[1]张 健,黄文婷,陈喜连.2019.广西大厂矿田锡多金属矿床与矽卡岩型锌铜矿床地球化学特征差异及成因关系分析.大地构造与成矿学,43(6):1186-1199.doi:10.16539/j.ddgzyckx.2019.06.006
 ZHANG Jian,HUANG Wenting,CHEN Xilian.2019.Different Geochemical Characteristics and Genetic Link between Sn-polymetallic Deposit and Skarn Zn-Cu Deposit in the Dachang Ore Field, Guangxi.Geotectonica et Metallogenia,43(6):1186-1199.doi:10.16539/j.ddgzyckx.2019.06.006
点击复制

广西大厂矿田锡多金属矿床与矽卡岩型锌铜矿床地球化学特征差异及成因关系分析
分享到:

《大地构造与成矿学》[ISSN:ISSN 1001-1552/CN:CN 44-1595/P]

卷:
期数:
2019年43卷06期
页码:
1186-1199
栏目:
构造地质与成矿学
出版日期:
2019-12-15

文章信息/Info

Title:
Different Geochemical Characteristics and Genetic Link between Sn-polymetallic Deposit and Skarn Zn-Cu Deposit in the Dachang Ore Field, Guangxi
文章编号:
1001-1552(2019)06-1186-014
作者:
张 健12 黄文婷1 陈喜连12 伍 静3 任 龙12 梁华英1* 陈 玲4
1.中国科学院 广州地球化学研究所 矿物学与成矿学重点实验室, 广东 广州 510640; 2.中国科学院大学, 北京 100049; 3.广西大学 资源环境与材料学院, 广西 南宁 530004; 4.钦州学院 广西北部湾海洋灾害研究重点实验室, 广西 钦州 535011
Author(s):
ZHANG Jian12 HUANG Wenting1 CHEN Xilian12 WU Jing3 REN Long12 LIANG Huaying1* and CHEN Ling4
1. Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. College of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China; 4. Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Qinzhou University, Qinzhou 535011, Guangxi, China
关键词:
大厂矿田 锡多金属矿床 矽卡岩型锌铜矿床 流体包裹体 原位铅同位素
Keywords:
Dachang ore field Sn-polymetallic deposit skarn Zn-Cu deposit fluid inclusion in-situ lead isotope
分类号:
P612
DOI:
10.16539/j.ddgzyckx.2019.06.006
文献标志码:
A
摘要:
广西大厂矿田主要由锡多金属矿床和拉么矽卡岩型锌铜矿床组成, 前者产于远离龙箱盖岩体的泥盆系中, 而后者产于龙箱盖岩体内外接触带。过去多认为两者属于同一成矿系统, 都与龙箱盖岩体有关。本文分析和总结了这两类矿床的成矿流体地球化学特征及硫化物原位铅同位素组成, 探讨这两类元素组合不同的矿床是否属于同一成矿系统。锡多金属矿床主要发育含CO2包裹体、水溶液包裹体和少量含石盐子晶包裹体, 而拉么矽卡岩型锌铜矿床主要发育水溶液包裹体, 表明锡多金属矿化流体比矽卡岩型锌铜矿化流体含有更多CO2。锡多金属矿床流体包裹体的均一温度集中于270~410 ℃, 而拉么矽卡岩型锌铜矿床流体包裹体的均一温度集中在240~325 ℃。远离岩体的锡多金属矿床矿化温度高于靠近岩体的矽卡岩型铜锌矿床矿化温度, 这与同一岩浆成矿系统热液矿床的成矿温度一般从岩体往外逐渐降低不同。100号锡多金属矿床硫化物原位铅同位素组成为: 208Pb/204Pb介于38.790~39.048之间、207Pb/204Pb介于15.677~15.752之间和206Pb/204Pb介于18.569~18.691之间。拉么矽卡岩型锌铜矿床硫化物的208Pb/204Pb、207Pb/204Pb和206Pb/204Pb分别为38.731~39.112、15.668~15.762和18.411~18.607。两类矿化铅同位素组成在207Pb/204Pb-206Pb/204Pb和208Pb/204Pb-206Pb/204Pb图解上位于不同的区域, 表明两类矿化成矿物质源区不同。两类不同矿床成矿流体CO2含量、He及B同位素组成也不同, 其矿化流体来源有一定的差异。此外, 龙箱盖岩体黑云母富锡, 表明岩浆中的Sn主要为Sn4+置换黑云母中的Ti4+, 不利于Sn在残余岩浆中富集成矿。上述差异表明大厂矿田锡多金属矿床和矽卡岩型锌铜矿床不是同一岩浆-热液成矿系统的产物, 拉么矽卡岩型锌铜矿床和龙箱盖岩体有关, 锡多金属矿床可能和深部未出露岩体有关。
Abstract:
