[1]喻文亮,庞崇进,Bryan Krapez.2019.桂东北恭城盆地的物源变迁: 华南中生代构造体制转换的产物?.大地构造与成矿学,43(6):1200-1218.doi:10.16539/j.ddgzyckx.2019.02.014
 YU Wenliang,PANG Chongjin,KRAPEZ Bryan.2019.Sedimentary Provenance of the Mesozoic Gongcheng Basin in Northeastern Guangxi, South China: Product of Changing Tectonic Configuration?.Geotectonica et Metallogenia,43(6):1200-1218.doi:10.16539/j.ddgzyckx.2019.02.014
点击复制

桂东北恭城盆地的物源变迁: 华南中生代构造体制转换的产物?
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2019年43卷06期
页码:
1200-1218
栏目:
岩石大地构造与地球化学
出版日期:
2019-12-15

文章信息/Info

Title:
Sedimentary Provenance of the Mesozoic Gongcheng Basin in Northeastern Guangxi, South China: Product of Changing Tectonic Configuration?
文章编号:
1001-1552(2019)06-1200-019
作者:
喻文亮1 庞崇进12* Bryan Krapez1 范 可1 温淑女1 何 斌2 冯佐海1 梁 航1
1.桂林理工大学 广西隐伏金属矿产勘查重点实验室, 广西 桂林 541004; 2.中国科学院 广州地球化学研究所, 同位素地球化学国家重点实验室, 广东 广州 510640
Author(s):
YU Wenliang1 PANG Chongjin12* KRAPEZ Bryan1 FAN Ke1 WEN Shunü1 HE Bin2 FENG Zuohai1 and LIANG Hang1
1. Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration, Guilin 541004, Guangxi, China; 2. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China
关键词:
碎屑锆石U-Pb年代学 沉积物源 大地构造 恭城盆地 中生代 华南
Keywords:
detrital zircon U-Pb geochronology sedimentary provenance tectonics Gongcheng Basin Mesozoic South China
分类号:
P597
DOI:
10.16539/j.ddgzyckx.2019.02.014
文献标志码:
A
摘要:
桂东北中生代恭城盆地位于南岭成矿带西段, 是研究华南印支期-燕山早期构造事件动力学过程中浅表地质响应的重要窗口。盆地内上二叠统乐平组被上三叠统-下侏罗统天堂组不整合覆盖, 天堂组与下侏罗统大岭组、中侏罗统石梯组为整合接触。沉积相分析表明, 乐平组为海陆交互相碎屑岩, 天堂组底部砾岩、含砾粗砂岩代表盆地早期山前快速堆积的冲积扇相沉积, 天堂组上部、大岭组和石梯组砾岩、砂岩和泥质岩则代表河流相沉积。碎屑锆石U-Pb年龄结果显示, 乐平组和天堂组底部岩屑石英砂岩均以980 Ma和~2500 Ma锆石为主, 暗示晚二叠世以及晚三叠世-早侏罗世早期盆地的碎屑物主要来自南部云开地区。然而天堂组上部、大岭组和石梯组长石岩屑砂岩则以1790~1875 Ma和2370~2490 Ma锆石为主, 并伴随有燕山早期(189~174 Ma)锆石, 指示早-中侏罗世时盆地的碎屑物主要来源于北东部武夷山-南岭地区, 与古水流方向分析的结果一致。恭城盆地早-中侏罗世时沉积物源的变迁规律很好地记录了华南东南部从印支期挤压应力状态向燕山早期伸展拉张作用的转变以及区域构造机制的转换。
Abstract:
The Mesozoic Gongcheng Basin of the northeastern Guangxi province, in the western segment of the Nanling Metallogenic Belt, is the key area to reveal the link between sedimentation and geodynamics during the Indosinian-Early Yanshanian in the southeastern South China. The Late Permian Leping Formation is overlain angular unconformably by the Late Triassic-Early Jurassic Tiantang Formation, which inturn is conformably overlain by the Early Jurassic Daling Formation and the Middle Jurassic Shiti Formation. Sedimentary facies analyses indicate that the Leping Formation comprises shallow-marine to deltaic siliciclastic rocks. The lower part of the Tiantang Formation comprises alluvial-fan conglomerate, pebbly sandstone and mudstone, which record initiation of the Gongcheng Basin. The upper part of the Tiantang Formation, and the Daling and Shiti formations are composed of fluvial conglomerate, sandstone and mudstone. LA-ICP-MS U-Pb zircon dating results show that the quartz-lithic sandstones of the Leping Formation and the lower part of the Tiantang Formation are dominated by detrital zircon with modal ages of 980 Ma and ca.2500 Ma, implying that the Late Permian and Late Triassic sediments were derived mainly from the Yunkai Terrane to the south. However, sandstones with higher feldspathic compositions in the upper part of the Tiantang Formation, and in the Daling and the Shiti formations are characterized by detrital zircon with modal ages of 2370 – 2490 Ma and 1790 – 1875 Ma, as well as 189 – 174 Ma of the Early Yanshanian period. The implication is that the Early Jurassic to Middle Jurassic sediments were sourced mainly from the Wuyishan and the eastern Nanling areas to the northeast. This significant change in zircon provenance is consistent with the Middle Jurassic paleoflow directions recorded in the Gongcheng basin. The change in sedimentary provenance (sandstone compositions and detrital zircon) of the Gongcheng Basin is related to the switch from the compressive stress during the Indosinian stage to the extension during the Early Yanshanian stage, corresponding to changes in the tectonic configuration of the southeastern South China during the Mesozoic.

