of Geology, 100(5): 497-523.
Cheng Y B and Mao J W. 2010. Age and geochemistry of granites in Gejiu area, Yunnan province, SW China: Constraints on their petrogenesis and tectonic setting. Lithos, 120(3): 258-276.
Cheng Y B, Mao J W and Liu P. 2016. Geodynamic setting of Late Cretaceous Sn-W mineralization in southeastern Yunnan and northeastern Vietnam. Solid Earth Sciences, 1(3): 79-88.
Davies G F. 1990. Mantle plumes, mantle stirring and hotspot chemistry. Earth and Planetary Science Letters, 99(1): 94-109.
Diwu C R, Sun Y, Yuan H L, Wang H L, Zhong X P and Liu X M. 2008. U-Pb ages and Hf isotopes for detrital zircons from quartzite in the Paleoproterozoic Songshan Group on the southwestern margin of the North China Craton. Chinese Science Bulletin, 53(18): 2828-2839.
Edgar A D and Condliffe E. 1978. Derivation of K-rich ultramafic magmas from a peridotitic mantle source. Nature, 275: 639-640.
Fekkak A, Pouclet A, Ouguir H, Ouazzani H, Badra L and Gasquet D. 2001. Geochemistry and geotectonic significance of Early Cryogenian volcanics of Saghro (Eastern Anti-Atlas, Morocco). Geodinamica Acta, 14(6): 373-385.
Falloon T J, Green D H, Hatton C J and Harris K L. 1988. Anhydrous partial melting of a fertile and depleted peridotite from 2 to 30 kbr and application to basalt petrogenesis. Journal of Petrology, 29(6): 1257-1282.
Frey F A, Green D H and Roy S D. 1978. Integrated models of basalt petrogenesis: A study of quartz tholeiites to olivine melilitites from south eastern Australia utilizing geochemical and experimental petrological data. Journal of Petrology, 19(3): 463-513.
Furman T and Graham D. 1999. Erosion of lithospheric mantle beneath the East African Rift system: Geochemical evidence from the Kivu volcanic province. Lithos, 48(1): 237-262.
Green D H and O’Hara M J. 1971. Composition of basaltic magmas as indicators of conditions of origin: Application to oceanic volcanism [and Discussion]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 268(1192): 707-725.
Hirschmann M M, Kogiso T, Baker M B and Stolper E M. 2003. Alkalic magmas generated by partial melting of garnet pyroxenite. Geology, 31(6): 481-484.
Hofmann A W. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90: 297-314.
Hudgins T R, Mukasa S B, Simon A C, Moore G and Barifaijo E. 2015. Melt inclusion evidence for CO2-rich melts beneath the western branch of the East African Rift: Implications for long-term storage of volatiles in the deep lithospheric mantle. Contributions to Mineralogy and Petrology, 169(5): 46.
Irvine T N and Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523-548.
Jiang Z W, Oliver N H S, Barr T D, Power W L and Order A. 1997. Numerical modeling of fault-controlled fluid flow in the genesis of tin deposits of the Malage ore field, Gejiu mining district, China. Economic Geology, 92(2): 228-247.
Kogiso T, Hirschmann M M and Frost D J. 2003. High-pressure partial melting of garnet pyroxenite: Possible mafic lithologies in the source of ocean island basalts. Earth and Planetary Science Letters, 216(4): 603-617.
Le Bas M J. 2000. IUGS reclassification of the high-Mg and picritic volcanic rocks. Journal of Petrology, 41(10): 1467-1470.
Le Maitre R W, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas M J, Sabine P A, Schmid R, Sorensen H, Streckeisen A, Woolley A R and Zanettin B. 1989. A classification of igneous rocks and a glossary of terms. Oxford: Blackwell Scientific: 1-236.
Luddwig K R. 2012. User’s manual for Isoplot 3.75: A geochronological toolkit for Microsoft Excel // Berkeley: Berkeley Geochronology Center Special Publication: 1-75.
MacDonald R, Rogers N W, Fitton J G, Black S and Smith M. 2001. Plume-lithosphere interactions in the generation of the basalts of the Kenya Rift, East Africa. Journal of Petrology, 42(5): 877-900.
Middlemost E A. 1975. The basalt clan. Earth-Science Reviews, 11(4): 337-364.
Miller C, Schuster R, Kl?tzli U, Frank W and Purtscheller F. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology, 40(9): 1399- 1424.
Mo X X, Hou Z Q, Niu Y L, Dong G C, Qu X M, Zhao Z D and Yang Z M. 2007. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 96: 225-242.
Mulder M D, Hertogen J, Deutsch S and André L. 1986. The role of crustal contamination in the potassic suite of the Karisimbi volcano (Virunga, African Rift Valley). Chemical Geology, 57(1): 117-136.
Müller D and Groves D I. 2018. Potassic Igneous Rocks and Associated Gold-Copper Mineralization. 5rd Edition. Springer Verlag Berlin: 1-125.