The Dachang ore field in Guangxi province mainly consists of Sn-polymetallic deposit and skarn Zn-Cu deposit. The former is hosted in the Devonian strata away from the Longxianggai granite and the latter occurs in the contact zone between the strata and the Longxianggai granite. Both types of deposits were previously considered to be related genetically to the Longxianggai granite. In this paper, we analyzed the geochemical characteristics of ore-forming fluids and in-situ lead isotopic compositions of sulfide minerals from these two types of deposits to elucidate whether they belong to the same magmatic-hydrothermal system or not. The Sn-polymetallic deposit mainly contains CO2-bearing and liquid-rich fluid inclusions (FIs) with few daughter-bearing FIs, whereas the skarn Zn-Cu deposit contains mainly liquid-rich FIs, indicating that the ore-forming fluids of the Sn-polymetallic deposit have much more abundant CO2 than those of the skarn Zn-Cu deposit. Homogenization temperatures of FIs from the Sn-polymetallic deposit mainly range from 270 ℃ to 410 ℃, while those for the skarn Zn-Cu deposit mainly range from 240 ℃ to 325 ℃. The ore-forming temperatures of the deposits in the Dachang ore field decrease as the distances between the deposit and the Longxianggai granite increase, indicative of links with a same magmatic- hydrothermal center. The 208Pb/204Pb, 207Pb/204Pb and 206Pb/204Pb of the sulfide minerals from the No.100 Sn-polymetallic deposit range from 38.790 to 39.048, 15.677 to 15.752 and 18.569 to 18.691, respectively, while those for the skarn Zn-Cu deposit range from 38.731 to 39.112, 15.668 to 15.762 and 18.411 to 18.607, respectively. The different 206Pb/204Pb-207Pb/204Pb -208Pb/204Pb compositions suggest that ore metals of the two types of deposits likely have different sources. The ore-forming fluids of Sn-polymetallic and the skarn Zn-Cu deposits are also different in B and He isotopic compositions and CO2 contents, suggesting that their ore-forming fluids were not derived from the same sources. Moreover, biotite of the Longxianggai granite contains high Sn content, suggesting that Sn4+ in magma replaces Ti4+ in biotite and it is not favorable for Sn enrichment in residual magma. The differences between the Sn-polymetallic deposit and the skarn Zn-Cu deposit suggest that the two types of deposits should not relate to the same magmatic-hydrothermal system. It is concluded, therefore, that the skarn Zn-Cu deposit owes its origin to the Longxianggai granite, while the Sn-polymetallic deposit is likely related to the unexposed granite at depth.

参考文献/References:

蔡明海, 梁婷, 韦可利, 黄惠明, 刘国庆. 2006. 大厂锡多金属矿田铜坑-长坡92号矿体Rb-Sr测年及其地质意义. 华南地质与矿产, (2): 31-36.
蔡明海, 梁婷, 吴德成. 2005. 广西大厂锡多金属矿田亢马矿床地质特征及成矿时代. 地质学报, 79(2): 262- 268.
蔡明海, 梁婷, 吴德成, 黄惠民. 2004. 广西丹池成矿带构造特征及其控矿作用. 地质与勘探, 40(6): 5-10.
陈骏, 王汝成, 朱金初, 陆建军, 马东升. 2014. 南岭多时代花岗岩的钨锡成矿作用. 中国科学: 地球科学, 44(1): 111-121.
陈玲, 黄文婷, 伍静, 张健, 梁华英, 林书平, 邹银桥. 2015. 广西五圩矿田成矿温度变化及找矿方向分析. 地球化学, 44(6): 546-555.
陈毓川, 黄民智, 徐钰, 胡云中, 唐绍华, 李荫清, 孟令库. 1993. 大厂锡矿地质. 北京: 地质出版社: 1-361.
丁悌平, 彭子成, 黎红, 李延河. 1988. 南岭地区几个典型矿床的稳定同位素研究. 北京: 科学技术出版社.
范森葵. 2011. 广西大厂锡多金属矿田地质特征、矿床模式与成矿预测. 长沙: 中南大学博士学位论文: 1- 130.
范森葵, 王登红, 梁婷, 吴德成, 韦可利, 周鸿军, 黄惠明, 屈文俊. 2010. 广西大厂96号矿体的成矿元素地球化学特征与成因. 吉林大学学报(地球科学版), 40(4): 781-790.
傅金宝, 许文渊, 周卫宁, 李明达. 1983. 大厂锡矿田龙箱盖岩体黑云母的特征及其地质意义. 冶金工业部地质研究所学报, (3): 89-103.
韩发, 赵汝松, 沈建忠, Richard W H, 蒋少涌, 陈洪德. 1997. 大厂锡多金属矿床地质及成因. 北京: 地质出版社: 1-213.
黄伟洪, 范森葵, 陈春文, 闭忠敏. 2012. 成矿规律研究在大厂矿田矽卡岩型锌铜矿床中的应用实例——以黑水沟-大树脚, 羊角尖矽卡岩型锌铜矿床为例. 矿床地质, 31(3): 535-544.
黄文婷, 李晶, 梁华英, 王春龙, 林书平, 王秀璋. 2013. 福建紫金山矿田罗卜岭铜钼矿化斑岩锆石LA-ICP- MS U-Pb年龄及成矿岩浆高氧化特征研究. 岩石学报, 29(1): 592-593.
蒋少涌, 赵葵东, 姜耀辉, 凌洪飞, 倪培. 2006. 华南与花岗岩有关的一种新类型的锡成矿作用: 矿物化学, 元素和同位素地球化学证据. 岩石学报, 22(10): 2509-2516.
李华芹, 王登红, 梅玉萍, 梁婷, 陈振宇, 郭春丽, 应立娟. 2008. 广西大厂拉么锌铜多金属矿床成岩成矿作用年代学研究. 地质学报, 82(7): 912-920.
李明琴. 1995. 广西拉么锌铜多金属矿床流体包裹体的地球化学特征研究. 贵州工业大学学报, (4): 55-59.
李荫清, 陈伟十. 1989. 大厂锡矿的成矿流体. 岩石学报, 5(3): 12-24.
梁婷. 2008. 广西大厂长坡-铜坑锡多金属矿床成矿机制. 西安: 长安大学博士学位论文: 1-251.
梁婷, 王登红, 蔡明海, 陈振宇, 郭春丽, 黄惠民. 2008. 广西大厂锡多金属矿床S、Pb同位素组成对成矿物质来源的示踪. 地质学报, 82(7): 967-977.
梁婷, 王登红, 蔡明海, 范森葵, 余阳先, 韦可利, 黄惠明, 郑阳. 2014. 桂西北丹池成矿带主要金属矿床成矿特征及成矿规律. 矿床地质, 33(6): 1171-1192.
梁婷, 王登红, 侯可军, 李华芹, 黄惠明, 蔡明海, 王东明. 2011. 广西大厂笼箱盖复式岩体的LA-MC-ICP- MS锆石U-Pb年龄及其地质意义. 岩石学报, 27(6): 1624-1636.
秦德先, 洪托, 田毓龙, 陈健文. 2002. 广西大厂锡矿92号矿体矿床地质与技术经济. 北京: 地质出版社: 3- 204.
王登红, 陈毓川, 陈文, 桑海清, 李华芹, 路远发, 陈开礼, 林枝茂. 2004. 广西南丹大厂超大型锡多金属矿床的成矿时代. 地质学报, 78(1): 132-138.
王新宇, 黄宏伟, 陈能松, 黄锡强, 吴祥珂, 郝爽, 李惠民. 2015. 广西大厂矿田长坡-铜坑锡多金属矿床锡石 LA-MC-ICP-MS U-Pb年龄及其地质意义. 地质论评, 61(4): 892-900.
许聪, 赵葵东. 2017. 广西大厂拉么锌铜矿床流体包裹体研究. 矿物学报, 37(S1): 513.
叶绪孙, 严云秀, 何海洲. 1999. 广西大厂超大型锡矿成矿条件与历史演化. 地球化学, 28(3): 213-221.
张国林, 蔡宏渊. 1987. 广西大厂锡多金属矿床成因探讨. 地质论评, 33(5): 426-436.
周志辉. 2015. 广西大厂矿田龙头山矿区锡多金属矿床地质特征及礁灰岩控矿因素. 矿产勘查, 6(1): 33-40.
Audétat A, Günther D and Heinrich C A. 2000. Causes for large-scale metal zonation around mineralized plutons: Fluid inclusion LA-ICP-MS evidence from the Mole Granite, Australia. Economic Geology, 95(8): 1563-1581.
Ballard J R, Palin M J and Campbell I H. 2002. Relative oxidation states of magmas inferred from Ce(Ⅳ)/Ce(Ⅲ) in zircon: Application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347-364.
Cai M H, Mao J W, Liang T, Pirajno F and Huang H L. 2007. The origin of the Tongkeng-Changpo tin deposit, Dachang metal district, Guangxi, China: Clues from fluid inclusions and He isotope systematics. Mineralium Deposita, 42(6): 613-626.