参考文献/References:

程顺波, 付建明, 马丽艳, 蒋桂新, 陈希清, 卢友月, 童喜润. 2013. 桂东北越城岭-苗儿山地区印支期成矿作用: 油麻岭和界牌矿区成矿花岗岩锆石U-Pb年龄和Hf同位素制约. 中国地质, 40(4): 1189-1201.
褚杨, 林伟, Faure M, 王清晨. 2015. 华南板块早中生代陆内造山过程——以雪峰山-九岭为例. 岩石学报, 31(8): 2145-2155.
崔盛芹, 李锦蓉. 1983. 试论中国滨太平洋带的印支运动. 地质学报, 57(1): 51-61.
邓平, 舒良树, 余心起, 王彬, 谭正中, 孙岩. 2004. 闽西-赣南早-中侏罗世盆地及其火成岩特征. 岩石学报, 20(3): 521-532.
龚春雨, 巫建华. 2010. 江西南部余田群长英质火山岩SHRIMP锆石U-Pb年龄及其地质意义. 东华理工大学学报(自然科学版), 33(2): 131-138.
广东省地质矿产局. 1988. 广东省区域地质志. 北京: 地质出版社: 1-945.
广西壮族自治区地质矿产局. 1963. 区域地质测量报告书(1∶20万): 贺县幅. 南宁: 广西壮族自治区地质矿产局: 1-530.
广西壮族自治区地质矿产局. 1969. 区域地质测量报告书(1∶20万): 桂林幅. 南宁: 广西壮族自治区地质矿产局: 1-56.
广西壮族自治区地质矿产局. 1985. 广西壮族自治区区域地质志. 北京: 地质出版社: 1-853.
广西壮族自治区地质矿产局. 2006. 广西壮族自治区数字地质图2006年版说明书. 南宁: 广西壮族自治区地质矿产局: 1-78.
韩坤英, 许可娟, 高林志, 丁孝忠, 任留东, 刘燕学, 庞健峰. 2017. 云开地区变质沉积岩碎屑锆石U-Pb年龄、Lu-Hf同位素特征及其地质意义. 岩石学报, 33(9): 2939-2956.
贺振宇, 徐夕生, 陈荣, 邢光福. 2007. 赣南中侏罗世正长岩-辉长岩的起源及其地质意义. 岩石学报, 23(6): 1457-1469.
江媚, 廖志华, 卢安康, 李阅薇, 庞崇进. 2015. 桂东北中生代地层沉积环境和岩相古地理分析. 桂林理工大学学报, 35(S1): 56-58.
焦文放, 吴元保, 彭敏, 汪晶, 杨赛红. 2009. 扬子板块最古老岩石的锆石U-Pb年龄和Hf同位素组成. 中国科学(D辑), 39(7): 972-978.
李武显, 赵希林, 邢光福, 岑涛, 陶继华. 2013. 南岭东段早侏罗世沉积岩碎屑锆石U-Pb定年及其地质意义——以东坑盆地为例. 大地构造与成矿学, 37(1): 78-86.