Muravyeva N S, Belyatsky B V, Senin V G, and Ivanov A V. 2014. Sr-Nd-Pb isotope systematics and clinopyroxene- host disequilibrium in ultra-potassic magmas from Toro-Ankole and Virunga, East-African Rift: Impli?cations for magma mixing and source heterogeneity. Lithos, 210: 260-277.
Nisbet E G, Cheadle M J, Arndt N T and Bickle M J. 1993. Constraining the potential temperature of the Archaean mantle: A review of the evidence from komatiites. Lithos, 30(3): 291-307.
Pertermann M and Hirschmann M M. 2003. Anhydrous partial melting experiments on MORB-like eclogite: Phase relations, phase compositions and mineral-melt partitioning of major elements at 2-3 GPa. Journal of Petrology, 44(12): 2173-2201.
Rogers N W, Mulder D M and Hawkesworth C J. 1992. An enriched mantle source for potassic basanites: Evidence from Karisimbi volcano, Virunga volcanic province, Rwanda. Contributions to Mineralogy and Petrology, 111(4): 543-556.
Sato H. 1977. Nickel content of basaltic magmas: Identification of primary magmas and a measure of the degree of olivine fractionation. Lithos, 10(2): 113-120.
Shellnutt J G, Denyszyn S W and Mundil R. 2012. Precise age determination of mafic and felsic intrusive rocks from the Permian Emeishan large igneous province (SW China). Gondwana Research, 22(1): 118-126.
Sp?th A, Le Roex A P and Opiyo-Akech N. 2001. Plume- lithosphere interaction and the origin of continental rift-related alkaline volcanism — The Chyulu Hills Volcanic Province, southern Kenya. Journal of Petrology, 42(4): 765-787.
Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313-345.
Tuff J, Takahashi E and Gibson S A. 2005. Experimental constraints on the role of garnet pyroxenite in the genesis of high-Fe mantle plume derived melts. Journal of Petrology, 46(10): 2023-2058.
Wang K, Plank T, Walker J D and Smith E I. 2002. A mantle melting profile across the Basin and Range, SW USA. Journal of Geophysical Research: Solid Earth, 107(B1): 1029/2001JB000209.
Wedepohl K H. 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta, 59: 1217- 1239.
Wilson B M. 2007. Igneous Petrogenesis: A Global Tectonic Approach. Springer Netherlands Berlin: 375-416.
Winchester J. A and Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343.
Xia P and Xu Y G. 2005. Domains and enrichment mechanism of the lithospheric mantle in western Yunnan: A comparative study on two types of Cenozoic ultrapotassic rocks. Science in China (Series D), 48(3): 326-337.
Xu Y G, Chung S L, Jahn B and Wu G. 2001. Petrologic and geochemical constraints on the petrogenesis of Permian- Triassic Emeishan flood basalts in southwestern China. Lithos, 58(3): 145-168.
Yaxley M. 2000. Experimental study of the phase and melting relations of homogeneous basalt + peridotite mixtures and implications for the petrogenesis of food basalts. Contributions to Mineralogy and Petrology, 139: 326-338.
Yuan H L, Gao S, Dai M N, Zong C L, Günther D, Fontaine G H and Diwu C R. 2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chemical Geology, 247(1): 100-118.
Zhang J and Herzberg C. 1994. Melting experiments on anhydrous peridotite KLB-1 from 5.0 to 22.5 GPa. Journal of Geophysical Research, 99(B9): 17729-17742.
Zhang J, Huang Z, Luo T and Yan Z. 2014. LA-ICP-MS zircon geochronology and platinum-group elements haracteristics of the Triassic basalts, SW China: Implications for post-Emeishan large igneous province magmatism. Journal of Asian Earth Sciences, 87: 69- 78.
Zhao Z D, Mo X X, Dilek Y, Niu Y L, DePaolo D J, Robinson P, Zhu D C, Sun C G, Dong G C, Zhou S, Luo Z H and Hou Z Q. 2009. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos, 113: 190-212.

相似文献/References:

[1]曾令君.河南卢氏八宝山花岗斑岩LA-ICP-MS锆石U-Pb年龄和Hf同位素组成特征.大地构造与成矿学,2013.37(1):065.
 ZENG Lingjun,XING Yucai.LA-ICP-MS Zircon U-Pb Age and Hf Isotope Composition of the Babaoshan Granite Porphyries in Lushi County, Henan Province.Geotectonica et Metallogenia,2013.43(6):065.
[2]杨宗永,何 斌.华南侏罗纪构造体制转换: 碎屑锆石 U-Pb年代学证据.大地构造与成矿学,2013.37(4):580.
 YANG Zongyong and HE Bin,Transform of Jurassic Tectonic Configuration of South China Block: Evidence from U-Pb Ages of Detrital Zircons.Geotectonica et Metallogenia,2013.43(6):580.
[3]王 冠,孙丰月,李碧乐.东昆仑夏日哈木矿区早泥盆世正长花岗岩锆石U-Pb年代学、地球化学及其动力学意义.大地构造与成矿学,2013.37(4):685.