Cheng Y B, Mao J W, Chang Z S and Pirajno F. 2013. The origin of the world class tin-polymetallic deposits in the Gejiu district, SW China: Constraints from metal zoning characteristics and 40Ar-39Ar geochronology. Ore Geology Reviews, 53(2): 50-62.
Chi G X and Xue C J. 2011. Abundance of CO2-rich fluid inclusions in a sedimentary basin-hosted Cu deposit at Jinman, Yunnan, China: Implications for mineralization environment and classification of the deposit. Mineralium Deposita, 46(4): 365-380.
Fu M, Changkakoti A, Krouse H R, Gray J and Kwak T A P. 1991. An oxygen, hydrogen, sulfur, and carbon isotope study of carbonate-replacement (skarn) tin deposits of the Dachang tin field, China. Economic Geology, 86(8): 1683-1703.
Fu M, Kwak T A P and Mernagh T P. 1993. Fluid inclusion studies of zoning in the Dachang tin-polymetallic ore field, People’s Republic of China. Economic Geology, 88(2): 283-300.
Halter W E, Pettke T and Heinrich C A. 2002. The origin of Cu/Au ratios in porphyry-type ore deposits. Science, 296(5574): 1844-1846.
Hedenquist J W and Lowenstern J B. 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature, 370(6490): 519-527.
Hu X Y, Bi X W, Hu R Z, Shang L B and Fan W L. 2008. Experimental study on tin partition between granitic silicate melt and coexisting aqueous fluid. Geochemical Journal, 42(2): 141-150.
Jiang S Y, Han F, Shen J Z and Palmer M R. 1999. Chemical and Rb-Sr, Sm-Nd isotopic systematics of tourmaline from the Dachang Sn-polymetallic ore deposit, Guangxi Province, PR China. Chemical Geology, 157(1): 49-67.
Jugo P J, Candela P A and Piccoli P M. 1999. Magmatic sulfides and Au∶Cu ratios in porphyry deposits: An experimental study of copper and gold partitioning at 850 ℃, 100 MPa in a haplogranitic melt-pyrrhotite- intermediate solid solution-gold metal assemblage, at gas saturation. Lithos, 46(3): 573-589.
Keppler H and Wyllie P J. 1991. Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O-HCl and haplogranite-H2O- HF. Contributions to Mineralogy and Petrology, 109(2): 139-150.
Lehmann B. 1990. Metallogeny of Tin. Berlin: Springer: 1-211.
Leng C B, Zhang X C, Huang Z L, Huang Q Y, Wang S X, Ma D Y, Luo T Y, Li C and Li W B. 2015. Geology, Re-Os ages, sulfur and lead isotopes of the Diyanqinamu porphyry Mo deposit, Inner Mongolia, NE China. Economic Geology, 110(2): 557-574.
Liang H Y, Campbell I H, Allen C, Sun W D, Liu C Q, Yu H X, Xie Y W and Zhang Y Q. 2006. Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet. Mineralium Deposita, 41(2): 152-157.
Liang H Y, Sun W D, Su W C and Zartman R E. 2009. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Economic Geology, 104(4): 587-596.