林伟, Faure M, Lepvrier C, 陈泽超, 禇杨, 王清晨, Vuong N V, Tich V V. 2011. 华南板块南缘早中生代的逆冲推覆构造及其相关的动力学背景. 地质科学, 46(1): 134-145.
刘宝珺, 许效松. 1994. 中国南方岩相古地理图集. 北京: 科学出版社: 1-188.
刘潜, 于津海, 苏斌, 王勤, 唐红峰, 许海, 崔翔, 2011. 福建锦城187 Ma花岗岩的发现——对华南沿海早侏罗世构造演化的制约. 岩石学报 27(12): 3575-3589.
刘兆生, 李镇梁, 闭榜文. 1998. 广西桂林地区晚三叠世孢粉组合及其地层意义. 地层学杂志, 22(2): 116- 121.
刘志丽, 童金南. 2001. 中国南方中三叠世地层及沉积古地理分异. 沉积学报, 19(3): 327-356.
马永生, 陈洪德, 王国力. 2009. 中国南方构造-层序岩相古地理图集. 北京: 科学出版社: 112-169.
舒良树, 邓平, 于津海, 王彦斌, 蒋少涌. 2008. 武夷山西缘流纹岩的形成时代及其地球化学特征. 矿物岩石地球化学通报, 27(8): 950-959.
舒良树, 王艳, 沙金庚. 2011. 中国东南部侏罗纪沉积特征与形成环境. 地质学刊, 35(4): 337-448.
舒良树, 周新民, 邓平, 余心起, 王彬, 祖辅平. 2004. 中国东南部中、新生代盆地特征与构造演化. 地质通报, 23(9): 876-884.
舒良树, 周新民. 2002. 中国东南部晚古中生代构造作用. 地质论评, 48(3): 249-260.
舒良树, 周新民, 邓平, 余心起. 2006. 南岭构造带的基本地质特征. 地质论评, 52(2): 251-265.
舒良树. 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053.
唐婷婷, 何卫红, 王成刚, 纪星星, 郝奕玮, 邹亚锐. 2014. 武夷-云开中生代沉积盆地演化. 地球科学, 39(8): 1140-1154.
王彬, 舒良树, 杨振宇. 2006. 赣闽粤地区早、中侏罗世构造地层研究. 地层学杂志, 30(1): 42-49.
王东方. 1995. 中国东部中亚构造带及向环太平洋构造带的转化. 华北地质矿产杂志, (2): 135-142.
王果胜, 何付兵, 朱卫平, 马文璞. 2009. 闽西南晚三叠世文宾山组碎屑锆石U-Pb年龄及地质意义. 现代地质, 23(2): 246-255.
王鸿祯. 1985. 中国古地理图集. 北京: 地图出版社: 1- 143.
王磊, 龙文国, 徐德明, 徐旺春, 周岱, 金鑫镖, 黄皓, 张鲲. 2015. 云开地区变质基底锆石U-Pb年代学及对华夏地块Grenvillian事件的指示. 地学前缘, 22(2): 25-40.
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604.
伍静, 梁华英, 黄文婷, 王春龙, 孙卫东, 孙亚莉, 李晶, 莫济海, 王秀璋. 2012. 桂东北苗儿山-越城岭南西部岩体和矿床同位素年龄及华南印支期成矿分析. 科学通报, 57(13): 1126-1136.
谢晓华, 陈卫锋, 赵葵东, 孙涛, 陈培荣, 蒋少涌, 朱康任, 李妩巍. 2008. 桂东北豆乍山花岗岩年代学与地球化学特征. 岩石学报, 24(6): 160-170.
谢昕, 徐夕生, 邹海波, 蒋少涌, 张明, 邱检生. 2005. 中国东南部晚中生代大规模岩浆作用序幕: J2早期玄武岩. 中国科学(D辑), 35(7): 587-605.
邢光福, 杨祝良, 毛建仁, 舒良树, 沈加林, 孙强辉, 陈荣, 陶奎元. 2002. 东南大陆边缘早侏罗世火成岩特征及其构造意义. 地质通报, 21(7): 384-391.
徐先兵, 张岳桥, 舒良树, 贾东, 王瑞瑞, 许怀智. 2009. 闽西南玮埔岩体和赣南菖蒲混合岩锆石La-ICPMS U-Pb年代学: 对武夷山加里东运动时代的制约. 地质论评, 55(2): 277-285.