 WANG Guan,SUN Fengyue,LI Bile.Zircon U-Pb Geochronology and Geochemistry of the Early Devonian Syenogranite in the Xiarihamu Ore District from East Kunlun, with Implications for the Geodynamic Setting.Geotectonica et Metallogenia,2013.43(6):685.
[4]吴云辉,熊小林,赵太平.新疆东戈壁斑岩型Mo矿辉钼矿Re-Os年龄和 成矿岩体锆石U-Pb年龄及其地质意义.大地构造与成矿学,2013.37(4):743.
 WU Yunhui,XIONG Xiaolin,ZHAO Taiping.Zircon U-Pb Age of the Ore-bearing Granite and Molybdenite Re-Os Isotopic Age of the Donggebi Mo Deposit, Xinjiang and their Geological Significance.Geotectonica et Metallogenia,2013.43(6):743.
[5]刘 兵,温泉波,刘永江.大兴安岭中段上二叠统?下三叠统接触关系研究 ——来自碎屑锆石年代学的证据.大地构造与成矿学,2014.38(2):408.
 LIU Bing,WEN Quanbo,LIU Yongjiang.Contact Relationship Between the Upper Permian and Lower Triassic Strata in the Central Great Xing’an Ranges and its Tectonic Implication: Constraints from the Detrital Zircon U-Pb Ages.Geotectonica et Metallogenia,2014.43(6):408.
[6]李 双,孙赛军,杨晓勇.皖南乌溪斑岩型金矿床赋矿侵入岩体的岩石地球化学及年代学研究.大地构造与成矿学,2015.39(1):153.
 LI Shuang,SUN Saijun,YANG Xiaoyong and SUN Weidong.Petrological Geochemistry and Chronology of Ore-bearing Intrusion in Wuxi Porphyry Gold Deposit, in South Anhui Province.Geotectonica et Metallogenia,2015.43(6):153.
[7]丘增旺.广东陶锡湖锡多金属矿床花岗斑岩锆石U-Pb 年代学、地球化学、Hf同位素组成及其地质意义.大地构造与成矿学,2017.预出版:001.doi:10.16539/j.ddgzyckx.2016.05.016
 QIU ZengWang,WANG He*.Zircon U-Pb Geochronology, Geochemistry and Lu-Hf Isotopes of the Granite Porphyry in the Taoxihu Tin Polymetallic Deposit, Guangdong Province, SE China and its Geological Significance.Geotectonica et Metallogenia,2017.43(6):001.doi:10.16539/j.ddgzyckx.2016.05.016
[8]杨 锋,李晓峰*,刘仲林.广西苍梧宝山铜多金属矿床花岗岩锆石U-Pb年龄及其地质意义.大地构造与成矿学,2016.4(6):1174.doi:10.16539/j.ddgzyckx.2016.06.006
 YANG Feng,LI Xiaofeng*,LIU Zhonglin.Zircon U-Pb Ages of Granitoid Rocks from Baoshan Cu-polymetallic Deposit in Cangwu County of Guangxi and its Geological Significance.Geotectonica et Metallogenia,2016.43(6):1174.doi:10.16539/j.ddgzyckx.2016.06.006
[9]郝 彬,宋 江,李朝柱.赤峰地区晚中生代火山岩锆石U-Pb年代学及地球化学特征.大地构造与成矿学,2016.4(6):1261.doi:10.16539/j.ddgzyckx.2016.06.013
 HAO Bin,SONG Jiang,LI Chaozhu and YANG Xinde*.Zircon U-Pb Age and Geochemical Characteristics of the Late Mesozoic Volcanic Rocks in Chifeng area.Geotectonica et Metallogenia,2016.43(6):1261.doi:10.16539/j.ddgzyckx.2016.06.013
[10]丘增旺,王 核*,闫庆贺.广东陶锡湖锡多金属矿床花岗斑岩锆石U-Pb年代学、地球化学、Hf同位素组成及其地质意义.大地构造与成矿学,2017.41(3):516.doi:10.16539/j.ddgzyckx.2016.05.016
 QIU Zengwang,WANG He*,YAN Qinghe.Zircon U-Pb Geochronology, Geochemistry and Lu-Hf Isotopes of Granite Porphyry in Taoxihu Tin Polymetallic Deposit, Guangdong Province, SE China and its Geological Significance.Geotectonica et Metallogenia,2017.43(6):516.doi:10.16539/j.ddgzyckx.2016.05.016

备注/Memo

备注/Memo:
收稿日期: 2018-06-20; 改回日期: 2018-09-19 项目资助: 国家自然科学基金(41073027)、中央高校基本科研业务费专项资金(310827172003)、矿床地球化学国家重点实验室开放基金项目(2009011)和危机矿山元素综合查定和可行性评价技术(2008EG115074)联合资助。 第一作者简介: 张贵山(1971–), 男, 副教授, 从事岩石地球化学研究。Email: zygszh@chd.edu.cn 通信作者: 方维萱(1961–), 男, 研究员, 从事矿床地球化学研究。Email: 569026971@qq.com
更新日期/Last Update: 2019-12-15