Linnen R L, Pichavant M, Holtz F and Burgess S. 1995. The effect of ?O2 on the solubility, diffusion, and speciation of tin in haplogranitic melt at 850 ℃ and 2 kbar. Geochimica et Cosmochimica Acta, 59(8): 1579-1588.
Pa?ava J, K?íbek B, Dobe? P, Vav?ín I, ?ák K, Fan D L, Zhang T and Boiron M C. 2003. Tin-polymetallic sulfide deposits in the eastern part of the Dachang tin field (South China) and the role of black shales in their origin. Mineralium Deposita, 38(1): 39-66.
Romer R L and Kroner U. 2016. Phanerozoic tin and tungsten mineralization — Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Research, 31: 60-95.
Sillitoe R H. 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3-41.
Sun W D, Liang H Y, Ling M X, Zhan M Z, Ding X, Zhang H, Yang X Y, Li Y L, Ireland T R and Wei Q R. 2013. The link between reduced porphyry copper deposits and oxidized magmas. Geochimica et Cosmochimica Acta, 103: 263-275.
Xu B, Jiang S Y, Luo L, Zhao K D and Ma L. 2017. Origin of the granites and related Sn and Pb-Zn polymetallic ore deposits in the Pengshan district, Jiangxi Province, South China: Constraints from geochronology, geochemistry, mineral chemistry, and Sr-Nd-Hf-Pb-S isotopes. Mineralium Deposita, 52(3): 337-360.
Yang Y P, Zhang Y X, Simon A and Ni P. 2016. Cassiterite dissolution and Sn diffusion in silicate melts of variable water content. Chemical Geology, 441: 162-176.
Yuan H L, Yin C, Liu X, Chen K Y, Bao Z A, Zong C L, Dai M N, Lai S C, Wang R and Jiang S Y. 2015. High precision in-situ Pb isotopic analysis of sulfide minerals by femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry. Science China: Earth Sciences, 58(10): 1713-1721.
Zhao K D, Jiang S Y, Ni P, Ling H F and Jiang Y H. 2007. Sulfur, lead and helium isotopic compositions of sulfide minerals from the Dachang Sn-polymetallic ore district in South China: Implication for ore genesis. Mineralogy and Petrology, 89(3-4): 251-273.
Zhao K D, Jiang S Y, Xiao H Q and Ni P. 2002. Origin of ore-forming fluids of the Dachang Sn-polymetallic ore deposit: Evidence from helium isotopes. Science China: Earth Sciences, 47(12): 1041-1045.

相似文献/References:

[1]吴学益,钟德义,周文华.地洼构造对大厂锡-多金属矿成矿控制作用及其模拟试验.大地构造与成矿学,1987.11(3):269.
 WU Xueyi,ZHONG Deyi,ZHOU Wenghua.CONTROL OF DIWA STRUCTURES ON THE FORMATION OF TIN-POLYMETALLIC DEPOSITS IN DACHANG GUANSXI AND THEIR SIMULATING TEST.Geotectonica et Metallogenia,1987.43(6):269.

备注/Memo

备注/Memo:
收稿日期: 2018-04-12; 改回日期: 2018-09-03 项目资助: 国家自然科学基金项目(41772065、41421062)和973项目(2015CB452602)联合资助。 第一作者简介: 张健(1990?), 男, 博士研究生, 矿物学、岩石学、矿床学专业。Email: 541388564@qq.com 通信作者: 梁华英(1962?), 男, 研究员, 博士生导师, 从事矿床地质及矿床地球化学研究。Email: lianghy@gig.ac.cn
更新日期/Last Update: 2019-12-15