杨宗永, 何斌. 2013. 华南侏罗纪构造体制转换: 碎屑锆石U-Pb年代学证据. 大地构造与成矿学, 37(4): 580- 591.
于津海, O’Reilly Y S, 王丽娟, Griffin W L, 蒋少涌, 王汝成, 徐夕生. 2007. 华夏地块古老物质的发现和前寒武纪地壳的形成. 科学通报, 52(1): 11-18.
余心起, 舒良树, 邓平, 王彬, 祖辅平. 2003. 中国东南部侏罗纪-第三纪陆相地层沉积特征. 地层学杂志, 27(3): 254-263.
张国伟, 郭安林, 王岳军, 李三忠, 董云鹏, 刘少峰, 何登发, 程顺有, 鲁如魁, 姚安平. 2013. 中国华南大陆构造与问题. 中国科学: 地球科学, 43(10): 1553- 1582.
张岳桥, 董树文, 李建华, 崔建军, 施炜, 苏金宝, 李勇. 2012. 华南中生代大地构造研究新进展. 地球学报, 33(3): 257-279.
章邦桐, 凌洪飞, 孔兴功. 2004. 赣南中侏罗世流纹岩地球化学及成因研究: 上地壳成因的微量元素和Pb-Nd-Sr同位素地球化学制约. 岩石学报, 20(3): 511-520.
赵越, 杨振宇, 马醒华. 1994. 东亚大地构造发展的重要转折. 地质科学, 29(2): 105-119.
郑永飞, 张少兵. 2007. 华南前寒武纪大陆地壳的形成和演化. 科学通报, 52(1): 1-10.
周雪瑶, 于津海, 王丽娟, 沈林伟, 张春晖. 2015. 粤西云开地区基底变质岩的组成和形成. 岩石学报, 31(3): 855-882.
祖辅平, 舒良树, 李成. 2012. 永安盆地晚古生代-中-新生代沉积构造环境演化特征. 地质论评, 58(1): 126-148.
Cai J X and Zhang K J. 2009. A new model for the Indochina and South China collision during the Late Permian to the Middle Triassic. Tectonophysics, 467(1-4): 35-43.
Cen T, Li W X, Wang X X, Pang C J, Li Z X, Xing G F, Zhao X L and Tao J H. 2016. Petrogenesis of early Jurassic basalts in southern Jiangxi Province, South China: Implications for the thermal state of the Mesozoic mantle beneath South China. Lithos, 256-257: 311-330.
Chen K, Gao S, Wu Y B, Guo J L, Hu Z C, Liu Y S, Zong K Q, Liang Z W and Geng X L. 2013. 2.6-2.7 Ga crustal growth in Yangtze craton, South China. Precambrian Research, 224: 472-490.
Davis S J, Dickinson W R, Gehrels G E, Spencer J E, Lawton T F and Carroll A R. 2010. The Paleogene California River: Evidence of Mojave-Uinta paleodrainage from U-Pb ages of detrital zircons. Geology, 38(10): 931-934.
Deng K, Yang S Y, Li C, Su N, Bi L, Chang Y P and Chang S C. 2017. Detrital zircon geochronology of river sands from Taiwan: Implications for sedimentary provenance of Taiwan and its source link with the east China mainland. Earth-Science Reviews, 164: 31-47.
Fedo C M, Sircombe K N and Rainbird R H. 2003. Detrital zircon analysis of the sedimentary record. Reviews in Mineralogy and Geochemistry, 53(1): 277-303.
Gao S, Yang J, Zhou L, Li M, Hu Z C, Guo, J L, Yuan H L, Gong H J, Xiao G Q and Wei J Q. 2011. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3 Ga granitoid gneisses. American Journal of Science, 311(2): 153-182.
Guo J L, Wu Y B, Gao S, Jin Z M, Zong K Q, Hu Z C, Chen K, Chen H H and Liu Y S. 2015. Episodic Paleoarchean- Paleoproterozoic (3.3-2.0 Ga) granitoid magmatism in Yangtze Craton, South China: Implications for late Archean tectonics. Precambrian Research, 270: 246- 266.
Han P Y, Guo J L, Chen K, Huang H, Zong K Q, Liu Y S, Hu Z C and Gao S. 2017. Widespread Neoarchean (~2.7- 2.6 Ga) magmatism of the Yangtze craton, South China, as revealed by modern river detrital zircons. Gondwana Research, 42: 1-12.
Hu L S, Cawood P A, Du Y S, Xu Y J, Xu W C and Huang H W. 2015a. Detrital records for Upper Permian-Lower Triassic succession in the Shiwandashan Basin, South China and implication for Permo-Triassic (Indosinian) orogeny. Journal of Asian Earth Sciences, 98: 152-166.
Hu L S, Cawood P A, Du Y S, Yang J H and Jiao L X. 2015b. Late Paleozoic to Early Mesozoic provenance record of Paleo-Pacific subduction beneath South China. Tectonics, 34(5): 986-1008.
Hu L S, Du Y S, Cawood P A, Xu Y J, Yu W C, Zhu Y H and Yang J H. 2014. Drivers for late Paleozoic to early Mesozoic orogenesis in South China: Constraints from the sedimentary record. Tectonophysics, 618: 107-120.
Hu X M, Huang Z C, Wang J G, Yu J H, Xu K D, Jansa L and Hu W X. 2012. Geology of the Fuding inlier in southeastern China: Implication for late Paleozoic Cathaysian paleogeography. Gondwana Research, 22(2): 507-518.
Lepvrier C, Maluski H, Van Tich V, Leyreloup A, Thi P T and Van Vuong N. 2004. The Early Triassic Indosinian orogeny in Vietnam (Truong Son Belt and Kontum Massif); implications for the geodynamic evolution of Indochina. Tectonophysics, 393(1-4): 87-118.
Lepvrier C, Van Vuong N, Maluski H, Thi P T and Van Vu T. 2008. Indosinian tectonics in Vietnam. Comptes Rendus Geoscience, 340(2-3): 94-111.
Li L M, Lin S F, Davis D W, Xiao W J, Xing G F and Yin C Q. 2014. Geochronology and geochemistry of igneous rocks from the Kongling terrane: Implications for Mesoarchean to Paleoproterozoic crustal evolution of the Yangtze Block. Precambrian Research, 255: 30-47.
Li X H, Chen Z, Liu D Y and Li W X. 2003. Jurassic gabbro-granite-syenite suites from Southern Jiangxi province, SE China: Age, origin, and tectonic signify?cance. International Geology Review, 45(10): 898-921.
Li X H, Li Z X, He B, Li W X, Li Q L, Gao Y Y and Wang X C. 2012a. The Early Permian active continental margin and crustal growth of the Cathaysia Block: In situ U-Pb, Lu-Hf and O isotope analyses of detrital zircons. Chemical Geology, 328: 195-207.
Li X H, Li Z X, Li W X and Wang Y J. 2006. Initiation of the Indosinian Orogeny in South China: Evidence for a Permian magmatic arc on Hainan island. The Journal of Geology, 114(3): 341-353.
Li X H, Li Z X, Li W X, Liu Y, Yuan C, Wei G J and Qi C S. 2007. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab? Lithos, 96(1-2): 186-204.
Li Y H, Zheng J P, Xiong Q, Wang W, Ping X, Q Li X Y and Tang H Y. 2016. Petrogenesis and tectonic implications of Paleoproterozoic metapelitic rocks in the Archean Kongling Complex from the northern Yangtze Craton, South China. Precambrian Research, 276: 158-177.
Li Z X and Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subdu?ction model. Geology, 35(2): 179-182.
Li Z X, Bogdanova S V, Collins A S, Davidson A, De Waele B, Ernst R E and Vernikovsky V. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 160(1-2): 179-210.
Li Z X, Chen H L, Li X H and Zhang F Q. 2014. Tectonics of the South China Block—Interpreting the Rock Record. Beijing: Science Press: 5-23.
Li Z X, Li X H, Chung S L, Lo C H, Xu X S and Li W X. 2012b. Magmatic switch-on and switch-off along the South China continental margin since the Permian: Transition from an Andean-type to a Western Pacific- type plate boundary. Tectonophysics, 532-535: 271-290.
Li Z X, Li X H, Wartho J A, Clark C, Li W X, Zhang C L and Bao C M. 2010. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions. Geological Society of America Bulletin, 122(5-6): 772-793.
Liu Q, Yu J H, O’Reilly S Y, Zhou M F, Griffin W L, Wang L J and Cui X. 2014. Origin and geological significance of Paleoproterozoic granites in the northeastern Cathaysia Block, South China. Precambrian Research, 248: 72-95.
Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G and Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43.
Ludwig K R. 2003. Isoplot 3.0: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, (4): 1-71.
Pang C J, Krape? B, Li Z X, Xu Y G, Liu H Q and Cao J. 2014. Stratigraphic evolution of a Late Triassic to Early Jurassic intracontinental basin in southeastern South China: A consequence of flat-slab subduction? Sedimentary Geology, 302: 44-63.
Pang C J, Li Z X, Xu Y G, Wen S N and Krape? B. 2016. Climatic and tectonic controls on Late Triassic to Middle Jurassic sedimentation in northeastern Guangdong Province, South China. Tectonophysics, 677-678: 68-87.
Pang C J. 2014. Basin Record of Mesozoic Tectonic Events in Southeast South China. Curtin University, Perth: 1- 259.
Peng M, Wu Y B, Gao S, Zhang H F, Wang J, Liu X C, Gong H J, Zhou L, Hu Z C, Liu Y S and Yuan H L. 2012. Geochemistry, zircon U-Pb age and Hf isotope compositions of Paleoproterozoic aluminous A-type granites from the Kongling terrain, Yangtze Block: Constraints on petrogenesis and geologic implications. Gondwana Research, 22(1): 140-151.
Qiu X F, Ling W L, Liu X M, Lu S S, Jiang T, Wei Y X, Peng L H and Tan J J. 2018. Evolution of the Archean continental crust in the nucleus of the Yangtze block: Evidence from geochemistry of 3.0 Ga TTG gneisses in the Kongling high-grade metamorphic terrane, South China. Journal of Asian Earth Sciences, 154: 149-161.
Qiu Y M, Gao S, McNaughton N J, Groves D I and Ling W L. 2000. First evidence of >3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology, 28(1): 11-14.
Ren J S. 1991. On the geotectonics of southern China. Acta Geologica Sinica (English Edition), 4(2): 111-136.
She Z B, Ma C Q, Wan Y S, Zhang J Y, Li M, Chen L, Xu W J, Li Y Q, Ye L F and Gao J. 2012. An Early Mesozoic transcontinental palaeoriver in South China: Evidence from detrital zircon U-Pb geochronology and Hf isotopes. Journal of the Geological Society, 169(3): 353-362.
Shen L W, Yu J H, O’Reilly S Y, Griffin W L and Wang Q. 2016. Widespread Paleoproterozoic basement in the eastern Cathaysia Block: Evidence from metasedi?mentary rocks of the Pingtan-Dongshan metamorphic belt, in southeastern China. Precambrian Research, 285: 91-108.
Shu L S, Zhou X M, Deng P, Wang B, Jiang S Y, Yu J H and Zhao X X. 2009. Mesozoic tectonic evolution of the Southeast China Block: New insights from basin analysis. Journal of Asian Earth Sciences, 34(3): 376-391.
Wang X L, Zhou J C, Griffin W L, Wang R C, Qiu J S, O’Reilly S Y, Xu X S, Liu X M and Zhang G L. 2007. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia Blocks. Precambrian Research, 159: 117-131.
Wang Y J, Fan W M, Zhang G W and Zhang Y H. 2013. Phanerozoic tectonics of the South China Block: Key observations and controversies. Gondwana Research, 23(4): 1273-1305.
Wang Y J, Zhang F F, Fan W M, Zhang G W, Chen S Y, Cawood P A and Zhang A M. 2010. Tectonic setting of the South China Block in the early Paleozoic: Resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology. Tectonics, 29(6): TC6020.
Wang Y J, Zhang Y H, Fan W M and Peng T P. 2005. Structural signatures and 40Ar/39Ar geochronology of the Indosinian Xuefengshan tectonic belt, South China Block. Journal of Structural Geology, 27: 985-998.
Wu L, Jia D, Li H B, Deng F and Li Y Q. 2010. Provenance of detrital zircons from the late Neoproterozoic to Orovician sandstones of South China: Implications for its continental affinity. Geological Magazine, 147(6): 974-980.
Xu X S, O’Reilly S Y, Griffin W L, Wang X L, Pearson N J and He Z Y. 2007. The crust of Cathaysia: Age, assembly and reworking of two terranes. Precambrian Research, 158(1-2): 51-78.
Yan Y, Hu X Q, Lin G, Santosh M and Chan L S. 2011. Sedimentary provenance of the Hengyang and Mayang basins, SE China, and implications for the Mesozoic topographic change in South China Craton: Evidence from detrital zircon geochronology. Journal of Asian Earth Sciences, 41(6): 494-503.
Yang C, Li X H, Wang X C and Lan Z W. 2015. Mid- Neoproterozoic angular unconformity in the Yangtze Block revisited: Insights from detrital zircon U-Pb age and Hf-O isotopes. Precambrian Research, 266: 165- 178.
Yang D S, Li X H, Li W X, Liang X Q, Long W G and Xiong X L. 2010. U-Pb and 40Ar-39Ar geochronology of the Baiyunshan gneiss (central Guangdong, south China): Constraints on the timing of early Palaeozoic and Mesozoic tectonothermal events in the Wuyun (Wuyi- Yunkai) Orogen. Geological Magazine, 147(4): 481-496.
Yao J L, Shu L S and Santosh M. 2011. Detrital zircon U-Pb geochronology, Hf-isotopes and geochemistry-New clues for the Precambrian crustal evolution of Cathaysia Block, South China. Gondwana Research, 20(2-3): 553-567.
Yu J H, O’Reilly S Y, Wang L, Griffin W L, Zhou M F, Zhang M and Shu L S. 2010. Components and episodic growth of Precambrian crust in the Cathaysia Block, South China: Evidence from U-Pb ages and Hf isotopes of zircons in Neoproterozoic sediments. Precambrian Research, 181(1-4): 97-114.
Yu J H, Wang L J, O’Reilly S Y, Griffin W L, Zhang M, Li C Z and Shu L S. 2009. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China. Precambrian Research, 174(3-4): 347-363.
Zhang A M, Wang Y J, Fan W M, Zhang Y Z and Yang J. 2012. Earliest Neoproterozoic (ca. 1.0 Ga) arc-back-arc basin nature along the northern Yunkai Domain of the Cathaysia Block: Geochronological and geochemical evidence from the metabasite. Precambrian Research, 220-221: 217-233.
Zhou X M and Li W X. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326(3-4): 269-287.
Zhou X M, Sun T, Shen W Z, Shu L S and Niu Y L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29(1): 26-33.
Zhu W G, Zhong H, Li X H, He D F, Song X Y, Ren T, Chen Z Q, Sun H S and Liao J Q. 2010. The early Jurassic mafic-ultramafic intrusion and A-type granite from northeastern Guangdong, SE China: Age, origin, and tectonic significance. Lithos, 119(3-4): 313-329.

相似文献/References:

[1]喻文亮,庞崇进.桂东北恭城盆地的物源变迁: 华南中生代构造体制转换的产物.大地构造与成矿学,2018.优先出版:001.doi:10.16539/j.ddgzyckx.2019.02.014
 YU Wenliang,PANG Chongjin,KRAPEZ Bryan.Sedimentary Provenance of the Mesozoic Gongcheng Basin in Northeastern Guangxi, South China: Product of Changing Tectonic Configuration?.Geotectonica et Metallogenia,2018.43(6):001.doi:10.16539/j.ddgzyckx.2019.02.014

备注/Memo

备注/Memo:
收稿日期: 2018-01-20; 改回日期: 2018-04-15; 网络出版日期: 2019-05-10 项目资助: 广西自然科学基金项目(2015GXNSFCA139016、2015GXNSFBA139182)、国家自然科学基金项目(2016YFC0600406、41572191、41703039)、广西科技计划项目(桂科AD16450001)、同位素地球化学国家重点实验室开放基金项目(SKLabIG-KF-16-01)、桂林理工大学科研启动经费项目(002401003497)和国外专家资助项目联合资助。 第一作者简介: 喻文亮(1992–), 男, 硕士研究生, 地质学专业。Email: 782369178@qq.com 通信作者: 庞崇进(1983–), 男, 副教授, 从事沉积学和盆地动力学研究。Email: chongjinpang@glut.edu.cn
更新日期/Last Update: 2019-12-15